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Problem 1. Let G be a finite group. Let Z[G] be the group algebra of G with augmentation ideal a. Show that
a/a? ~ G/G' as abelian groups for the derived group G’ of G.

View a/a? as an abelian group. We will define the group homomorphism f : G — a/a? as f(g) = [e — g]. Let
9i, g5 € G. Note that
e=9i9; = (e —gi) + (e = g;) — (e —gi)(e — g;)
and (e — g;)(e — g;) € a®. Thus f(gig;) = [e — gig;] = [e — gi] + [e — g;] and [ is a group homomorphism. Since
a/a? is abelian, we have f : G/G’ — a/a? where fp = f for p: G — G /G’ the standard projection.

Let |G| = n and list all of G as {g1,...,gn}. Bach a € ais > ,(—a;)g; for a; € Z. Since Y a; = 0, we
can write a uniquely as a = >, ; a;(e — g;). Then we can define h : a — G/G’ as h(a) =[]/, g{". Take some
b= (e—gi)(e—g;) = e—gi—g; +gigj, then h(b) = [9:]7 (9317 [9i9;] = ([g:]~"[9:])([g;]~"g;]) = [e] since G/&’
is abelian. Thus a®  ker(h) and h factors through a/a? as h : a/a® — G/G’. Now hf([g]) = hle — g] = [g] and
fh(la]) = F(TTZ Loa] ™) = 20y aif ([9i]) = 2, aile — gi] for a = 337, ai(e — g;). We conclude a/a® ~ G/G".



Problem 2. Let F,, denote the finite field of p elements. Consider the covariant functor F' from the category
of commutative Fp-algebras with a multiplicative identity to abelian groups sending a ring R to its p-th roots of
unity, that is, F(R) = {¢ € R|(? = 1}. Answer the following questions and justify your answers.

(a)

Give an example of a finite local ring R such that F(R) has p? elements.

Assume that p # 2 so p > 3. Let R :=F,[z]/(z?) so R is finite. We note that F,[z] is a PID and the ideals of
R are in bijective correspondence with the ideals of Fp[z] containing (z*). Thus the non-trivial, proper ideals
of R are principal generated by x or 22, The ideal (z) is maximal since R/(z) ~ F,[z]/(z) ~ F, is a field and
(22) < (). Therefore, R is a local ring. Since R has characteristic p > 3, we have

(az® 4+ bx + c)P = (az?)P + (bz)? + ¢ = az® +baP +c=c.

Thus a pth root of unity in R will have ¢ = 1. There are p? choices for a and b so there are p? distinct pth
roots of unity in R.

Assume p = 2. Let R := Fo[z]/(2%). As above, R is a finite local ring. Since R is characteristic 2,
(az® 4 ba? + cx + d)? = (a®25 + b2 + 22? + d?) = ca® + d

for a,b,c,d € Fo. Then ¢ = 0 and d = 1 gives a second root of unity in R. We have 4 choices for a and b so R
has 4 second roots of unity as desired.

Let Aut(F') be the set of natural transformations of F into itself inducing a group automorphism of F'(A) for
all commutative rings A with identity. Prove that F' is representable and use the Yoneda Lemma to compute
the order of Aut(F).

Let C be the category of commutative F,-algebras. We want to show that F' is naturally isomorphic to
Home (R, —) for some R € Ob(C). Let G be the cyclic group of order p generated by g € G, and define
R := F,[G] to be the corresponding group ring over F,. Any F,-algebra homomorphism f : R — A satisfies
f(1) =1, fixing F,,. We note that f is determined by the image of g. The order of g € R is p so f(g) must have
order dividing p. Thus f(g) =1 or f(g) is a nontrivial element of order p.

For each A € Ob(C), we can construct n4 : F(A) — Home(R, A) by sending ¢ € F(A) to the F,-algebra

homomorphism f : R — A given by f(g) = ¢. For an Fj-algebra homomorphism h : A — B, we need to show
that the following diagram commutes.

F(A) —" F(B)

|ma |ns

Home (R, A) =5 Home(R, B)

Let ¢ € F(A). We have ng(h(¢)) = f’ where f' : R — B is the unique Fp-algebra homomorphism given by
f'(g) = h(¢). Similarly, h(na(¢)) = ho f where f : R — A is the unique F,-algebra homomorphism given
by f(g) = ¢. The image of g determines the F,-algebra homomorphisms so f' = ho f and hong = np o h.
We conclude that 7 is a natural transformation. Each ¢ € F(A) determines one and only one F,-algebra
homomorphism f: R — A with f(g) = . Thus 7 is a natural isomorphism and F is representable.

We defined Aut(F') as the set of invertible natural transformations of F' into itself, a subset of Nat(F, F'). By
above, F is represented by R so Nat(F, F') ~ Nat(Hom¢ (R, —), F)). Yoneda Lemma gives a natural bijection
between the natural transformations of Home (R, —) to F' and the set F(R). Thus [Nat(F, F)| = |F(R)|. Every

element of R = F,[G] is of the form 3~ a;g. Since F,, is commutative of characteristic p, we have

(Z_l aigi> = Z_l al(g")? = <Z_: a,;) e.
i=0

i=0 =0

An element Zf;ol a;g' € R is a pth if and only if Zf;ol a; = 1. There are p different possibilities for the sum of

the coefficients with |R| = p?. Thus |F(R)| = pP~*.

ASK SOMEONE ABOUT THIS PARTWe will show that n € Nat(F, F') is an automorphism if and only
if np(idg) # 1. (=) If n is an automorphism, then 7g is a bijection between Home(R, R) and F(R). For
f € Home (R, R), we have ng(f) = F(f)(nr(idr)) = f(nr(idr)), a pth root of unity of R. Thus ng(idg) # 1



since f(1) = 1 for all f € Hom¢(R, R). (<) The image of the g € R determines an endomorphism of R, and
g € F(R) must map to another element of F(R). Assume ng(idg) # 1. There is an element f € Hom¢ (R, R)
such that f(nr(idr)) = ¢g. This implies that n4 is a bijection between Home(R, R) and F(R). Therefore,
[Aut(F)[ = |F(R)| -1 =2 —1=pr!—1.
Problem 3. Pick a non-zero rational number x. Determine all possibilities for the Galois group G of the normal
closure of Q[+/x] over Q, where {/z is the root of X* — z with maximal degree over Q.

Note that Q is perfect so all finite extensions of Q are separable.

Case 1: Assume z = y* for some y € Q, then the roots of X* — z are {+y, tyi}. A root of maximal degree is
yi, and Q[yi] = Q[i] is the splitting field of the irreducible polynomial X2 + 1 over Q. Thus Q[i]/Q is a Galois
extension of degree 2. The only group of order 2 is Z/2Z so Gal(Q[i]/Q) ~ Z/2Z.

Case 2: Assume z = y? for some y € Q and z # z* for all z € Q. Then the roots of X* —z are {£V/y, £/yi} for
V¥ € Rand X%~ = (X%?-y)(X?+y). The two polynomials X2 —y and X? + y are irreducible over Q since they
do not have roots over Q. Thus all of the roots have degree 2 so we can take /2 = \/y. Then Q[,/y] is the splitting
field of X? — y over Q and Q[,/y]/Q is Galois. Once again, the Galois group is order 2 so Gal(Q[,/y]/Q) ~ Z/2Z.

Case 3: Assume z = —y? for some y € Q and z # z* for all z € Q. Then the roots of X* — x are {\/ygg} for &g

a primitive eighth root of unity and j = 1,3,5,7. Note that & = g + z? These roots are not rational so X% —z
can only factor as a product of quadratics. If 2y is the square of a rational number, then (X — \/yés)(X — /y&%) =
X2 - \2yX +y and (X — \/gfg)(X — V¥€8) = X — +/2yX + y. The normal closure K is a degree 2 extension
of Q@ and Gal(K/Q) ~ Z/27Z. In all other cases, none of the possible pairings of roots yields a quadratic with
coefficients in Q. Thus X* — z is irreducible and the normal closure K is the splitting field of X4 — z. It is
clear that K < Q[+/2y,4]. Continuing, /zfs = @ + @z We see that 2¢/x&s + /1€ = /2y € K. Then
%(\/%\4/558 —¥) =ie K as well. We conclude K = Q[/2y,i]. Note the polynomials X? — 2y and X? + 1 are

irreducible so Q[+/2y]/Q and Q[i]/Q are degree 2 Galois extensions with Q[v/2y] n Q[i] = Q since Q[+/2y] < R.
Then Gal(K/Q) ~ Gal(Q[+/2y]/Q) x Gal(Q[:]/Q) ~ Z/27 x Z./27.

Case 4: Assume x # y? for all y € Q and z > 0. The roots are {++/z, +/zi} where we take /= to be the
real fourth root of x. By assumption, X% — x has no roots in Q. None of the possible pairings of (z — a) for a a
root of X* — x gives a quadratic with coefficients in Q. Thus X* — z is irreducible and all the roots have degree
4, justifying the choice of /z as the real fourth root. Let K be the normal closure of Q[/z]/Q. Since X* — x is
irreducible, K will be the splitting field of X% — 2. We note that K = Q[+/z,i] since X* — z splits in Q[/z, i].
Additionally, /z € K and 1({/z)%(¥/zi) = i€ K so K = Q[/,i].

We build the tower of field extensions below. We know that [Q[/x] : Q] = 4 and [Q[¢] : Q] = 2. Since
Q[/z] < R, we have Q[/z] n Q[i] = Q and [Q[/x,] : Q] = 8, as a result. Note that Q[4/x]/Q is not a normal
extension so Q[¥/z,i]/Q is not an abelian extension. Thus Gal(Q[+/x,i]/Q) is a nonabelian group of order 8.
This leaves the quaternion group or the dihedral group. Complex conjugation 7 is an order 2 automorphism. In
both Dy and Qg, there is an element of order 4. Let o € Gal(K/Q) be such an element. If o(/z) = — ¢z, then
o(Yxi) = Yri or o(Ywi) = —Yzi. In either case, 02 is the identity, a contradiction. Thus o(/z) = +V/xi.
The argument will work for either choice so assume o({/x) = {xi. We see that o7(¥z) = o(Vx) = Jxi and
To(Vx) = 7(/xi) = —xi. Thus o and 7 do not commute. The order 2 element —1 in the quaternion group
commutes with the order 4 elements. We conclude Gal(Q[+/z,i|/Q) ~ Dy.
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Case 5: Assume z # y? for all y € Q and z < 0. Let z = |x|. Then the roots of X% — z are {/2£L} for /2
the real fourth root and i € {1,3,5,7}. The roots are not contained in Q and none of the possible pairings of roots
yields a quadratic with coefficients in Q. Thus X* — z is irreducible and the normal closure K is the splitting field


tomoki oda
I believe Z/2Z \times Z/2Z


of X* — . Tt is clear that K — Q[v/4z,1] since /z& = f(? + 222). But, /z€ + /265 = /zV2 = Vdz e K
and /z&8 + /2£8 = V/zV/2i = V/4zi € K. Then (L)(v/4z)3(V/4zi) = i € K. We conclude that K = Q[v/4z,1].
This is Case 4 since 4z € Q so Gal(K/Q) ~ Dy

Problem 4. Let D be a 9-dimensional central division algebra over Q and K < D be a field extension of Q of
degree greater than 1. Show that K ®gq K is not a field and deduce that D ®qg K is no longer a division algebra.

Note K is a finite extension of Q and Q is perfect. By the Primitive Element Theorem, K ~ Q[x]/(f) for some
irreducible polynomial f € Q[z]. Since f is no longer irreducible in K, (f) is neither a maximal nor a prime ideal
of K[x]. We conclude K ®g K ~ K|[x]/(f) is not a field and, further, not a domain. Alternatively, we can factor
f=@—a)(z=p3)foro,f e K, and K@ K ~ K[z]/(f) ~ K[z]/(z —a) x K[z]/(x— ) by the Chinese Remainder
Theorem. (Note that the extension is separable so o and § are distinct.) Therefore, K ®g K is not even a domain.

Now K ®q K is a commutative subring of D ®q K that is not a domain. We conclude that D ®g K cannot be
a division algebra.

Problem 5. Let R be a commutative algebra over Q of finite dimension n. Let p : R — M, (Q) be the regular
representation, and define Tr : R — Q by the matrix trace of p. If the pairing (x,y) = Tr(zy) is non-degenerate on
R, prove that R is semi-simple.

We will show that a non-degenerate trace implies that R has no nontrivial nilpotent elements. Let r € R be
nilpotent with ¥ = 0. Then p(r) is a matrix such that p(r*) = p(r)* = 0. Then the minimal polynomial of p(r)
has the form X™ for some m. We conclude that Tr(r) = 0 since Tr(r) appears as a non-leading coefficient in the
minimal polynomial. In particular, rz is nilpotent for all z € R since R is commutative. Thus Tr(rz) = 0 for all
xz € R. If (z,y) is non-degenerate, then R has no nontrivial nilpotent elements. In other words, the nilradical of R
is trivial.

Every ideal of R is closed under multiplication by R, which means each ideal is a Q-subspace of a finite-
dimensional vector space. Thus R is Artinian by a dimension argument for a descending chain of ideals. In
an Artinian commutative ring, each prime is maximal (see Atiyah-MacDonald ADD A REFERENCE) so the
Jacobson radical and nilradical are equal. Since the nilradical is trivial, the Jacobson radical of A is trivial.
A Artinian implies there are finitely many maximal ideal {m;} for 1 < ¢ < ¢ (see Atiyah-MacDonald ADD
REFERENCE). Thus nf_;m; = 0. By the Chinese Remainder Theorem,

A~ A/ ﬁf=1 m; ~ @f=1A/mz

Each A/m; is a simple R-module so R is a semisimple R-module. This shows R is a semisimple ring.

Problem 6. Let G be a finite group and let p be the smallest prime number dividing the order of G. Assume
G has a normal subgroup H of order p. Show that H is contained in the center of G.

Conjugating elements of H by G is a group action since H is a normal subgroup. The fixed points of the action
are exactly the elements of H in Z(G). Thus p = [H| = |Z(G) n H| + 3,47 [Orb(h)|. The identity is contained
in H and Z(G) which implies |[H n Z(G)| = 1 and |Orb(h)| < p for all h ¢ Z(G). Orbit-Stabilizer gives us
|Orb(h)| = [G : Stab(h)] so |Orb(h)| divides |G|. Since p is the smallest prime that divides |G|, we conclude there
are no elements h ¢ Z(G). Thus H < Z(G).

Problem 7. Let G be a finite group and P a Sylow 2-subgroup of G. Assume P is cyclic, generated by an
element . Show that the signature of the permutation of G given by g — zg is —1. Deduce that G has a non-trivial
quotient of order 2.

Let |G| = n = 2Fm for ged(2,m) = 1. Then |P| = 2. Let 0 € S, be the permutation described by left
multiplication by z. Then o(z’) = z'*! for all 0 < i < 2¥ — 1. The set of right cosets G/P has order m
and each element g € G appears in one and only one of the cosets. Choose representatives g; € G so that
G/P = {P,Pg1,...,Pgm—1}. Then o has a unique (up to reordering) representation as a product of disjoint cycles
given by

k_ k_ E_
g = (6,$,...,$2 1)(917I91a-~-ax2 191)"'(gm—l;IgHL—lv"'7x2 1gm—1)~



Each cycle has length 2% so each cycle is odd. We have m cycles so there are an odd number of odd cycles. Thus
sgn(o) = —1.

Act on G via left multiplication by G. Then define the set H to be all g € G such that left multiplication by g
is an even permutation. Then e € H, H is closed under multiplication, and H is closed under inverses so H is a
subgroup of G. Every element either represents an even or odd permutation. By above, x ¢ H so [G : H] = 2 and
H is a normal subgroup of G. We have G/H is a quotient of order 2 as desired.

Problem 8. Let A be a ring. Assume there is an infinite chain of left ideals Iy ¢ I; < --- ¢ A with I; # ;41
for i = 0. Show that A has a left ideal that is not finitely generated as a left A-module.

Define I := U?D:o I;. We will show that I is a proper ideal. Let a,b € I. Then a € I}, for some k and b € I, for
some £. Without loss of generality, assume k > ¢. Then a,b € I;. Since I} is an ideal, a + b € I so a + b € I.
Similarly, let r € A and a € I. Then a € I} for some k and ra € I since I is an ideal. Thus ra € I and I is an
ideal of A. If 1 € I, then 1 € I, for some k. We would have I, = [;,,1 = --- = A, a contradiction. Therefore, I is a
proper ideal of A.

Assume for the sake of contradiction that I is finitely generated as a left A-module. Let {x1,...,2,} be the
generating set. Each x; € Ii, for some k;. Define k := max]" ; k;, then x; € I; for all ¢. This would imply that
Iy = Iy = --- = A, a contradiction. Thus [ is an ideal of A that is not finitely generated as a left A-module.

Problem 9. Let A be a ring and let i, € A such that 2> = i and j2 = j. Show that the left A-modules Ai and
Aj are isomorphic if and only if there are a,b € A such that i = ab and j = ba.

(=) Assume Ai and Aj are isomorphic. Let ¢ : Ai — Aj be such an isomorphism with inverse ¢ : Aj — Ai. Then
#(i) = ¢j and ¥ (j) = di for some ¢, d € A. Note that ¢(i) = ¢(i%) = i¢(i) = icj and P(j) = ¥(52) = jv(j) = jdi.
Let a :=icj and b := jdi. Then

ab = (icj)(jdi) = icjdi = icy(j) = ¥(icj) = P((i)) = i
ba = (jdi)(icj) = jdicj = jdé(i) = ¢(jdi) = d(¥(j)) = j
as desired.
(«) Assume i = ab and j = ba for some a,b € A. Then we can define a left A-module homomorphism

¢ Ai — Aj by ¢(i) = ia = aj. Extend ¢ A-linearly. We can also define an A-module homomorphism ¢ : Aj — Ai
by extending v (j) = jb = bi A-linearly. Let r € A. Then

D(o(ri)) = Y(ré(i)) = P(ria) = P(raj) = rap(j) = rajb = rabi = ri* = ri
P(P(r7)) = ¢(r(j)) = é(rjb) = d(rbi) = rbo(i) = rbia = rbaj = rj* = rj.

We conclude that ¢ is an isomorphism.
This construction is from Yacoub Kureh’s solutions.

Problem 10. Let n be a positive integer. Let A,, be the Q-algebra generated by elements z1,...,%n, Y1, --,Yn
with relations z;x; = x;;, ¥;y; = y;¥:, and y;x; — x;; = 0;; for 1 < 4,5 < n. Show that there is a representation
of A, on the vector space Q[t1,...,t,] where z; acts by multiplication by ¢; and y; acts as d/0¢;.

WRITE THIS ONE

Spring 2015

Problem 1. What are the coproducts in the category of groups?

We will define the free product of a family of groups Gicr. As a set, %,c;G; is all words on the letters | J,.; Gi.
We reduce letters from the same group via the group multiplication. Define the group operation as concatenation.
The identity element is the empty word, concatenation is associative, and the inverse of a reduced word ¢; - - - g, is
g tgr 1 Thus the free product of a family of groups is a group.



Define the inclusion homomorphisms i; : G; — kperGy as i;(g) = g. We want to show that kG, satisfies
the universal property of the coproduct. Let f; : G; — A be a family of group homomorphisms. For the diagram
below to commute, h : %¥kerGr — A must be defined as h(g) = f;(g) for g € G;. Then we extend h to a group
homomorphism. For a reduced word gi - - - gn, € *¥kerGg, we have h(g1---gn) = h(g1) - h(gn) = f5,(g1) - f(gn)
for g; € G;,. Since h is uniquely determined by the {f;};cs, the free product is the coproduct in the category of
groups.

lij 2

7;]1
Gj1 —— %GR

Problem 2. Let C be the category of groups and C’ be its full subcategory with objects the abelian groups. Let
F : C’ — C be the inclusion functor. Determine the left adjoint of F' and show that F' has no right adjoint.

Let f : G — H be a group homomorphism where H is abelian. The commutator subgroup [G, G] is generated the
subgroup generated by {g19297 ‘95" € G 91,92 € G}. For g1, g2 € G, we have (9:[G,G])(92[G, G]) = g192[G,G] =
9192(92 191 ' 9291)[G, G] = 9201 [G, G] = (92[G, G)(91[G, G]). Thus G/[G, G] is an abelian group. Note f(g1g2) =
flg1)f(g2) = f(g2)f(g1) = f(g291) and f([G,G]) = 0. Since [G,G] < ker(f), there is a unique abelian group
homomorphism h : G/[G,G] — H such that ph = f for projection p : G — G/[G, G].

We will define the functor L : C — C’ as L(G) := G/[G, G] for [G, G] the commutator subgroup. Note that a
morphism of groups f : G — H gives a unique morphism f : G — H/[H, H] by composing with the projection.
Since H/[H, H] is an abelian group, the above argument implies f factors uniquely through G/[G,G] as f = pg for
p: G — [G,G] the projection. Note that g(a[G,G]) = f(a)[H, H] for a € G. Define L(f) :=g. Let 1¢ : G - G
be the identity group homomorphism. Then 1g : G — G/[G,G] factors uniquely as the identity on G/[G,G].
We have L(1g) = 17(g). Now let f: G — H and g : H — I be two group homomorphisms. Then gf : G — I
gives L(gf) = h for h: G/[G,G] — I/[I,I] an abelian group homomorphism defined as h(a[G, G]) = (gf)(a)[1, I].
Now L(f) : G/[G,G] — H/[H,H] gives L(f)(a[G,G]) = f(a)[H,H] and L(g) : H/[H,H]| — I/[I,1I] gives
L(g)(f(a)[H, H]) = g(f(a))[I,I]. Thus L(gf) = L(g)L(f) and L is a covariant functor.

We want to show that Home (A, F(B)) and Home: (L(A), B) are in bijective correspondence for A € Ob(C) and
B e Ob(C’) and the bijection is functorial in A and B. As we have seen, some f € Hom¢ (A, F(B)) factors uniquely
through L(A) = A/[A, A] since B is an abelian group. Define the natural isomorphism ® whereby ®4 p(f) is this
unique morphism. Thus Hom¢ (A, F(B)) ~ Home/(L(A), B) via ®4 5. Let g : A — A be a morphism of groups.
Then we want to show the diagram below commutes. Note that g([A, A]) < [A’, A'] = ker(A" — A'/[A’, A']) so
g factors uniquely through A/[A, A]. We note that L(g) : A/[A, A] — A’/[A’, A’] is this unique morphism. Then
®4 p(f)oL(g): A'J/[A', A'] - B descends from fog: A — A — B. By construction, ® 4/ g(f o g) descends from
fog. The uniqueness of these morphisms implies ® 4 5(f) o L(g) = ®a B(f o g) and we are functorial in A. A
similar argument shows the bijection is functorial in B. We conclude that L is a left adjoint to F.

Home (A, F(B)) —%, Home (L(A), B)

lfog foL(g)

Home (A, F(B)) —“% Home: (L(A'), B)

We will show that F' does not have a right adjoint. We will first prove that a left adjoint functor F' preserves



coproducts. Let G be the right adjoint. Let A; be objects of C and B an object of D. Then

Home <F (]_[ AZ—> ,B) ~ Homp (]_[ Ai,B>

~ HHomD(Ai,G(B))

~ HHomC(F(Ai), B)

~ Home (]_[ F(A), B) .

By Yoneda Lemma, F' ([ [; A;) ~ [ [, F'(A;). The coproduct in the category of groups is the free product while the
coproduct in the category of abelian groups is the direct sum. The free product Z * Z is not isomorphic to Z @ Z
so I does not have a right adjoint.

Problem 3. Let R be a ring. Show that R is a division ring if and only if all R-modules are free.

(=) Assume that R is a division ring and let M be a left R-module. Let S be the set of all possible generating
sets of M ordered by inclusion. The set S is not empty since M € S. Let {x;}icr, D {®i}ier, O ... be a decreasing
chain of elements of S. We claim X := ﬂ;ozl{xi}ie 1, is a generating set of M. Assume some m € M is not in the
span of the elements of X. Then there is some index k such that m is not in the span of {x;}:es,, contradicting
our choices. By Zorn’s Lemma, there is a minimal element {x;};e; of S. If {z;};cs is linearly independent, we are
done. Assume otherwise so we have Z?zl r;x; = 0 where we only choose r; # 0. Then x; = —7“1_1(2?:2 rjz;) and
the set {x;}ier\z1 is a strictly smaller generating set. This contradicts our construction, which implies {z;}cs is a
basis for M. We conclude that all left R-modules are free. We make the same argument for right R-modules.

(<) We will prove that an injective R-module homomorphism is surjective when R is a left Artinian ring (and
thus left Noetherian). We can construct the descending chain im(f) > im(f?) > ... of left R-modules. Then the
descending chain terminates and im(f*) = im(f**!) for some k. Take b € R. Then f*(b) € im(f*) = im(f**1) so
there is some c € R such that f*¥1(c) = f¥(b). Then f*(b— f(c)) = 0 and f* injective implies b = f(c). Thus f is
surjective.

Assume that all R-modules are free. Thus all R-modules are projective and R is semisimple. Then R is left
Artinian and, consequently, left Noetherian. Right multiplication f : R — R by some a € R is a left R-module
homomorphism. Since Ra is free as a left R-module, f is an injective R-module homomorphism. By above, f is a
surjective left R-module homomorphism. There is some b € R such that f(b) = ba = 1. We conclude that every
element a € R has a left inverse. Let ¢ be the left inverse of b. Then ¢ = ¢(ba) = (¢b)a = a and each element of R
has an inverse. We conclude R is a division ring.

Problem 4. Let M =7 [%] and N = Q/Z, where Z [%] < Q is the subring generated by % for a prime p. Show

(a) M is an Artinian module but not a Noetherian module

Note that M is the localization of Z away from the set S := {p* : k € Nk > 1}. Let I} := (p%) be Z-

submodules of M. If I, = I, 1, then there is some r € Z such that p’—; = pk%. In other words, there is some

s € S such that s(rp?*! — p¥) = p¥s(rp — 1) = 0. Since Z is an integral domain, this cannot occur. We have
an ascending chain I; < Is < ... that does not terminate so M is not Noetherian.

Let A € M be a proper Z-submodule. Then there is a maximum k£ € N for which % € AforaceZ

and gcd(a,p) = 1. In this case, ged(a,p®) = 1 so there are integers £,m such that ma + £p¥ = 1. Then
m}% = 1_pipk = # € M. Thus % € M for all b € Z and ¢ < k. In other words, ( ) Take a strict

descending chain A; © As o ... of Z-submodules of M. Then A; = (ﬁ) for some k € N. Then ﬁ ¢ A, for

all natural numbers j > k. Thus A; = (pi) for i < k. Continuing this argument, the descending chain must

terminate. Thus M is Artinian.



(b) N is neither Noetherian nor Artinian.

The counterexample in (a) proves that N is not Noetherian.

Order the prime numbers {p;};en. Define N; as the Z-submodule of N generated by {%, p_lﬂ e } Since
the p; € Z are prime, p%l ¢ N; for each natural number 7 > 2. Then we can construct a descending chain
N; D Ny Do ... that does not terminate. We conclude that N is not Artinian.

Problem 5. Let K and L be quadratic field extensions of a field k. Prove that K ®j L is an integral domain if
and only if the k-algebras K and L are not isomorphic.

(=) We will prove the contrapositive. Assume K ~ L. We have K ~ k[z]/(f(x)) for an irreducible quadratic
f(x) € k[z]. Then K @, L ~ K ®, K ~ K ®;, k[z]/(f(x)) ~ K[z]/(f(x)). Note that f(x) has a root in K so
f(x) = (x—a)(z—"b) for a,b € K. By the Chinese Remainder Theorem, K [z]/(f(x)) ~ K[z]/(x—a)x K[z]/(z—b) ~
K x K. Tt is clear that K x K is not an integral domain by taking the elements (1,0)(0,1) = (0,0). We conclude
that K ®y L is not an integral domain.

(<) We will prove the contrapositive. Assume K®jy L is not an integral domain. Since K is a quadratic extension
of k, K ~ k[z]/(f(x)) for an irreducible quadratic f(z) € k[z]. We have K ® L ~ k[z]/(f(z))®k L ~ L[z]/(f(x)).
Since K ®y, L is not an integral domain, f(z) is not prime in L[z]. Note that L{x] is a UFD so f(x) is not irreducible
in L[z]. Thus f(z) has a root @ € L with « ¢ k. The field homomorphism ¢ : K ~ k[z]/(f(x)) — L given by
o(x) = a and p(a) = a for a € k is well-defined. Any field homomorphism is injective since ker(y) is an ideal of
K. Note that L can be viewed as a 2-dimensional vector space over k with basis {1, a}. Then ¢ is surjective since
v(ax +b) = ac + b for a,b € k. We conclude that K ~ L.

Problem 6. Let K — L be subfields of C and let p be a prime. Assume K contains a non-trivial p-th root of
unity. Show that L/K is a degree p Galois extension if and only if there is an element a € K that does not admit
a p-th root, such that L = K({/a).

(=) Assume that L/K is a degree p Galois extension. Let G := Gal(L/K). Then G is cyclic, generated by some
o € G. Let £ be a primitive p-th root of unity. Since some primitive p-th root of unity is contained in K, we have
all primitive p-th roots of unity in K. Thus £ € K and o(§) = £. Since L/K is separable, the Primitive Element
Theorem implies L = K[J] for some § in the algebraic closure of K. Define a := [[*—) ¢%(8)?~*. Then

ola) =0 (]:[ o%ﬂ)&“) = ]:[ (B (€ = ]:[ai“(ﬁ)gp*i =[]o'Brer—+t = as
=0 i=0 i=0 i=1

o(a”) = o(a)’ = (af)” = aP€¥ = of

shows that o ¢ K. Additionally G is cyclic so aP is fixed by G and of € K. Define a := aP € K. Then the splitting
field M := KJ[a] of 2P — a is a subfield of L that strictly contains K. Then [M : K] # 1 divides [L : K| = p so
[M : K] =p. We conclude that L = M = K[{/a].

(<) Assume there is an element a € K that does not admit a p-th root and L = K({/a). Then L is the splitting
field of P — a over K. The roots of 2P — a are {{/a&'} for £ a primitive p-th root of unity and 0 < i < p — 1. Since
C is perfect, L/K is a separable and thus Galois extension. Note {/a ¢ K so there is some o € Gal(L/K) that does
not fix ¢/a. The image of {/a is a root which gives o({/a) = ¢/a&’ for some 1 < i < p — 1. We have oP(g/a) = ¢/a
and o7 ({/a) # {/a for all 1 < j < p — 1 since p is prime. The order of o must be at least p. However, L/F Galois
implies p < |Gal(L/F)| = [L: F| = [K(%/a) : K] <p. Thus [L: K| = p.

Problem 7. Determine the ring endomorphisms of Fo[t,t~1], where ¢ is an indeterminate.

Let R := Fy[t,t7!]. For a ring endomorphism f : R — R, we have f(1) = 1 so f fixes the base field Fy. Let
a€ R*. Wenote 1 = f(1) = f(aa™') = f(a)f(a™t) = f(a™)f(a) so f will send units to units with f(a) = f(a)™!.
Each endomorphism of R is thus determined by the image of ¢ since f(t~1) = f(t)~!. Take a nonzero p € R. Then
there is some k € Z such that t*p € Fo[t] and t*p has a nonzero constant term. If p € RX, then t*p € R* via
(tFp)(p~1t=F) = 1. If t*p € R*, then the product of two units t~*(t¥p) = p is also an element of R*. Thus t*p is a
unit of R if and only if p is a unit of R so it is sufficient to classify (Fa[t])*. We show below that (Fa[t])* = {1}.
Thus R* = {t¥} for k € Z, and a ring endomorphism f : R — R will always be defined by f(t) = t* for some k € Z.



Let p(t) = ag + -+ + apt™ € (Fa[t])* with a, # 0. Then there is some ¢(t) = by + -+ + by t™ € Fa[t]
such that ¢(¢t)p(t) = 1. Distributing the product, the constant term agbg = 1 so ag,by € F5. Looking at the
highest degree term, an,b,, = 0 so b,, = 0 since Fy is an integral domain. Then the next largest term in the
expansion yields a,b,,—1 = 0 so b,,—1 = 0. We can continue this argument to show that b; = 0 for all i > 1.
Then bo(ag + -+ + ant™) = 1 implies n = 0. In Fy[¢], the set of units is {1}. (The more general result is
f=ap+...a,t" € R[t] is a unit if and only if ay € R* and a; is nilpotent for all ¢ > 1.)

Problem 8. Let G be a finite group of order pg, where p and ¢ are distinct primes. Show that

(a) G has a normal subgroup distinct from 1 and G

Without loss of generality, assume p > ¢. Let m, denote the number of Sylow p-subgroups of G. By Sylow’s
Third Theorem, m, = 1 (mod p) and m, divides g. Since ¢ is prime, m,, is either 1 or ¢. But ¢ # 1 (mod p)
since p > g. Thus m, = 1. Conjugation of a subgroup H < G by g € G is again a subgroup of G of order |H|.
Thus we will obtain a Sylow p-subgroup of G when we conjugate a Sylow p-subgroup by any element g € G.
Since we have a unique Sylow p-subgroup P G, gPg~' = P and P is normal in G.

(b) if p=£1 (mod ¢) and ¢ # 1 (mod p), then G is abelian.

Without loss of generality, assume p > ¢. By (a), the Sylow p-subgroup P < G is a normal subgroup of G.
Sylow’s Theorems imply the existence of some Sylow g-subgroup @ < G. The subgroup P n @ is a subgroup
of both P and Q. Then |P n Q| = 1 since |P| and |Q)| are relatively prime. All of this implies G = P x @ for
some group homomorphism ¢ : @ — Aut(P). We have Aut(P) ~ Z/(p — 1)Z. The generator a € ) has order
¢ so it needs to map to an element of order dividing ¢, leaving 1 or q. By assumption, p # 1 (mod ¢) so p(a)
is the identity automorphism. Thus G ~ P x Q for P,Q cyclic (which implies abelian). We conclude that G is
abelian.

Problem 9. Let G be a finite group of order p™ for a prime p. Show that the group ring F,[G] over the finite
field IF), with p elements has a unique maximal two-sided ideal.

List the elements of G as {gi}f; where e = g;. Let ¢ : Fy[G] — [, be the augmentation homomorphism given
by 5(2?:1 a;g;) = Z’;l a;. Tt is clear that ¢ is surjective. Let I := ker(e) be the augmentation ideal. Since
F,[G]/I ~ F,, we note that I is a two-sided maximal ideal of F,[G]. Thus I contains the Jacobson radical of F,[G]
which we will denote J(F,[G]).

For an element a € I, we can write a = Zle a;g; with Zf=l a; = 0. Then a = f;(—ai)(e —g;) and T is
generated by {e — gi}f;. The products I* for k € N are generated by products of k not necessarily distinct choices
of {e — g;}*",. We note that (e — g;)?" = 17" — g*" = 0 since F, is characteristic p. Thus there is some large
N e N such that IV = 0 and I is a nilpotent ideal. Every nilpotent ideal is contained in the Jacobson radical so
I c J(Fp[G]) and I = J(Fp[G]). We conclude that I is the unique two-sided maximal ideal of F,[G].

Problem 10. Let £, M and F be finite abelian groups and consider group homomorphisms

E-l M2, F

Assume g is injective. Show that |coker(g o f)| = |coker(g)| - |coker(f)| where | X| denotes order of a finite set X.

We will show that in abelian groups, coker(f) is given by M /im(f). Note that im(f) is a normal subgroup of
the abelian group M so the quotient M /im(f) is well-defined. Let ¢ : M — M /im(f) be the projection. Then
given any abelian group ) for which the diagram below commutes, we want a unique abelian group morphism
h : M/im(f) — Q. Note that ¢'(f(e)) = 0 for all e € E so ¢’(im(f)) = 0. In other words, im(f) < ker(¢’) and ¢’
factors uniquely through M /im(f).




Now g injective implies |im(g)| = |[M| and |im(gf)| = [im(f)|. Thus by the finiteness of the abelian groups in

question,

|coker(g o f)| = |F|/[im(g f)| = |F|/[im(f)] = [F|/[im(g)[ - [M]/[im(f)[ = |coker(g)| - [coker(f)|

as desired.

Fall 2015

Problem 1. Show that the inclusion Z — Q is an epimorphism in the category of rings with multiplicative identity.

We want to show that f : Z — Q is right cancellative. Let g,h : Q — R be ring homomorphisms such that

gf =

hf for R a ring with identity. For a,b € Z we have

a

g (g) = g(a)g(b™") = g(a)g(b) ™" = h(a)h(b) ™' = h (%)

since g(a) = g(f(a)) = h(f(a)) = h(a) for all a € Z. We conclude g = h and f is an epimorphism

Problem 2. Let R be a principal ideal domain with field of fractions K.

(a)

Let S be a non-empty multiplicatively closed subset of R\{0}. Show that R[S~!] is a principal ideal domain.

We will first prove that the ideals of R[S™!] are in one-to-one correspondence with the ideals of R that are
disjoint from S. Let I = R be an ideal. We claim S~!7 is a proper ideal of R[S™!] when I n S = &J. Since
I is a proper ideal R, S~1I = R[S™1] implies I contains some element of S. Thus I N S = ¢ means S~'T

is a proper subset of R[S‘l]. For %,; e S~I, we have m:fb € S7' since ta + sb € I and st € S. For

% € ST'R and ¢ € R[S™!], we have 2% € S7'T since ra € I and st € S. Given an ideal J < R[S™'], define

I'={aeR: 7€J} If $ e J, then ¢ = ¢ € J so [ is the set of all numerators of J. IfJCR[S ]1sa

proper ideal, then * 1 ¢&J so 1 ¢ I is a proper subset of R. Now ra e I forallae I and r € Rsince 1§ = 5 € J.
— a+b

For a,be I we have 2 —l— 7 € Jsoa+bel. We conclude that I — R is a proper ideal.

Returning to the problem, let J < R[S7!] be an ideal. Then the ideal I = R of all numerators of J is principal.
Let I = (a) for a € R. Then we claim that J = (%). Certainly J > (%). Let £ € J. Then j = ra for some

reRand L% = — I We conclude J = (2) and R[S~ '] is a principal ideal domain.
s 1 s 1

Show that any subring K containing R is of the form R[S ~1] for some multiplicatively closed subset S of R\{0}.

LetRcTcheasubrmg Define S := {s € R\{0} : 2 € T'}. Since 1 € T we have 1 € 5. Given s,t € S, we

have 11 = L €T so st € S. Thus S is a mult1phcat1vely closed subset of R and T > R[S™!]. Let ¢ € T and
we want to show ¢ € S'R. We can assume ged(a, s) = 1 since R is a UFD In the PID R, Bezout s identity
implies there are elements k,¢ € R such that ka + fs = 1. Thus & Te+i7= = katls _ 1eTso2eR[S]. We

conclude T = R[S™!] for a multiplicatively closed set S of R\{0}. ’

Problem 3. Let k be a field and define A = k[X,Y]/(X?, XY,Y?).

(a)

(b)

What are the principal ideals of A?

Take a polynomial with coefficients in k. We can reduce all terms of degree greater than or equal to 2. Thus
the general element of A is aX + bY + ¢ for a,b,c € k. Clearly (0) and (1) = A are principal ideals. A
nontrivial, proper principal ideal will have some element az + by + ¢. Assume a # 0. Since k is a field, the
ideals (aX + bY +¢) = (X +a~1bY + atc). If a = 0, then the element bY + ¢ gives the same principal ideal
as Y + b~ lcif b is nonzero. If b = 0, we see (c) = (1) = A if ¢ # 0 since ¢ has an inverse in k or (c) = (0) for
¢ = 0. Thus all principal ideals have one of the following forms {(0), A, (X + aY +b),(Y + ¢)} for a,b,c € k.

FIX THIS, GUYS WITH NONZERO CONSTANT TERMS ARE UNITS
What are the ideals of A?

Take a nontrivial, proper ideal I < A. If I is principal, then I is listed above. Assume I is not principal. Then
there is some element aX + bY + ¢ for a or b nonzero. First assume a # 0. Then (X + a~10Y +a71c)e I
and take B := a~'b and C := a~!c for B,C € k. Since I is not principal, there is some (dX +eY + f) e I
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such that dX + €Y + f is not a multiple of X + BY + C. If d = 0, then we have (Y + F) € I for F := e~ 'f.
We find (X + BY +C) —B(Y + F) = X + (C — BF) € I. Given any element (¢X + hY + ) € I, we find
(gX + hY +4) — g(X + (C— BF)) = h(Y + F) = (i — g(C — BF) — hF) e I. If i — g(C — BF) — hF # 0,
then I = A, contradicting our choice. Thus (¢X + hY + i) = g(X + (C — BF)) + h(Y + F) and we have
I=(X+(C—-BF),Y-F).

If d # 0, we have (X + EY + F) € I for E :=d e and F := d~!f. Reducing, (X + EY + F)— (X +BY +C) =
(E—-B)Y +(F —C) eI and we know (E — B)Y + (F — C) # 0 by construction. If E— B =0, then F —C # 0
and I = A, contradicting our choice. Thus E — B # 0 and we have Y + (E — B)"}(F — C) € I. We are now in
the case of d=0s0o [ = (X + J,Y + (E— B)"}(F - C)) for J € k.

We now take a = 0. Then we have (Y + b 1c) € I. Let C := b~'c. Take (dX + eY + f) € I such that
dX +eY + f is not a multiple of Y + C'. We have (dX +eY + f) — 6(Y+O) (dX + (f —eC)) € I. We cannot
have d = 0 since I is proper. Then I = (X + D,Y + C) for D := d~'(f — eC) as above. Thus all ideals of A
are of the form {(0), 4, (X +aY +0), (Y +¢), (X +d,Y +e)} for a,b,c,d, e € k.

Problem 4. Let K be a field and let L be the field K(X) of rational functions over K.

(a)

Show that there are two unique K-automorphisms f and g of the field L = K(X) such that f(X) = X! and
g(X) =1—X. Let G be the subgroup of the group of K-automorphisms of L generated by f and g. Show
that |G| > 3.

We define f : L — Las f(k) = kfor ke K and f(X) = X~1. Then extend f to a K-homomorphism. Similarly,
g: L — L is defined as g(k) = k for k € K and g(X) = 1 — X. Then we extend g to a K-homomorphism. We

will now show that f and g are automorphisms of L. Since L is a field, f and g are injective. Take % eL

—1 —1
for p(X),q(X) € K[X]. Then f(f;g;_l;) = }ng—l?; = %. Thus f is a K-automorphism. Similarly,

g (p(le)) = 22X o5 g is a K-automorphism.

q(1-X) a(X)
Note that f # g via the image of X. Then G contains at least {e, f, g} where e is the identity K-automorphism.

2
Now gf(X) = (X 1) = t2¢ and fg(X) = f(1-X) =1 X" = X2 If 1o = XL, then =0 = 0
and X would be algebraic over K, a contradiction. Thus gf # fg as K-automorphisms. A similar argument

shows that both gf and fg are distinct from e, f, and g. Thus G contains at least {e, f, g, fg,gf} and |G| > 3.

It will be important later to show that |G| = 6. Take fgf(X) = f (ﬁ) = ﬁ = % Then a similar

argument to above shows that fgf is distinct from e, f, g, fg, and gf. Thus |G| = 6.

Let £ = LY. Show that P = 50 ¢ F.

We want to show that P is fixed under f and g action.

FUXP—X+10)  (X2-x1o1) (RO (- X 4 x?)?

P — _ _ _ _ P

I == x — 1) X-2(X-1 1) X7 X2(1—- X)?

(P) = g(X2-X+1)%) (1-X)P-(1-X)+1)* (X?-X+1)3 _p

TP CP e IO (1-X)?(=X)? XX -1
Thus P e LC.
Show that L/K(P) is a finite extension of degree 6.
We construct a polynomial with coefficients in K (P) for which X is a root. Define

p(T):= (T? - T + 1) — P(T*(T — 1)?)

for p(T) € K(P)[T] so p(X) = 0. Since p is degree 6, [L : K(P)] < 6. Note that P € L% by (b) so
K(P) c L¢ < L. By the final argument of (a), we have 6 < [L LE] < [L: K(P)] < 6. Therefore, L/K(P) is

a finite extension of degree 6.

Deduce that E = K(P) and that G is isomorphic to the symmetric group Ss.

The chain of inequalities in (c) implies [L : LY] = 6. By Artin’s Theorem, L/L% is a Galois extension with
Galois group Gal(L/L%) ~ G. The finite Galois extension satisfies |G| = [L : LY] = 6. By (a), it is clear that
G is not abelian. The only nonabelian group of order 6 is S3. Thus G ~ Ss.
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Problem 5.
(a) Let G be a group of order p¢v with v and e positive integers, p prime, p > v, and v not a multiple of p. Show
that G has a normal Sylow p-subgroup.

By Sylow’s Third Theorem, the number of Sylow p-subgroups m, satisfies m, = 1 (mod p) and m, divides v.
Thus m, = kp + 1 for k > 0. However, p > v and my|v implies kK = 0. We conclude m;, = 1. Let P be the
unique Sylow p-subgroup of G. As in Spring 2015 Problem 8, conjugation of P by an element g € G is another
Sylow p-subgroup. Thus gPg~! = P and P is a normal Sylow p-subgroup of G.

(b) Show that a nontrivial finite p-group has a nontrivial center.
Let H be a nontrivial finite p-group. Thus |H| = p* for k > 0. Act on the set H by H via conjugation. An

element is fixed by conjugation if and only if the element is in the center of H. The class equation implies

[H|=|Z(H)|+ >, |Orb(h)].
heH,h¢ Z (H)
We have p||H| and |Orb(h)| = [G : Stab(h)] by Orbit-Stabilizer. Thus p||Orb(h)| for each h ¢ Z(H). We
conclude that p divides [Z(G)| = [H| — Xy ng 7z 10rb(h)|. Note |Z(H)| > 1 since the identity of H is
contained in the center. Thus |Z(H)| = p so H has a nontrivial center.

Problem 6. Let I be a field of characteristic not 2. Let a and b be nonzero elements of F. Let R be the
F-algebra R = F{i,j)/(i®> — a,j? — b,ij + ji), the quotient of the free associative algebra on 2 generators by the
given two-sided ideal.

(a) Let F be the algebraic closure of F. Show that R ®p F is isomorphic as an F-algebra to the matrix algebra
M ().

Let a € F be such that a®> = a and 8 € F such that 82 = b. Define the F-algebra homomorphism f :

P, perF M) by oy = (o 9).sion = (5 ) amasien - (3 5)

o1 1 1
(e o) - (6 %)+ (6 1) -0 o)
o)1 )0 -6
-1 ! h
f(;(i@)a‘l)(j@ﬁ‘l)ﬂ@ﬁ;)—(0% é)+<g %)—(8 é)
-1 1 1
(o102 -(4 -0 (2 3

We see that f is surjective since the above matrices generate My(F) as an F-algebra. By construction, (i ®
12— (a®1), (®1)?—(b®1),and (i®1)(j®1)+ (j®1)(i®1) are all elements in the kernel of f. With the
above relationships, we can reduce all other elements to the form ¢; (i®1) +c2(j®1) +¢3(i®1)(j®1) + 4 (1®1).
. . . . _ a 0 0 g 0 af 1 0
fati@y +aton tatonionraten -a (5 %) ra(] ) ra( 0, ©)ra(p 9):
If the above is zero, we need ¢; = 0 for all 1 < i < 4. Thus ker(f) is the normal subgroup of F{i,j) ®r F

generated by {(i®1)* - (a®1), (j®1)* - (b@1), (i®1)(j®1) + (j®1)(i®1)}. Then f: (F(i,j)®r F)/ker(f
R®p F — Ma(F) is an isomorphism.

(b) Give a basis for R as an F-vector space, justifying your answer. (You may use (a).)
By (a), R®r F ~ My(F) is a central simple F-algebra. Note F = Z(R). If Z(R) # F, then it is a k-dimensional
vector space over F for some k. Thus Z(R)®p F ~ (—szl F. But, Z(RQpF) = Z(R)®r Z(F) = Z(R)Qp F =

F. Thus Z(R) = F. If R is not simple, then there is a two-sided ideal I < R. Then I @ F' would be a proper
two-sided ideal of R ®p F. Since R ®p F is simple, R is simple. Thus R is a central simple F-algebra and

By the argument in (a), we have that {1®1,i®1,j®1,ij®1} is linearly independent in R®r F as an F-vector
space. Thus {1,4,7,4j} is a linearly independent set and a basis of R as an F-vector space.
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Problem 7. Show the symmetric group S; has exactly two isomorphism classes of irreducible complex repre-
sentations of dimension 3. Compute the characters of these two representations.

We will first show that the abelianization S4/[S4, S4] has order 2. The commutator subgroup [Sy4, S4] is generated
by elements ghg~th~! € S;. Each ghg='h™! is an even permutation so [Sy, S4] = A4. The nonidentity elements of
Ay are of the form (ij)(kf) or (ijk) for 1 < i,35,k,¢ < 4. Without loss of generality, we will show (123), (14)(23) €
[S4,S4]. Notice (23)(12)(23)(12) = (123) € [S4, S4] and (123)(234)(132)(243) = (14)(23) € [S4, S4] as desired.
Thus [54,54] = A4 and |S4/[S4,S4]| = 2.

Each one-dimensional representation of Sy is a group homomorphism p : Sy — C*. Since C* is an abelian
group, p factors uniquely through the abelian group S;/[S4, S4]. If two one-dimensional representations are equal on
S4/[S4, S4], then they were equal as homomorphisms from S;. Thus the number of one-dimensional representations
of S4/[S4,S54] is equal to the number of one-dimensional representations of Sy. By above, S4/[S4, S4] has two
conjugacy classes so it has two one-dimensional irreducible representations. We conclude that S4 should have two
one-dimensional representations. (This works for one-dimensional irreducible representations of any group.)

Now the trivial representation and the sign representation, sgn : S; — C*, are the two one-dimensional
representations of S4. The conjugacy classes of Sy are based on cycle type of which there are five. Since |S4| = 24,
we have 24 = 1 4+ 1 + a? + b% + ¢2 for a,b,c € N representing the dimensions of the three other irreducible
representations. If we take ¢ > 4, we are left with a? + > = 6, which cannot occur. Thus 1 < a,b,c < 3. We
cannot have a = b = ¢ = 2 so, without loss of generality, take ¢ = 3. Then we need 13 = a? + b? so the only option
is a = 2 and b = 3. Thus S4 has two 3-dimensional irreducible representations.

We will realize the two irreducible representations in question. Define the vector space V := {(v;) € R* :
Z?=1 v; = 0}. Then V has a left Sy action via o (v;) = (vs(;)) for o € S4. Then {(-1,1,0,0),(-1,0,1,0),(-1,0,0,1)}
is a basis for V. The action described gives an irreducible representation for Sy since (23)(—1,1,0,0) = (—1,0,1,0)
and (24)(—1,1,0,0) = (—1,0,0,1). In other words, there is no Sy-invariant subspace of V. Let p : Sy — M3(C) be
the described irreducible representation.

e | (12) | (123) | (12)(34) | (1234)
Xean | 1| -1 1 1 1
X, | 3] 1 0 1 1

Now p®sgn is an irreducible representation of Sy x S4. Include Sy along the diagonal of Sy x Sy to make p®sgn a
representation of Sy. The character X @sen(9) = Xp(9)Xsen(9) which gives the following row of the character table.
‘ e ‘ (12) ‘ (123) ‘ (12)(34) ‘ (1234)
Xp@sgn‘g" -1 ‘ 0 ‘ -1 ‘ 1

We have an inner product on the space of class functions such as (x,, x») = ﬁ deg Xu(9)xw(g71). We know that

X p@sgns Xp@sgny = 1 if and only if p ® sgn is an irreducible representation. We note that the number of elements
in each conjugacy class are 1,6, 8,3, 6 respectively. Since ¢g~' and g are in the same conjugacy class for all g € Sy,

oogns Xoogn = %4(1(9) +6(1) +8(0) + 3(1) + 6(1)) = 1.

Thus p ® sgn is the other irreducible representation of Sy.

Problem 8. Let F be a field. Show that the group SL(2, F') is generated by the matrices <(1) i) and (i (1))

for elements e in F'.

The group SL(2, F) is all 2 x 2 contains matrices with determinant one. Let A = (z Z) be a general matrix
in SL(2,F). Case 1: If a=0or d =0, then ¢ = —b~1. Case 2: If b =0 or ¢ = 0, then d = a~!. Case 3: Assuming

-1
nonzero a,b,c,d € F, then A = (d (I+bc) b

c d)' We will show that we can construct each of these cases with
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the matrices ((1) i) and <i (1)> Let a,b,e, f € F'. Case 1 is given by the following.

(0 1) (e D=5 s

|
®
[SIe

IS
o

)
)
)
)

Il
/—\/l_\/—\
D =
L
S ™

|
m\

-
=)

Case 2 can be constructed by the following.

0
(6_1b_1
0
e

—be 0 e
0 —e ! —e1lp1g
—e ! 0 e 1p71
—e1p71g —be 0

Let ¢,d € F. Case 3 begins as follows.

b a c 0\ [(bct+ad
0 b! d 1)\ b ld

ac™t
b—lct

Then (b~tc 1) 711 + (ac™)(b71d)) = be(1 + ab~rc™1d) = be + ad, the first row, first column entry above. We can

generate every matrix in Cases 1, 2, and 3. We conclude SL(2, F') is generated by <é i) and ((12 0).

1

Problem 9.

(a)

Let R be a finite-dimensional associative algebra over a field F. Show that every element of the Jacobson
radical of R is nilpotent.

Let # € J(R) such that  # 0. Thus x ¢ F. By finite dimension, {1, z,...,2"} is a linearly dependent set
S aixt and

0=2"— 22:01 a;x'. Factor out 27 for maximal j which implies a; # 0. Define b; := aj_lai so b; = 1. Then

— ajlx"J1> .73) .

(bjxt=I71) — a;lx"_j_l) x) € R* so a;z? = 0. Then a; € R* implies
2/ = 0, contradicting the minimality of n. We conclude that 2™ = 0 for some n. Therefore, every element of
the Jacobson radical is nilpotent.

for some n € N. Choose n minimal. If ™ = 0, we are done so assume otherwise. Then 2™ =

n—1

n—1
— g | a7t — 2 = g —
0=a;az’ {a; @ Z bix =aqa;2’ [ 1
i=j i=j+1

N (bia

Since x € J(R), we have (1 — (Zn_l

i—j+1

Let R be a ring. Is an element in the Jacobson radical of R always nilpotent? Is a nilpotent element of R
always in the Jacobson radical? Justify your answers.

In Problem 2, we derived the correspondence of ideals in a localization. We want to show that a prime ideal
of R maps to a prime ideal of ST!R for S a multiplicatively closed subset of R\{0} with 1 € S under this
correspondence. Let p € R be a prime ideal. Let %% = % € S~'p. Then abe p soa € p or be p since p is
prime. Thus % € S~1lp or % e S~!p. Note that % € S~1p implies there is some 1€ S~1p such that sa = 1 for
a €p. Thus 1 € p, a contradiction. We conclude S~!p is proper and, as a result, S~'p is a prime ideal of S~ R.

An element of the Jacobson radical is not always nilpotent. In commutative rings, the nilradical, the set of all
nilpotent elements, is the intersection of all prime ideals of the ring. The Jacobson radical is the intersection of
all maximal ideals of R. The ring Z[x] has maximal ideal (2,z). Let R = Z[z](2 ;) be the localization of Z[x]
with S = Z[z]\(2,z). Then R is local with J(R) = S71(2, ). Note Z[z]/(2) ~ (Z/2Z)[z], which is an integral
domain. Thus (2) is a prime ideal of Z[z]. Similarly, Z[z]/(z) ~ Z, an integral domain. Thus () is a prime
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ideal of Z[z]. By the argument above, S~1(2) and S~!(z) are prime ideals of R. We see that S~1(2) n S~1(x)
is a strict subset of the Jacobson radical S7(2,z). Take for instance 2+£ € J(R) but 22 is not nilpotent.

A nilpotent element is not always in the Jacobson radical of a ring R. Let R = My(C) and A := (8 é) €

My (C). Tt is clear that A? is the zero matrix so A is nilpotent. Then we have

10\ (0 0\(0 1\ (1 0\ (0 0\ (1 0
0 1 1 0/\0 0/ \0o 1 0 1) \0 0/
The result is not invertible so A ¢ J(R).

Problem 10. Let p be a prime number. For each abelian group K of order p?, how many subgroups H of Z3
are there with Z3/H isomorphic to K.

Note that Z3 is abelian so each subgroup H c Z32 is normal. Let S be the set of surjective group homomorphisms
f:73 — K and T be the set of all subgroups H of Z3 for which Z3/H ~ K. Then define a set map ® : S — T by
®(f) = ker(f). Let Aut(K) be the group automorphism of K, and Aut(K) acts on S by post-composition. Denote
by S/Aut(K) the set of orbits of S under the action by Aut(K). Let o € Aut(K), then ker(o o f) = ker(f) since o
is injective. As a result, ® : S/Aut(K) — T is a well-defined set map. Surjectivity of ® follows from the fact that
each subgroup H for Wthh Z3/H ~ K defines a surjective group homomorphism f: Z3 — Z3/H ~ K.

We want to show that @ is injective. Let f,g € S such that ker(f) = ker(g). By the universal property of
quotients, f factors through Z3/ker(f), and there is some isomorphism « : Z3/ker(f) — K such that o = f for
7 : Z3 — Z3/H the canonical quotient homomorphism. Similarly, o7 = g for an isomorphism 3 : Z3/ker(g) — K.
Then f = (a0 37 1) o g where (a0 371) € Aut(K), and f and g are in the same Aut(K)-orbit of S. We conclude
that ® is a bijection.

It is sufficient to find the number of surjective group homomorphisms f : Z2> — K for each K. There are only
two abelian groups of order p*: Z/p*Z and Z/pZ x Z/pZ. Case 1: Let K = Z/p*Z. We need only find images
for the 3 generators of the free abelian group Z3. Let x,y € Z/p*Z be non-generating elements. They are classes
represented by integers divisible by p. Then representatives of z + y are divisible by p and x + y does not generate
Z/p*7Z. Thus at least one of the generators of Z® must map to a generator of Z/p*Z in order for the homomorphism
to be surjective. There are ¢(p?) = p? — p generators of Z/p?Z for Euler’s totient function ¢. There are p°® total
homomorphisms and p® homomorphisms that are not surjective. Since |Aut(Z/p*Z)| = ¢(Z/p*Z) = p* — p, there

are 1;?2—_1;:’ = p* + p? + p? total subgroups H of Z3 for which Z3/H ~ Z/p*7Z.

Case 2: Let K = Z/pZ x Z/pZ. Once again, we need only find images for the 3 generators of the free abelian
group Z3. Note that K is no longer generated by just one element. For the homomorphism to be surjective, we
need the image of at least two of the generators of Z3 to map to generators of K. This equates to sending one
generator to a nontrivial element a € K and sending a second to an element outside the subgroup generated by a
in K. The subgroup generated by a will have order p. We have three scenarios. If the first generator is sent to a
nonzero a € K, we have (p? — 1)(p? — p)(p?) + (p*> — 1)(p)(p*® — p) options depending on the image of the second
generator. If the first generator is sent to zero, we have (p? — 1)(p —p) optlons In total, we have p® — p* —p3 +p
surJectlve homomorphisms. There are (p? — 1)(p —p) = p* — p* — p? + p automorphisms of K which implies

% = p? + p + 1 subgroups H of Z3 such that Z3/H ~ Z/pZ x 7/pZ.

Spring 2016

Problem 1.

(a) Give an example of a unique factorization domain A that is not a PID. You need not show that A is a UFD
(assuming it is), but please show that your example is not a PID.
Let A := Z[x]. We know that A is a UFD by an application of Gauss’s Lemma. Let I := (2,2) and we claim
that I is not a principal ideal. We will first show that I is a proper ideal of A. For 1 # 2a + bz, we would need
b = 0. Then there are no possible choices for a since 1 ¢ 2Z. Thus 1 ¢ I and I is a proper ideal of A.
Assume I = (p) for some p € A. Then there is an r € A such that rp = 2. Since Z is an integral domain,
0 = deg(rp) = deg(r) + deg(p) so deg(p) = 0. Thus p € Z and the only integer divisors of 2 are +1,+2. Since
I is a proper ideal, p = £2. We note (2) = (—2) so take p = 2. Now there is some s € A such that sp = x.
However, 2s = x cannot occur. We conclude that I is not principal.
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(b) Let R be a UFD. Let p be a prime ideal such that 0 # p and there is no prime ideal strictly between 0 and p.
Show that p is principal.

Let a € p be some nonzero element. Since R is a UFD, we can factor a as a product of irreducible elements
a=11", pf In a UFD, irreducible implies prime so each p; is prime in R. Since a € p and p is a prime ideal,
one of the p; € p. Thus (p;) < p. Since (p;) is a prime ideal, we must have (p;) = p and p is principal.

Problem 2. Consider the functor F' from commutative rings to abelian groups that takes a commutative ring
R to the group R* of invertible elements. Does F' have a left adjoint? Does F' have a right adjoint? Justify your
answers.

We will show that F' has a left adjoint. Define the functor L : AbGroup — CRing as L(A) = Z[A], the group
ring over Z. For an abelian group morphism f : X — Y, we define L(f) : Z[X] — Z[Y] as L(f)(z) = f(z) and
extend Z-linearly. Note that L(f) is well-defined since z € X is a unit in Z[X] and it maps to a unit in Z[Y].
Additionally, L(f) is a unique commutative ring morphism that agrees with f on X since Z is initial in CRings.
Let 1x : X — X be the identity morphism. Then L(1x)(X,cx @2®) = X cx @2® and L(1x) = 17x) for a, € Z.
Let f: X - Y and g : Y — Z be two abelian group morphisms. Then L(gf)(X,cx @2%) = X ,cx @9(f(x)) =
L(9) (2 pex aaf(x)) = L(9)(L(f)(X,ex azx)) for a, € Z. Thus L(gf) = L(g)L(f) and L is a functor.

We want to show that L is a left adjoint to F. Let f : A — F(B) be an abelian group morphism for
A € Ob(AbGroup) and B € Ob(CRing). Define a natural transformation ®4 p : HomapGroup(4, F(B)) —
Homcgring (L(A), B) by ®4 5(f)(x) = f(x) and extend Z-linearly. By above, this is well-defined and the unique
commutative ring morphism that agrees with f on X. Since units must map to units in a commutative ring mor-
phism, every h € Homcring(L(A), B) restricts to a morphism in Homapgroup(a,F(B))- Thus ®4 p is a bijection.
We want to show that the bijection is functorial in A and B. Let g : A’ — A be a morphism of abelian groups. We
want the diagram below to commute. Let f € Homapgroup(A4, F(B)) as before. Then ®4 p(f) o L(g) : L(A’) —» B
extends the morphism fog: A" — F(B). By definition, ® 4/ g(f o g) is also a morphism that extends f o g. The
uniqueness in our choices of this morphism implies ®4 g(f) o L(g) = ®a/,5(f 0 g) and the diagram commutes. The
argument for B is similar so the bijection is functorial in A and B. Therefore, L is a left adjoint to F'.

Hom AbGroup (A, F(B)) —225 Homeping (L(A), B)

l_og l—oL(g)

D,
HomAbGroup(A/aF(B)) ﬂ HomCRing(L(A/)aB)

We will now show that left adjoints preserve initial objects. Let L : C — D and R : D — C be an adjoint pair.
Let A € Ob(C) be an initial object. Then Homp(L(A), B) ~ Hom¢ (A, R(B)) for any B € Ob(D). But A initial
in C implies Home (A, R(B)) has only one element. We conclude that Homp(L(A), B) has only one element and
L(A) is initial in D.

In this problem, we want to show that F' does not have a right adjoint. Assume F' has a right adjoint G for
the sake of contradiction. We will prove that F' preserves initial objects. Let I be an initial object of C and B any
object in D. Then

Homp (F(I), B) ~ Homp(I,G(B))

and Homp (I, G(B)) is one element by the definition of an initial object. Thus F(I) is initial in D. We note that
Z is initial in CRings, but F'(Z) ~ Z/2Z since +1 are the only units in Z. The abelian group Z/2Z is not initial
since Homabaroup(Z/2Z,Z/27Z) has two elements, the trivial morphism and an isomorphism. Thus F' cannot have
a right adjoint.

Problem 3. Let R be a ring which is left Artinian (that is, Artinian with respect to left ideals). Suppose that
R is a domain, meaning that 1 # 0 in R and ab = 0 implies a = 0 or b = 0 in R. Show that R is a division ring.

Let the ring homomorphism f : R — R be right multiplication by some nonzero a € R. Then f(b) = 0 implies

ba=0s0a=0orb=0Dby R adomain. Since a # 0, we have b = 0 and f is injective. Note that this means f* is
injective for all k. We have the chain of decreasing left R-modules,

im(f) >im(f?) o...
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Since R is Artinian, the chain terminates so im(f*) = im(f**!) for some k € N. Let b € R be any element. Then
f¥(b) € im(f*) so there is some c € R such that f**1(c) = f¥(b). Rearranging, f*(f(c) —b) = 0 and f(c) = b by
injectivity of f¥. We conclude that f is surjective. Then f(b) = 1 for some b € R which implies ba = 1. We have
shown that every nonzero element a € R has a left inverse. In particular, b has a left inverse, say, ¢ € R. Then
a = (cb)a = c¢(ba) = ¢ so ba = ab = 1. Thus every nonzero a € R is invertible. We conclude R is a division ring.

Problem 4. Let A be a commutative ring, S a multiplicatively closed subset of A, A — A[S™!] the localization.

(a) Which elements of A map to zero in A[S™1]?

An element a € A maps to ¢ € A[S™!]. If ¢ = 0, then there is some s € S such that sa = 0. Thus 0 € Sa for
the set Sa = {sa : s € S}. All elements a € A such that 0 € Sa map to zero in the localization so this classifies
all elements of A that map to zero.

(b) Let p be a prime ideal in A. Show that the ideal generated by the image of p in A[S™!] is prime if and only if
the intersection of p with S is empty.

Denote the image of p in A[S™!] by S™!p. (=) Assume p N S # @ and we will prove the contrapositive. Let
sepnS, then £ e S pso sl =1e571p Thus S~'p = A[S~'] and the image of p in A[S~'] is not a prime
ideal. (<) Assume p 1S = . Then S~!p is a prime ideal by the arguments in Fall 2015 Problems 2(a) and
9(b).

Problem 5. Let A be the ring C{u, v)/(uv—vu—1), the quotient of the free associative algebra on two generators
by the given two-sided ideal.
(a) Show that every nonzero A-module M has infinite dimension as a complex vector space.

Assume that M is a finite dimensional C-vector space. Pick a basis 8. We note that left multiplication by u
is a C-linear transformation of M. Thus there is a matrix A in the basis § such that Ax = ux. Let B be the
matrix that represents left multiplication by v. We have AB — BA = I. However, Trace(AB — BA) = 0 and
Trace(I) # 0, a contradiction. We conclude that M is infinite dimensional as a C-vector space.

(b) Let M be an A-module with a nonzero element y such that uy = 0. Show that the elements y, vy, vy, ... are
C-linearly independent in M.
Take Y77, ¢;(v'y) = 0 for only finitely many nonzero ¢; € C. Take N to be the maximal i for which ¢; # 0. Left

multiplication by u gives u (Zﬁio ci(viy)) = Zf\il ci(iv' =ty + viuy) = Zfil ic;v"ly where the initial term is

0=ul <Z ci(viy)) = (Nlen)y.

Since y # 0, we have ¢y = 0. Continue this process by multiplying by vV~ and so on. We conclude that
¢; = 0 for all 0 < i so {y,vy,v%y,...} is linearly independent.

sent to zero. Then we have

Problem 6. Let K be a field of characteristic p > 0. For an element a € K, show that the polynomial
P(X) = X? — X + a is irreducible over K if and only if it has no root in K. Show also that, if P is irreducible,
then any root of it generates a cyclic extension of K of degree p.

(=) We will prove the contrapositive. Assume P has a root @ € K. We can immediately conclude that P is not
irreducible in K since P = (X — a)g for some g € K[X].
(<) We will prove the contrapositive. Assume P is reducible so P = Hle g; for irreducible g; € K[X] with
deg(g;) < p. Let a € K be a root of g := g;. Then « is a root of P and o? — a + a = 0. Since K is a field of
characteristic p, we have F, c K for I, the field of p elements. Let k € F,. Then

(a+ k)P —(a+k)+a=o+k —a—k+a=a"+k—a—-k+a=a’—-a+a=0.

We conclude that the set of roots of P is {a + k : k € F,} < K[«], which implies P is separable over K. Further,
K|[a] is the splitting field of P so K[a]/K is a Galois extension. Let G := Gal(K[«]/K) and take ¢ € G. Then
o(a) = a+k for k € F,. We see that o*(a) = a + kf. Assume that k # 0. Then k¢ = 0 in F,, implies k = 0 in F,,
or p|¢ = 0 in Z. Thus the order of o is at least p. Since oP(«) = «, we know the order of o is p. Then |G| = p,
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contradicting our assumption that deg(g) < p. We have o(«a) = a and |G| = 1. Thus g = (X — «), which implies
P has a root in K.

Assume P is irreducible. Let a € K be a root of P. By above, the roots of the separable polynomial P are
{a+k:keF,}so P splits in K[a]. Then K[a]/K is Galois with [K[a] : K] = p. The Galois group Gal(K[a]/K)
is order p and, thus, cyclic. We conclude that any root of P generates a cyclic extension of K of degree p.

The polynomial in question is an example of an Artin-Schreier polynomial.

Problem 7. Show that for every positive integer n, there exists a cyclic extension of Q of degree n which is
contained in R.

By Dirichlet’s Theorem, there is some odd prime integer p such that p = 1 (mod 2n). Let & be a primitive
pth root of unity. We know that Q[£]/Q is a Galois extension with [Q[£] : Q] = ¢(p) =p—1for p : Z — Z
Euler’s totient function. The Galois group G := Gal(Q[¢]/Q) ~ (Z/pZ)* ~ Z/(p — 1)Z, which is cyclic. Complex
conjugation 7 : Q[¢] — Q[¢] is an order two Q-automorphism of Q[¢]. Let H be the order two subgroup of G
generated by 7 and K := Q[¢]”. We have K < R since K is fixed by complex conjugation. (For a more explicit
description, K = Q[¢ + £71].) Then Artin’s Theorem implies Q[¢]/K is Galois with [Q[£] : K] = 2. As a result,
[K:Q] = pgl = n. Since Q[£]/Q is cyclic, H is a normal subgroup of G so K/Q is Galois with Gal(K/Q) ~ G/H.
The group G/H is cyclic so K/Q is a cyclic extension of Q of degree n with K < R.

Problem 8. Determine the character table of Sy, the symmetric group on 4 letters. Justify your answer.

In Fall 2015 Problem 7, we started the character table for representations of Sy over C. The only remaining row
of the character table corresponds to the 2-dimensional irreducible representation which we denote p : Sy — Ms(C).
We will use column orthogonality to complete the table below.

e | (12) | (123) | (12)(34) | (1234)
Xtrivial 1 1 1 1 1
Xean | 1| —1 | 1 1 —1
X. | 2 -1 2 0
X, | 3] 1 0 —1 —1
Xpgegn | 3| —1 | O -1 1

Problem 9. Show that if GG is a finite group acting transitively on a set X with at least two elements, then
there exists g € G which fixes no point of X.

Let n:= |G| and k := | X| > 2. Note that |Stab(z)| is all g € G such that gx = x. For each g € Stab(z), we have
z € Fix(g) = {z € X : gz = z} and visa versa. We conclude ;v [Stab(z)| = 3} . [Fix(g)|. By Orbit-Stabilizer
and |G| finite, |Stab(z)| = |G|/|Orb(z)| for all z € X. But G acts transitively on X so |Orb(x)| = |X| = k and
|Stab(z)| = 3. Then 3 . [Fix(g)| = X,cx % = n. Since |Fix(e)| = k > 2, we have }, o . [Fix(g)| <n —1. If
all non-identity g € G have |Fix(g)| = 1, we would have }, . . [Fix(g)| = n — 1. By the pigeonhole principle,
there is some g such that |Fix(g)| = 0 as desired.

Problem 10.

(a) Determine the Galois group of the polynomial X* — 2 over Q, as a subgroup of a permutation group. Also,
give generators and relations for this group.

We determine the Galois group of X* — 2 over Q in Case 4 of Fall 2014 Problem 3. We find Gal(X* — 2) ~
Dy ={r,s:r* =52 =e,rs = sr3). The roots of X% — 2 are {+/2, v/2i, —+v/2, —v/2i} so identify these as roots
1, 2, 3, and 4 respectively. Then Dy as a subgroup of Sy is the subgroup generated by {(1234), (24)}.

(b) Determine the Galois group of the polynomial X3 — 3X — 1 over Q. (Hint: for polynomials of the form
X3+ aX + b, the quantity A = —4a3 — 27b%, known as the discriminant, plays a key theoretical role.) Explain
your answer.

Let K be the splitting field of an irreducible polynomial in F[z] with roots {a1, ..., a,}. Define § := [ [;_; (i —
a;), and the discriminant A := 2. For o € Gal(f), o(5) = sign(c)d SHOW THIS so o(A) = A for all
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o € Gal(f). Thus A € F, and each ¢ € Gal(f) such that o(d) = é must be an even permutation of the roots of
f. If § € F, then Gal(f) must be a subgroup of A,,.

For a degree 3 polynomial, there will be at least one real root. The other roots could both be real or could be
a conjugate pair of complex roots. Let the roots of f be {x,a + bi,a — bi} for a,b, z € R, then

§ = (z — (a+bi))(x— (a—0bi))(a+bi—(a—0bi)) = 2bi(z? — 22 + (a* + b?)).

Note A = §2 < 0. In this problem, A = —4a® — 27b? = —4(—3)% — 27(—1)? = 81 > 0 so the roots of f are real.
Since A = 92, we have § € Q. By above, Gal(f) embeds in A3, and |Gal(f)| < |A3| = 3. By the rational root
test, f is irreducible over Q. Then [F[a] : F] = 3 = |Gal(f)| = |As| for some a € R a root of f. We conclude
Gal(f) ~ Aj.

Fall 2016

Problem 1. Let G be a group generated by a and b with only relation a? = b = 1 for the group identity 1.
Determine the group structure of G and justify your answer.

We claim G ~ Z/27 « 7/2Z, the free product of the additive group of order two with itself. Let the first copy
of Z/2Z have generator 1 and the second copy have generator 1’. Define the set map f : {a,b} — Z/2Z + Z/27
as f(a) = 1 and f(b) = 1’. By the universal property of free groups, there is a unique group homomorphism
f: F — Z/27 = Z/27Z such that f(a) = 1 and f(b) = 1’ where F is the free group on the generators {a,b}. By
construction, f is surjective and a?,b? € ker(f). Let N be the normal subgroup of F generated by {a?,b%} so
N < ker(f). Thus f descends to a unique group homomorphism f : F/N — Z/27 = 7./2Z. Take an element
w € ker(f). If w is the empty word in F/N, then w € N so we may assume that w is a reduced non-empty word.
Without loss of generality, w = a¥*b% - - - a*»bf where the integers k; = 1 for 1 < i < n and the integers ¢; =1 for
1 < j < n. The same argument will work if w starts with b*. We have

0 = F(w) = Fla" b b b) = F@)  FO) - Fl@) F0)' = by 102 1) (b - (6 - 1),

This can only occur if n = 1 and ¢, = 0. In this case, w = aga™! for g € N. Since N is normal in F, w € N,

contradicting the choice of w. We conclude that ker(f) contains only the empty word and G ~ F/N ~ Z/27.+7/27
by the First Isomorphism Theorem.

Problem 2. Let K be a semi-simple quadratic extension over Q and consider the regular representation p :
K — M>(Q). Compute the index of p(K*) in the normalizer of p(K*) in GL2(Q), and justify your answer.

By Artin-Wedderburn, K is isomorphic to a product of matrix algebras over division rings. Since dimg(K) = 2,
the only options are K ~ Q x Q or K ~ Q[a] for a a root of an irreducible quadratic in Q|[z].
Case 1: Let K ~ Q x Q. Then {(1,0),(0,1)} is a basis of K as a Q-vector space. Let (z,y) € K for z,y € Q\{0}
and we will construct p(z,y) by multiplying the basis elements by (z,y).

(xvy)(LO) = (:C’O)
(2,9)(0,1) = (0,9)

plz,y) = (”5 2)

¢ b) for a,b,c,d € Q and ad — bec # 0. Then

Let A e GL3(Q) so A := (c d

1 _fa by xz O 1 d —-by 1 adr —bcy  ab(y — x)
Ap(z,y)A™" = (c d) (O y) ad — be (—c a ) ad—bc \cdlx—y) —becx+ady)’
For A to be in the normalizer of p(K*), we need ab(y — ) and cd(x — y) = 0. Since x and y can be distinct this

implies one of a or b must be zero and one of ¢ or d is zero. By assumption, A is invertible so @ = 0 implies d = 0
and b = 0 implies ¢ = 0. We conclude that an element A in the normalizer of p(K*) will be of the form

69 C o)
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for nonzero a,b, ¢, d € Q. Therefore, the index of p(K*) in the normalizer is 2.

Case 2: We note that the root of an irreducible quadratic has the form o = =btyb2—dac ‘21;2_4“0 for a,b,c € Q. Thus
Qla] = Q[vb? — 4ac]. Let r := b* — 4ac and r is not a square in Q since K/Q is a degree 2 extension. Then
K ~ Q[+/r] which has basis {1,+/r} as a Q-vector space. We construct p(z + y+/7) for z,y € Q as follows.

(x+yvr)l =z +yvr = (z,y)
(z 4+ yVr)\r =1y + 21 = (ry, x)

p(x,y) = (;; z>

Let Ae GLy(Q) so A := (Ccl Z) for a,b,c,d € Q and ad — bc # 0. Then

a b Ty 1 d —b
c d)\ry x)ad—bc\—c a
B 1 axr + by ary+ bz d -b
Cad—be \cd+dy cry+dr)\—c a
1 (ad — be)x + (bd — acr)y —b%y + a’ry
ad — be d*y — c?ry (ad — be)z + (acr — bd)y.

Ap(z,y)A~!

For A to be in the normalizer of p(K*), we need the following equations to be satisfied. Take y € Q to be non-zero.

(ad — be)x + (bd — acr)y = (ad — be)x + (acr — bd)y
(bd — acr)y = (acr — bd)y
bd —acr =0

bd = acr

T(dzy - c2ry) = —b%y +d’ry
(b% + (d* — az)r — )y =0
b+ (d? —a®)r —c*r? =0

If b = 0, then acr = 0. Since A is invertible, a # 0 and ¢ = 0. From the second equation, (d*> — a?)r = 0 and r # 0

implies d = +a. Assume b # 0. Then d = %+ and, substituting into the second equation,

0="0>+ ((?)2 —a2> r— c*r?

(127"

= (b% — 2r?) — o (b2 _ 027“2)

2
= (b — *r?) (1 — ab27") .

As a result, either b = tcr or b = +ay/r. We cannot have b = a+/r since a,b € Q and +/r ¢ Q by assumption. If
b = *cr, we have d = £~ = ta. Note that the matrices A such that b = 0 is a subset of this type of normalizer.

-1 0
0 1

The case b = cr implies A € p(K ™) whereas b = —cr produces the coset < > p(K*). We conclude that p(K*)

has index 2 in the normalizer.

Problem 3. Let A be an integral domain with field of fractions F. For an A-ideal a, prove that a is an A-
projective ideal finitely generated over A if there exists an A-submodule b of F' such that ab = A, where ab is an
A-submodule of F' generated by ab for all a € a and b € b.

We will first show that a is a finitely generated ideal of A. Since ab = A, there is a finite sum .. ; a;b; = 1 for
ai€aand b; €b. Let a € A, then a = a(})!", a;b;) = Y., a;(ab;). Since ab = A, we have ab; € Aforall 1 <i < n.

Thus {a;}}_, is a generating set of A as an A-module.
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Now we will show that a is a projective ideal of A. Since a is finitely generated by {a;}?_;, there is a short exact

sequence

0 — ker(f) A L 0

with f(e;) = a; for {e;}?_; the standard generating set of A™. Define the A-module homomorphism h : a — A" by
h(a) = 35, (abse;). Then f(h(a)) = f(3L,(abie;)) = X abif(e;) = X, abia; = a. We conclude that h is a
splitting and A™ ~ a @ ker(f). Since a is a direct summand of a free A-module, a is a projective A-module.

Problem 4. Let D be a dihedral group of order 2p with normal cyclic subgroup C of order p for an odd prime
p. Find the number of n-dimensional irreducible representations of D (up to isomorphisms) over C for each n, and
justify your answer.

Let D :=(r,s: 1P = s> = e,rs = sr~1) be the dihedral group of order 2p. We will find the commutator subgroup
[D, D] = D. Any element of the commutator subgroup is of the form (ris)(r?s)(r's)~1(r7s)~! for some 0 < i,j <
p— 1. Reducing this, we end up with 72=23. Further, "3 srP~"5 57! = p"2 p"3 55 = %~ = r € [D, D]. Thus
[D, D] is the subgroup of D generated by r and |D/[D, D]| = 2. Thus there are two non-isomorphic classes of
one-dimensional representations of D.

We now classify the conjugacy classes of D,. Note that it is sufficient to conjugate each element only by the
generators © and s. The identity makes up one conjugacy class. When we conjugate s we notice risrP~% = r2is,
Since p is odd, we can continue this process to obtain the conjugacy class {s,rs,...,7?~ts}. When we conjugate
r* we have sris™! = sris = vP~% for 1 <i < p— 1. Conjugating by s agaigl yields srP~%s™! = srP~is = rt. Thus we

Pt

have the conjugacy classes {r?,7P~%} for 1 <i < pT_l In total, this is /5= conjugacy classes.

Using the intuition of D as permutations of vertices of a regular p-gon, we can construct the classes of 2-

cos(2mk/p) — sin(27rk/p)>

dimensional irreducible representations. We can construct ¢y : D — M3(C) as ¢ (r) = (sin (2nk/p)  cos(27k/p)

. - 1 _ .
the rotation by 2%’“ counterclockwise in the plane, and ¢x(s) = <0 _01> for 1 <k < %, the reflection about

the z-axis in the plane. Each ¢}, is an irreducible representation of D since there are no subspaces of C? invariant
under these transformations. Further, these are non-isomorphic irreducible representations since the characters
X4, (1) = 2cos(2mk/p) differ for each k.

The sum of the squares of the dimensions of these representations is 1 + 1 + (p—;l) 22 =2+ (2p —2) = 2p,
the order of the group. Thus these are all isomorphism classes of irreducible representations of D over C. We
conclude that there are two one-dimensional and % two-dimensional isomorphism classes of irreducible complex
representations of D.

Problem 5. Let f € F[X] be an irreducible separable polynomial of prime degree over a field F' and let K/F
be a splitting field of f. Prove that there is an element in the Galois group of K/F permuting cyclically all roots
of fin K.

Note that K/F is a Galois extension since f is separable and K is the splitting field of f. Let @ € K be a root
of f. Then F[a]/F is a field extension with [F[«a] : F| = p since f is irreducible. Then K/F[a]/F is a tower of
field extensions so p = [F[a] : F]|[K : F]. Now |Gal(K/F)| = [K : F] since K/F is a finite Galois extension of
F. Thus p||Gal(K/F)| and Cauchy’s Theorem implies there is some element o € Gal(K/F) of order p. We know
o permutes the roots of f, of which there are p, so 0 must permute the roots cyclically.

Problem 6. Let F be a field of characteristic p > 0. Prove that for every a € F', the polynomial 2P — a is either
irreducible or split into a product of linear factors.

Let a € F be some pth root of a in the algebraic closure of F. Then 2P —a = (x — a)P since F is characteristic
p. If a € F', we conclude that f splits into a product of linear factors. Thus assume « ¢ F' and we want to show
that f is irreducible over F. We can factor f = []!_, g; into irreducible g; € F[z]. Each g; must be of the form
gi = (x—a)" for some integer k; satisfying 1 < k; < p. In this case, [F[a] : F] = k; and k; = k; for all 1 <i,j < n.
However, p = deg(f) = >/, ki = nky implies k1 = 1 or k; = p. Since k; > 1 by assumption, k; = p and [ is
irreducible.
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Problem 7. Let f € Q[X] and € € C a root of unity. Show that f(&) # 2/4.

We will assume that f(¢) = 21/4 for some f € Q[X] and draw a contradiction. We know that Q[¢]/Q is a Galois
extension with Gal(Q[£]/Q) ~ (Z/nZ)* for £ a primitive nth root of unity. In particular, Gal(Q[£]/Q) is abelian so
Q[€]/Q is an abelian Galois extension. By assumption f(€) = 2%/4 so 2'/4 € Q[¢] and Q[2'/4]/Q is a subextension
of Q[¢]/Q. By the Galois correspondence, Q[2Y/4] = (Q[¢])¥ for some subgroup H < Gal(Q[¢]/Q) and Q[2'/4]/Q
should be a normal extension since any subgroup of an abelian group is normal. The minimal polynomial of 2%/4
over Q is 2* — 2 (which is irreducible by Eisenstein’s Criterion). But z* — 2 does not split in Q[21/4] so Q[2'/4]/Q
is not a Galois extension, contradicting our assumption. We conclude that f(£) # 24 for all f e Q[X].

Problem 8. Prove that if a functor F': C — Sets has a left adjoint functor, then F' is representable.

Let L : Sets — C be the left adjoint to F. Then we know that ®4 5 : Home(L(A), B) ~ Homges(A, F(B)) for
some natural isomorphism ® and A € Ob(Sets) and B € Ob(C). Let A := {*} be a set with one element. Then
Homgets(A, F(B)) ~ F(B) as sets via the morphism hp : Homges(4, F(B)) — F(B) with hg(«a) := a(x). Thus
Home(L(A), B) ~ Homgets (A, F(B)) ~ F(B) for all B € Ob(C).

Define a natural transformation np : Home(L(A),B) — F(B) by ng(f) := ®a.5(f)(x). Since &4 p is an
isomorphism and Homgets(A4, F(B)) ~ F(B) by choosing the image of * € A, we conclude that np is an isomorphism
for each B € Ob(C). Let f € Hom¢(L(A), B), and let g : B — C be a morphism in C for C' € Ob(C). We want to show
the diagram below commutes. Since ® is a natural transformation, the square on the left commutes. The square on
the right commutes since F(g)(hp(a)) = F(g)(a(*)) and he(F(g) o a) = (F(g) o a)(*) for a € Homgets (A, F(B)).
Therefore, the diagram commutes. We conclude that F is represented by L(A) € Ob(C).

nB

Home (L(A), B) —22 Homges(A, F(B)) —2+ F(B)

J{go— J{F(g)of J{F(g)

HOmc(L(A),C) % HomSets(AyF(C)) — F(C)

Problem 9. Let F be a field and a € F. Prove that the functor from the category of commutative F-algebras
to Sets taking an algebra R to the set of invertible elements of the ring R[X]/(X? — a) is representable.

In the category of F-algebras, F' is initial. Thus a morphism from the F-algebra A := F[B;, By, C1,C3]/(B1C1 +
aByCy — 1, B1Cy — ByCh) is determined by the image of B; and C; for 1 < 4,5 < 2. We can define a natural
transformation ng : Homp (A4, R) — R* via nr(f) := (f(B1), f( 2), f(C1), f(C2)). Let g : R — S be an
F-algebra homomorphism of commutative F-algebras R and S. Let f € Homp.ag(A, R). Then ns(go f) =
(9f(B1)),9f(B2),9f(C1),9f(C2)) and (g.9,9,9) o nr(f) = (9f(B1)),9f(B2),gf(C1),9f(C2)). Thus the diagram
below commutes.

Homp_a15(A, R) Mty R4

lgo— J(g,g,g,g)

Homp.a15(4, S) s, g4

We have R? ~ R[X]/(X?—a) as R-modules via the isomorphism f(b,c) = (bX +c¢). If (b1, b2) € R? maps to a unit
in R[X]/(X? — a), then there is some (c1,co) € R? such that byc; + abaca = 1 and bycy — bacy = 0. Similarly, the
existence of such a (c1, ca) implies (by, ba) maps to a unit of R[X]/(X%—a). Therefore, ng is an isomorphism between
Homp_a1g(A, R) and F(R) for each commutative F-algebra R. Further, the set of units of a ring S is naturally
isomorphic to the set {(z,y) € S? : zy = 1}. Thus we have a natural isomorphism x : Homp_a15(4,—) — F. We
conclude that A represents the functor F.

ADD SOME CONTEXT FOR THIS PROBLEM FROM ALEX
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Problem 10. Let F be a field and A a simple subalgebra of a finite dimensional F-algebra B. Prove that
dimp(A) divides dimp(B).

This problem is incorrect as written. A counterexample is B = Ms(F) @ M3(F) where A = My(F). Then A is
a simple subalgebra of a finite-dimensional F-algebra B. However, dimp(A4) = 4 does not divide dimp(B) = 13.

Spring 2017

Problem 1. Choose a representative for every conjugacy class in the group GL(2,R). Justify your answer.

Each conjugacy class of matrices in GL(2,R) has a unique representative in rational canonical form. For 2 x 2
matrices, the invariant factors of A € GL(2,R) could be {f} for f = 22 —az—b € R[x] or {g, h} where g|h. Since the
sum of the degrees of g and h is 2, we see that deg(g) = deg(h) = 1. We can take g and h monicso g =h =2z —¢
for some ¢ € R. Thus the possible rational canonical forms for a matrix in GL(2,R) are

0 b or (€ 0
1 a 0 c
for a,b,c € R. Each conjugacy classes of GL(2,R) has a representative of the form above.

Problem 2. Let G be the group with presentation (z,y : * = 1,9 = 1, zyz~! = y?), which has order 20. Find
the character table of G.

We will first find the conjugacy classes of G. Note that we only need to check conjugation by the generators x
and y. Since zy = y%x, we can write each element of G as y’27 for some 0 < i < 5 and 0 < j < 4. Additionally,

(yimj)(ykxé)(yixj)—l _ yi+2jkxj+£x—jy—i _ yi+2jkm6y—i _ y—i+2jkx€

so the exponent of x remains unchanged by conjugation. By the formula above, conjugating y*z¢ by y will result
in y*~1z¢. Thus the conjugacy classes are

(1}, {y,v%, ¥, v* Ha, yz, 2,y e}, {2, ya?, y?2?, e, yta?), (28, yad, yPa®, P2 y e,

which implies 5 isomorphism classes of irreducible representations. We will now find the commutator subgroup
[G, G]. The generators of [G, G] have the form (y'z?)(y*z)(y'a?) ' (yFal)~t = (y~ i+ Fat)e—ty=F = y=i+ Dk,
We can pick i =4, j =0, k =0, and £ = 1, which implies [G, G] is the cyclic subgroup of G generated by y. Then
the number of isomorphism classes of one-dimensional representations is |G/[G,G]| = 4 by the argument in Fall
2015 Problem 7. There are 4 one-dimensional representations and 5 conjugacy classes. Since the order of G is the
sum of the squares of the dimensions of the irreducible representations, 20 = 12 + 12 + 12 + 12 + k2 so k = 4.

We will now determine the 4 one-dimensional representations. Since z is order 4, it must map to +1,+4 in C*.
Similarly, y is order 5 so y must map to a fifth root of unity in C*. The character is equal to the representation
in the one-dimensional case so the representation is the same on each conjugacy class. Let p; : G — C* be one-
dimensional representations for 1 < ¢ < 3 and g : G — GL4(C) be the 4-dimensional irreducible representation.
For p; : G — C*, pi(y) = pi(y?) = pi(y)? so p(y) = 1. We can fill in the character table below based on the image
of z. The last row of the table is found by column orthogonality.

1| v x | 2?2 | 23
Xtrivial 1 1 1 1 1
Xp1 1] 1 T | =1 | —1
Xps 11 |-1| 1 |-1
Xps 1 1 —i | —1 )
Xu 41 -11] 0 0

Problem 3. Find the number of subgroups of index 3 in the free group Fs = {u,v) on two generators. Justify
yOur answer.
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Let X = {1,2,3} be a set of order 3. Assume there is a transitive group action of F5 on X. Then Stab(1) is a
subgroup of G with [G : Stab(1)] = |Orb(1)| = 3 by Orbit-Stabilizer. Now assume H is an index 3 subgroup of
F5. Then the set Fy/H of left cosets has order 3. We have a transitive group action of Fy on the set Fy/H given
by left multiplication. Let g € F5. We have g - H = H if and only if g € H. As a result, Stab(H) = H. The two
situations describe a bijection between index 3 subgroups of G and stabilizers of transitive group actions on sets of
three elements.

We will find the number of transitive group actions of F5 on the set X = {1,2,3} with H := Stab(1). In the
case of |X| = 3, this is equivalent to finding a homomorphism ¢ : F» — S3 whose image contains a 3-cycle. The
image of u and v under ¢ uniquely determines ¢ by the universal property of free groups. We will break into cases.
Note that 2 and 3 can are interchangeable so ¢(u) = (13) cases produce the same stabilizers of 1 as the ¢(u) = (12)
cases. Similarly, we do not have to consider ¢(u) = (132).

o(u) = e implies ¢(v) € {(123), (132)}

¢(u) = (12) implies ¢(v) € {(13), (23), (123), (132)}

¢(u) = (23) implies ¢(v) € {(12), (13), (123), (132)}

¢(u) = (123) implies (v) € {e, (12), (13), (23), (123), (132)}

The symmetry of 2 and 3 also allows us to remove the cases {¢(u) = e, p(v) = (132)}, {p(u) = (23), d(v) = (13)},
and {¢(u) = (23), ¢(v) = (132)}. We are left with 13 suitable group homomorphisms ¢ : F5 — Sz for which Stab(1)
determines all distinct subgroups of Fy of index 3.

Problem 4. Show that the ring R = C[xz,y]/(y* — 2% + 1) is a Dedekind domain. (Hint: Compare R with the
subring C[z].)

It is sufficient to show that R is the integral closure of C[z] in the fraction field of R, C(z)[y]/(y* — (z® — 1)).
Let a € C(2)[y]/(y?® — (2® — 1)) be integral over C[z]. The set {1,y} is a basis for C(z)[y]/(y*> — (23 — 1)) as a
C(z)-vector space. Thus a = p + qy for p,q € C(z). If ¢ = 0, @ € C[z] € R so we may assume q # 0. Let
m = T? — 2pT + (p* + ¢*(z® — 1)) € C(2)[T] be the minimal polynomial of o over C(z). Since C[x] is a UFD,
Gauss’s Lemma implies that m € C[x][T]. Then 2p € C[x] gives p € C[x]. Since p? + ¢*(2® — 1) € C[x], we have
¢?(x® — 1) € C[z]. From 2 — 1 square-free in C[z], we conclude q € C[x] and o € R. Therefore, R is the integral
closure of C[x] in C(z)[y]/(y?> — (3 — 1)), which implies R is a Dedekind domain.

Problem 5. Let S be a multiplicatively closed subset of a commutative ring R. For a prime ideal I in R with
I nS = ¢, show that the ideal I - R[S™'] in the localized ring R[S™'] is prime. Also, show that sending I to
I - R[S™1] gives a bijection between the prime ideals in R that do not meet S and the prime ideals in the localized
ring R[S™1].

We want to show that a prime ideal of R maps to a prime ideal of R[S~!] for S a multiplicatively closed subset
of R\{0} with 1 € S under this correspondence. Let p = R be a prime ideal. Let %% = ‘;—f € S~'p. Then ab € p so
a € p or b € p since p is prime. Thus ¢ € S~1p or % e S~!'p. Note that % e S~'p implies there is some g€ S~
such that sa = 1 for a € p. Thus 1 € p, a contradiction. We conclude S~!p is proper and, as a result, S~'p is a
prime ideal of R[S™!].

Let S~'p e R[S™!] be a prime ideal. Then theset p’ ={reR: L€ S’lp} is a proper ideal of R by Fall 2015
Problem 2(a). Let ab € p’ for a,b € R. Then & 1 € p which 1mphes 4e p or ¢ € p by primality of p in R[S~']. Thus
aeyp orbeyp’ and p’ is a prime ideal of R. Note that S~'p’ =p and we have constructed a bijection between the
prime ideals in R that do not meet S and the prime ideals in the localized ring R[S™!].

Problem 6. Prove the following generalization of Nakayamas Lemma to noncommutative rings. Let R be a ring
with 1 (not necessarily commutative) and suppose that J < R is a left ideal contained in every maximal left ideal
of R. If M is a finitely generated left R-module such that JM = M, prove that M = 0.

We will prove that if x is contained in each left maximal ideal of a ring R, then 1 — rz is left invertible for all
r € R. Assume z is contained in each left maximal ideal of a ring R. For the sake of contradiction, assume 1 —rz is
not left invertible for some r € R. Then 1 — rz is contained in some left maximal ideal m — R by a Zorn’s Lemma
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argument. But x € m so (1 —rz) + rz = 1 € m, a contradiction. We conclude that 1 — ra is left invertible for each
r e R.

Let {x1,...,7,} be a minimal generating set of M as a left R-module. Then z; = 2;;1 a;;x; for a;; € J by
assumption. For z1, we have (1 — aq1)z; = Z?:Z a;z;. Note that J is a subset of the intersection of all left
maximal ideals so 1 — aq1 is left invertible by above. Thus

z1 = ) ((1—an) " ay)z;,

-

2

J

contradicting the minimality of the generating set. We conclude that there is cannot be a nontrivial generating set
so M = 0.

Problem 7. Find [K : Q] where K is a splitting field of X¢ — 4X? + 1 over Q.

Let f = X6 —4X3 +1. Using the quadratic formula for X3, we find the roots of f are {v/2 + 1/3¢%} for 0 < i < 2
where ¢ is a primitive third root of unity. Let o := 4/2 + 1/3 be the real third root. We have i = /2 — /3 after
simplification and o® — 2 = /3 € K. Thus a, v/2 — v/3,¢ € Q[a,i] so K = Q[«,i]. Then

aQ(ag)(H‘f) = (2+/3) (;+ﬁi)(1+ﬁ> = <\/§+3>ieK

2 2 2

‘1(\/23)(\/5_%3)1._4(3?1)1'_16}{‘

Since a,i € K, we have K D Q[a, ] and K = Q[«, ],

We construct the tower of fields below. We know Q[i] ¢ Q[«] since Q[a] = R by choice of «. Additionally,
Q[i] n Q[a] is a subfield of Q[i] so Q[i] N Q[a] = Q[i] or Q[i] n Q[a] = Q. We have Q[i] n Q[a] = Q. Since
Q[7]/Q is a normal extension, Q[i] and Q[«] are linearly disjoint. This implies that [K : Q] = [Q[¢] : Q][Q[«] :
Q] = 2[Q[a] : Q]. Assume a € Q[v/3] so Q[a] = Q[v3]. Then G := Gal(K/Q) has order 4. However, G needs
to define a transitive group action on the set of 6 roots of X6 — 4X? + 1. Neither the cyclic group of order 4 nor
7,/27. x 7,/27 would satisfy this condition. Therefore, o ¢ Q[v/3] and Q[+v/3] = R imply the degree 3 polynomial
X3 — (2 4+ +/3) € Q[v3][X] is irreducible. We conclude that [Q[a] : Q] = [Q[a] : Q[v3]][Q[v3] : Q] = 6 and
[K : Q] =12.

Problem 8. Let M be an abelian group (written additively). Prove that there is a functor F' from the opposite
of the category of rings to the category of sets taking a ring R to the set of all left R-module structures on M. Is
the functor F' representable?

A left R-module structure on M is equivalent to a ring morphism f : R — End(M) with scalar multiplication
defined as 7 - m = f(r)(m). Thus define F : Rings®® — Sets as F(R) := Hompgingsor (End(M), R) and F(g) :
F(R) — F(S) as F(9)(f) = go f € Hompgingser(End(M), S) for g € Hompgingsor (R, S) and f € F(R). Then
F(1r)(f) = f for all f € F(R) so F(1r) = 1pr). Let g € Homgingsor (R, S) and h € Homgingsor (S, 7)), then
F(hog)(f) =(hog)of=F(h)(gof)=(F(h)oF(g))(f). Therefore, F is a functor from the opposite category
of rings to the category of sets.
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We define a natural transformation ng : Hompggngser (R, End(M)) — F(R) as nr(f) == f. Let g: R —> S
be a morphism in the opposite category of rings. We want to show that the diagram below commutes. By our
construction, it is trivial. We have F(g)(nr(f)) = go f and ns(go f) = go f. Therefore, the functor F is
representable.

)
lgof lF (9)

Hompginger (End(M), R) —2 F(R
I—IornRingsolD (End(M), S) L F(S)

Problem 9. Let R be a ring. Prove that if the left free R-modules R™ and R™ are isomorphic for some positive
integers n and m, then R™ and R™ are isomorphic as right R-modules.

Let ¢ : R" — R™ be a left R-module isomorphism with inverse 1) : R™ — R". Pick the standard basis {e1, ..., e,}
for R™ and {f1,..., fm} for R™. Then ¢(e;) = Z;”:l a;jf; for each 1 < i < n and a;; € R. Multiplication by the
n x m matrix A = (a;;) represents ¢. Similarly, ¥(fi) = >.,_, brees for each 1 < k < m and by € R gives an n x m
matrix B = (bge). Since ¢ 0 ¢ = idgn and ¢ 0t = idgm, we have BA = I,, and AB = I,,,. Left multiplication by
A is a right R-module homomorphism since A(xr) = (Az)r for z € R™ and r € R. We conclude that R" ~ R™ as
right R-modules.

Problem 10. Let K/F be a (finite) Galois field extension with G = Gal(K/F) and let H — G be a subgroup.
Determine in terms of H and G the group Gal(K*/F) of all field automorphisms of K over F.

Note that K /F Galois implies that K /F is a separable extension. By the Primitive Element Theorem, K =
F[a] for some a € K. For an automorphism 7 € Gal(K¥ /F), there is an extension o : K — K such that
o(a) = 7(a) and o(x) = x for x € F. Thus o € G, which implies that each 7 € Gal(K* /F) can be viewed as a
restriction of an element in G.

Take an element o € G. We want to show that o|xn € Gal(K¥/F) if and only if 0 € Ng(H). (=) Assume
olgrn € Gal(KH /F) so o(KH) < K. Let he H and x € K¥. Then cho~!(z) = o(h(c™'(2))) = (o7} (2)) =
since o71(x) € K. We note cho~! fixes all z € K so cho~! € H. Thus o € Ng(H). (<) We will prove the
contrapositive. Assume o|gu ¢ Gal(KH /F). Then there is some y € K* for which o(y) = z ¢ K. Thus there is
some h € H such that h(z) # 2z so o= (h(c(y))) = 071 (h(2)) # y. As aresult, o(h(c~1(x))) ¢ H and o ¢ Ng(H).

The above result allows us to define the restriction homomorphism r : Ng(H) — Gal(K /F) by r(0) = o|xu.
The first argument shows that r is surjective. It is clear that H < ker(r) since h € H fixes all elements of K.
Take o € ker(r) so o fixes each x € K. Then the subgroup I < G generated by H U {0} has K > K.
This implies I ¢ H and, by construction, I > H so H = I. Thus 0 € H. We conclude that ker(f) = H and
Gal(KH /F) ~ Ng(H)/H by the First Isomorphism Theorem.

Fall 2017

Problem 1. Let G be a finite group, p a prime number, and S a Sylow p-subgroup of G. Let N = {g € G|gSg~! =
S}. Let X and Y be two subsets of Z(S) (the center of S) such that there is g € G with gXg~! = Y. Show that
there exists n € N such that nzn~! = grg~! for all z € X.

Let G act on a set X with g-2 =y for g€ G and z,y € X. We want to show that Stab(Y") = gStab(z)g~! < G.
Let h € Stab(y). Then g 'hg-2 =g th-y =g ! -y =2 so g thg € Stab(x). We have g~!Stab(y)g = Stab(z).
Next let k € Stab(x). Then gkg™' -y = gk -z = g-x = y and gStab(z)g~! < Stab(y). Since conjugation by an
element of a group is an invertible operation, Stab(y) = gStab(z)g~1.

We can define an N-action on S via conjugation. Define Stab(X) := (,.y Stab(z) € G. Since X,Y < Z(95),
we have S < Stab(X) and S < Stab(Y). Note that S is a Sylow p-subgroup of Stab(X) and Stab(Y"). By the result
above applied to each y € Y, we have Stab(Y) = gStab(X)g~!. Conjugation preserves the order of subgroups so
gSg~! < Stab(Y) is a Sylow p-subgroup of Stab(Y). By Sylow’s Second Theorem, the two Sylow p-subgroups S
and gSg~! are conjugate in Stab(Y"). Thus there exists an h € Stab(Y) such that h(gSg=*)h~ = S. We note that
hg € N. Additionally, (hg) -@ = h- (grg~') = grg~! since h € Stab(Y). Let n := hg € N and nan~! = grg~! for
all z € X.
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Problem 2. Let G be a finite group of order a power of a prime number p. Let ®(G) be the subgroup of G
generated by elements of the form g? for g € G and ghg=*h~! for g,h € G. Show that ®(G) is the intersection of
the maximal proper subgroups of G.

Let G be a p-group that acts on a finite set X. We will first show that |[X“| = |X| (mod p) where X¢ = {z €
X : |Orb(z)| = 1}. The orbits partition X so

X[ =[X%+ >, |Orb(z)].
reX,x¢ XC

By Orbit-Stabilizer, |Orb(z)| = [G : Stab(z)] = |G|/|Stab(x)| by |G| finite. For x ¢ X, we have |Orb(z)| =
|G|/|Stab(y)| > 1 so p will divide |G|/|Stab(y)| = |Orb(x)|. Therefore, | X| = |X%| modulo p.

Let |G| = p*. Let H < G be a maximal proper subgroup of G so |H| = p*~1. Let H act on G/H by left
multiplication. If aH € X*, then b(aH) = aH for all b € H. Thus aba™t € H and a € Ng(H). Similarly,
taking some a € Ng(H) gives aH € X . Therefore, X = [Ng(H) : H| and the above result implies [Ng(H) :
H] =[G : H] = 0 (mod p). We conclude [Ng(H) : H] = p and Ng(H) = G since |H| = p*~!. Now that H
is a normal subgroup of G, the set G/H is a group of order p. The only such group is the cyclic group Z/pZ so
G/H ~7Z/pZ. If g ¢ H for g € G, then the left cosets gH and H are not equal. Thus gH is a generator of G/H so
(¢gH)? = gPH = H. Further, G/H is abelian so the canonical projection p : G — G/H factors through 7 : G/[G, G]
for [G, G] the commutator subgroup. Thus ker(7r) = [G, G] < ker(p) = H and H contains all elements of the form
ghg=*h~! for g,h € H. Therefore, ®(G) is contained in the intersection of the maximal proper subgroups of G.

Now we will show that for each g ¢ ®(G), there is some maximal proper subgroup M of G such that g ¢ M. In
particular, g ¢ [G,G] so g[G, G] € G/[G, G] is a non-trivial element of an abelian group. Since G is finite, G/[G, G]
is a finite abelian group. Our classification of finitely generated Z-modules implies G/[G, G] ~ @5:1 z/ pf‘Z. Since
g ¢ ®(@G), it cannot be a product of a pth power of some h € G and an element of [G, G]. Thus the element g[G, G|
has to be a generator for one of the direct summands. By reordering the summands, assume g[G, G| generates the
first. Let S := {g;}_, be a set of elements g; € G such that g;[G,G] generates the ith direct summand. Let T' be
a set of generators for [G,G]. Then the set S U T U {¢g"} generates a subgroup M of G. By construction, g ¢ M
so M is proper. M is maximal in G since G would be generated by {g} v M and g? € M. We conclude that ®(G)
is the intersection of the maximal proper subgroups of G.

Problem 3. Let k be a field and A a finite-dimensional k-algebra. Denote by J(A) the Jacobson radical of A.
Let t : A — k be a morphism of k-vector spaces such that t(ab) = t(ba) for all a,b e A. Assume ker(t) contains no
non-zero left ideal. Let M be the set of elements a in A such that ¢(za) = 0 for all z € J(A). Show that M is the
largest semi-simple left A-submodule of A.

We want to show that M is the sum of all of the simple modules of A. Let N be a simple left A-module. Then
J(A)N = 0 by the definition of the Jacobson radical as the annihilator of all simple left A-modules. Since ¢t(zn) =0
for n € N and all z € J(A), we have N € M. Thus M contains the sum of all the simple left A-submodules of A.

Take a descending chain of left ideals of A. Each left ideal is a finite-dimensional k-vector space. Thus the
chain must terminate, and A is left Artinian as a left A-module. The same argument works for right ideals so A
is Artinian as a ring. Consequently, A/J(A) is an Artinian ring. Since J(A) is a two-sided ideal of A, we have
J(A)M is a left ideal contained in ker(t). We assume ker(t) contains no non-zero left ideal so J(A)M = 0. Thus M
has the structure of a left A/J(A)-module. Now A/J(A) is Artinian and has trivial Jacobson radical so A/J(A) is
a semisimple ring. We conclude that M is a semisimple left A/J(A)-module. In other words, M is the direct sum
of simple left A/J(A)-modules. These simple A/J(A)-modules are simple as A-modules so M is a semisimple left
A-module. Since M contains the sum of all simple left A-modules, M is the largest semisimple left A-submodule
of A.

Problem 4. Let R be a commutative Noetherian ring and A a finitely generated R-algebra (not necessarily
commutative). Let B be an R-subalgebra of the center Z(A). Assume A is a finitely generated B-module. Show
that B is a finitely generated R-algebra.

Let {x1,..., 2y} generate A as a C-algebra and {y1,...,yn} generated A as a B-module. Then z; = Z?zl bijy;

and y;y; = Y.r_, bijkyk for some b;;,b;;r € B. Let By be the R-algebra generated by the set {b;;,b;;x}. Since R
is Noetherian and By is finitely generated as an R-algebra, By is a Noetherian as a ring. Every element of C' is
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a polynomial in the z;, which we can write in terms of the y;. Then B < Z(A) and vy;y; = >.p_; bijryx allow us
to reduce this expression to a linear combination of the y; with coefficients in By. Thus A is a finitely generated
By-module, which implies A is a Noetherian Byp-module. Initially, B is an R-subalgebra of A and By < B so B has
the structure of a Bp-submodule of A. Thus B is finitely generated as a Byp-module. By is finitely generated as an
R-algebra so B is finitely generated as an R-algebra.

This proof is based on that of Proposition 7.8 in Atiyah MacDonald.

Problem 5. Let A be a ring and M an A-module that is a finite direct sum of simple A-modules. Let

f €Endz(M). Assume fog=go f for all g€ End(M). Consider a positive integer n.

(a) Show that the map f, : M™ — M" defined by f,(mi,...,my) = (f(m1),..., f(m,)) commutes with all
elements of End4(M™).

Note that Enda(M™) = Homx ((—D?:l M,®;_, M) ~ @ ._, Homa(M,M). Let g € Ends(M™) so we can

ij=1
identify g with the matrix (g;;) for 1 <4,j < n and g¢;; € Hom4 (M, M). Then

g(fn(mla s ’mn)) = g(f(ml)v x '7f(m"))

= <Z gin(f(m1)),..., Z gm(f(mn))>
= <Z f(gir(ma)), ...,
= fn (2 gil(m1)7 ceey

= fn(g(mlv e amn))

Therefore, f commutes with all elements of End 4 (M™).

~
=

NgE

1

.
I

-

K2

(b) Deduce that given any family (mq,...,m,) € M", there exists a € A such that (f(m1),...,f(my,)) =
(amy,...,amy,).

DEFINITELY DOESN’T FEEL RIGHT

Let M = (—szl L; for L; the distinct simple A-modules. Let {ej,...,e,} be the corresponding central idempo-
tents for e; € M. Then

i=1 ij=1 i=1

k k k k
Ends (M) = Homy (@ Li,@LZ) ~ @ Homa (L;, Lj) ~ @HomA(Li,Li)
i=1

since each L; is a simple A-module. Each L; is cyclic, generated by e;, so f € @®;_, Homa(L;, L;) is defined
by the image of the e;. We have f(e;) = a;e; for some a; € A since e; must map to an element of Ae;. Define
a:= Y, ae;, then f(z) =ax =Y | aje;x. We conclude that f,,(m1,...,my,) = (amq,...,amy,).

Problem 6. Let R be an integral domain, and let M be an R-module. Prove that M is R-torsion-free if and
only if the localization M, is R,-torsion-free for all prime ideals p of R.

We will show that m = 0 if and only if 5 = 0 in M, for all prime ideals p = R. If m = 0, the result is clear.
Assume m # 0 and we will show that there is some prime p = R for which § # 0. Since m # 0, the ideal
Ann(m) c R is proper. By a Zorn’s Lemma argument, Ann(m) is contained in some maximal and, thus, prime
ideal p = R. We have 7 = 0 in M, only when there is some s € S such that sm = 0. But s ¢ Ann(m) for all
se R\pso F #0e M,.

(=) We will prove the contrapositive. Assume 4 = 0 in M, for some r € R, s,t € S, and non-zero m € M.
Then there is some k € S such that (kr)m = 0 for kr € R which implies that M is not torsion-free.

(<) Let f: M — N be a left R-module homomorphism. If f is not injective, there is some non-zero x € ker(f).
Then £ is non-zero in M, for some p by above. Thus ker(f) = 0 if and only if (R\p) ™' ker(f) < M, for all prime
ideals p < R. Assume M, is R,-torsion-free for all prime ideals p — R. Define the left R-module homomorphism
b My, — M, as left multiplication by {. Since M, is torsion-free, ¢, is injective for each prime ideal p < R.
Therefore, ¢, : M — M given by left multiplication by r € R is injective for any r € R. We conclude that M is

torsion-free.

28



Problem 7.

(a) Show that there is at most one extension F(«a) of a field F such that a* € F, o ¢ F, and F(a) = F(a?).

We have that « is a root of f := x* — a* € F[z]. Similarly, a2 is a root of 22 — a* so [F[a?] : F] = 2. Assume
first that char = 2. Then z* — o* = z* + o* = (z + a)*. Since [F[a] : F] = [F[a?] : F] = 2, the minimal
polynomial of o must be (x + «)?, which implies a? € F, a contradiction.

Assume char(F) # 2. Then f’ = 42® # 0, which is relatively prime to f. Then f is separable and the roots
are {fa, fay} for ¥2 = —1. We have two cases for the minimal polynomial of «, denoted m, € F[z]. If
me = (¥ — a)(z + ), then o? € F, a contradiction. If m, = (z + a)(z + ay), then a?y € F. Note v € F
would imply o € F so v ¢ F. But a?(a?y) = a*y € F[a?] = Fla] so v € F[a]. We have the tower of fields
Fla]/F[y]/F with [F[a] : F] = 2. Since v ¢ F, we conclude F[a] = F[y]. Therefore, there is at most one field
extension like F'[«] since it would equal F[v].

(b) Find the isomorphism class of the Galois group of the splitting field of z* — a for a € Q with a ¢ +Q?2.
FINISH THIS

By Fall 2014 Problem 3 Case 4, we have G ~ Dy for a > 0. Additionally by Fall 2014 Problem 3 Case 5, we
have G ~ D, for a < 0 and a # —2y? for y € Q. Finally, we need to check the case when a = —2y2 for y € Q.
The roots of X* — a are {v/2y&}} for i e {1,3,5,7}.

Problem 8. Let F be a field, and let f, g € F[2]\{0} be relatively prime and not both constant. Show that F'(x)
has finite degree d = max(deg(f),deg(g)) over its subfield F' (5) (Hint: If the degree were less than d, show that

there exists a nonzero polynomial with coefficients in F[xz] of degree less than d having 5 as a root.)

Note that 5 is a root of the irreducible polynomial p = gy — f for p € (F[z])[y]. Since f and g are relatively

prime, p is primitive. The polynomial ¢ = %g(T) — f(T) € (F[z])[T] is degree d and has = as a root. Thus

[F(aj) P (5)] < d and F(x) is a finite extension of F' (5) Let m = a;T* + ap_T* 1+ - +ape F (5) [T]

be the minimal polynomial of x over F 5 . By clearing denominators, we may assume that each a; € F [g]
n n—1

Then m = b, (5) + bn_1 (5) + -+ by for b; € F[T]. After writing each b; as an element of F[z], M :=

buy™ + by_1y™ L+ 4 b is a polynomial in (F[z])[y] with % as a root. Thus p divides M in (F[x])[y]. Since p is

primitve, g divides b,, and f divides by. We have deg(b,) > deg(g) and deg(by) = deg(f) so deg(m) = d. Therefore,

[F(x) ' F (g)] = d.

Problem 9. Let R be a commutative ring, and let A, B, and C' be R-modules. Suppose that A is finitely
presented over R and C is flat over R. Show that

HOIHR(A, B ®R C) =~ HomR(A,B) ®R C.

Since A is finitely presented, there is an exact sequence R™ — R" - A — 0 with g: R® - A and h: R™ — A.
Apply the left exact functor Hompg(—, B) to obtain the exact sequence 0 — Hompg (4, B) — Hompg(R",B) —
Homp(R™, B) with morphisms — o g : Homp(A, B) — Hompg(R", B) and — o h : Homg(R"™, B) — Homg(R™, B).
We assume C' is flat so 0 > Hompg (A, B) ®r C — Hompg(R", B) ®g C — Hom 4(R™, B) ®g C' is exact. Similarly,
apply the functor Hompg(—, B®r C) to the original exact sequence. Define the morphism ¢4 : Homg(4, B)®rC —
Homp(A, B®gr C) by ¢(f ®c¢) = (a — f(a) ®c). Then ¢4 is an R-module homomorphism via ¢4(r - f ® ¢) =
da(f®(re)) = (a— f(a)® (re)) =r(a— f(a)®c). Let f € Homp(A, B) ®g C. Then

dre((fog)®1c) = (am (fg)(a)®c) = (pa(f))og

and a similar argument for the other square give the commutative diagram below. As R-modules, Homg(R", B) ~
[, Homg(R, B) ~ B" so Homg(R", B) ®r C ~ B" ® C ~ Homg(R", B®pg C) with ¢~ the isomorphism for
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all n > 1. By the Five Lemma, ¢4 is an isomorphism.
0
0

Problem 10. Let C be a category with finite products, and let C? be the category of pairs of objects of C
together with morphisms (A, A’) — (B, B’) of pairs consisting of pairs (A — B, A’ — B’) of morphisms in C. Let
F : C? — C be the direct product functor (that takes pairs of objects and morphisms to their products).

—— Hompg(A, B) ®r C ~2Z% Homp(R", B) ®r C ¥ Hom(R™, B) ®g C

0
J LﬁA l‘bR" Lzu RM
0

— Homp(A, B®r C) —2 Homp(R", B®r C) —2% Homp(R™, B®x C)

—

—

(a) Find a left adjoint to F.
Let C,D € Ob(C) and f € Hom¢(C, D). Define L : C — C? as L(C) := (C,C) and L(f) : L(C) — L(D)

as (f,f). Then L(lc) = (1¢,1¢) = 1p(c). Additionally, L(gf) = (9f,9f) = (9.9) o (f,f) = L(g)L(f) for a
morphism g € Home (D, E) and E € Ob(C). Thus L is a functor.

By the universal property of the direct product, there is a unique morphism h : C' — A[[ B for each pair of
morphisms (f,g) : (C,C) — (A, B) such that pry o h = f and prg o h = g. Define a natural transformation
® : Home:(L(—), —) — Homez(—, F'(—)) so that ®¢ 4,y : Home(L(C), (A, B)) — Homez(C, F(A, B)) gives
Pc a,B)(fr9) == h. Let k € Home(C’,C) for C' € Ob(C). We want to show the diagram below commutes.
Let (f,9) € Home(L(C),(A, B)) = Home((C,C), (A, B)). We have ®¢ (4 p)(f,9) o k is a morphism from
C' to A]] B for which pry o (®c (a,p)(f,9) 0k) = fok and prg o (®c,a,)(f,9) 0 k) = gok. We have
®era,By(fok,gok) is the unique morphism C” — A]] B that commutes with fok and gok under projection
morphisms. Thus the universal property of the direct product implies ®¢ (4, 5)(f,9) 0k = ®c,a,8)(f,9) ok
and the diagram commutes. By a similar argument, we obtain naturality in (A, B). We conclude that L is a
left adjoint to F'.

Pc (a,B)

Home (L(C), (A, B)) ——= Hom¢z(C, F(A, B))

l(fok,fok) lfok

QcraB
Home (L(C"), (A, B)) 4 Home: (C’, F(A, B))

(b) For C the category of abelian groups, determine whether or not F' has a right adjoint.
Since abelian groups is an abelian category, finite products and coproducts are isomorphic. Define R : C — C?
as R(C) := (C,C) and R(f) := (f, f) for f € Hom¢(C, D). Then R(1¢) = (1c,1c) = 1r(c). Additionally,
R(gf) = (gf,9f) = (g,9) o (f, f) = R(g)R(f) for a morphism g € Hom¢(D, E) and E € Ob(C). Thus R is a
functor.

By the universal property of the coproduct, there is a unique morphism h : A[[ B — C for each pair (f,g) :
(A,B) — (C,C) such that hoig = f and hoip = g. Define the natural transformation ® : Homez (—, R(—)) —
Home (F(—),—) as ®(a,py,c(f,9) := h. Asin (a), the universal property of the coproduct implies naturality in
(A, B) and C. We conclude that R is a right adjoint to F'.

Spring 2018

Problem 1. Let a € C. Suppose that [Q(«) : Q] is finite and prime to n! for an integer n > 1. Show that
Q(a") = Q@)

The field Q(a™) is a subfield of Q(«). In fact, o is a root of f = z™ — o™ over Q(«™). Thus the minimal
polynomial of a over Q(a™), mq € Q(a™)[z], must divide f. As a result, deg(my) < n and deg(my)|(n!). Since

Q) : Q] = [Qe) : Q(a™)][Q(a™) : Q] = deg(m)[Q(a™) : Q] is relatively prime to n!, we conclude that
deg(my) = 1. Therefore, Q(a™) = Q(«).
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Problem 2. Let ¢° =1 and ¢3 # 1 with ¢ € C.

(a) Show that /3 ¢ Q(C).

For the sake of contradiction, assume that /3 € Q(¢). Note that ¢ is a primitive ninth root of unity. Then
Q(¢)/Q is a Galois extension with Gal(Q(¢)/Q) ~ (Z/9Z)*. In particular, Gal(Q(¢)/Q) is abelian. The
polynomial f = 23 — 3 is irreducible over Q by Eisenstein’s criterion with roots {\3/3(3"}&0 for ¥/3 € R. Thus
Q(¥/3) = R is not the splitting field of f, the minimal polynomial of /3. Since Q(¢)/Q is abelian, Q(+/3)/Q
is a normal extension, a contradiction. We conclude that /3 ¢ Q(¢).

(b) If a® = 3, show that « is not a cube in Q((, ).

Assume that 32 = o and B € Q((,a) for the sake of contradiction. Then Q((, ) is the splitting field of
mg = 2 — 3 over Q. By Eisenstein’s Criterion, mg is irreducible in Q[z] so [Q(8) : Q] = 9. Since Q is
perfect, Q(¢, a)/Q is a Galois extension. We have the tower of fields shown below. We know that Q(a) n Q(()
is a subfield of a degree 3 extension Q(«)/Q. Thus Q(a) N Q(¢) = Q(a) or Q(o) " Q(¢) = Q. By (a),
Q(a) nQ(¢) = Q and Q(¢)/Q Galois implies Q(a) and Q(¢) are linearly disjoint. Thus the degree of their
compositum over Q is [Q(a, ¢) : Q] = [Q() : Q][Q(¢) : Q] = 18.

Since Q(a) and Q(¢) are linearly disjoint and Q(¢)/Q is Galois, we know that Q(a, ¢)/Q(«) is Galois. Addition-
ally, the restriction map from Gal(Q(«, ¢)/Q(a)) to Gal(Q(¢)/Q) is an isomorphism. As before, Gal(Q(¢)/Q)
is abelian so Q(3)/Q(«) must be a Galois extension. The polynomial g = 2® — « has no roots in Q(«) and, as a
degree 3 polynomial, is irreducible over Q(«). With g the minimal polynomial of 8 over Q(«) and Q(8)/Q(«)
Galois, g must split in Q(3). Thus the roots {3¢3*}?2_, of g are elements of Q(3). Proceeding, 5%(3¢?) € Q(B)
so Q(¢?) is a subfield of Q(B). However, [Q(8) : Q] = 9 and [Q(¢?) : Q] = ¢(3) = 2 for  Euler’s totient
function, a contradiction. Therefore, a does not have a third root in Q(¢, «).

Q¢ @)

7

Q(5)
3 Q(¢)
Q(e)
6
?)

S Q¢
2
Q

Problem 3. Let Z" (n > 1) be made of column vectors with integer coefficients. Prove that for every non-zero
left ideal I of M,,(Z), IZ™ (the subgroup generated by products av with a € I and v € Z™) has finite index in Z".

We will classify the non-zero left ideals I < M,,(Z). Since I is non-zero, there is an element A € I with a non-zero
column. Without loss of generality, assume the first column is non-trivial. By left multiplication with elementary
matrices, we can perform row operations on I. Since Z is a PID, Bezout’s identity allows us to obtain the greatest
common divisor of the entries in the first column of A. By row switches, put the greatest common divisor in the
first row. Repeat this process for each matrix B € I with at least one non-zero entry in the first column. Then
Bezout’s identity allows us to obtain a matrix in I with the greatest common divisor d; € Z of all non-zero entries
of the first column of elements of I. There cannot be a matrix in I whose first column entries are not divisible
by dy by construction. Thus the first columns of elements of I are of the form d;Z" for some d; € Z. Once we
have the matrix with d; in the first column, we can produce any matrix with multiples of d; in the first column.
Repeat this process for each column. As a result, the left ideals of M, (Z) are all matrices where elements of the
ith column are multiples of some d; € Z.

Let Dy € I be the matrix with d; in the first row and zero in each other row for the columns 1 < i < n. By
choosing v € Z™ based on Bezout’s identity, we have Djv is the vector with d := ged(dy, ..., d,) in the first row
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and zeros in rows 2 < j < n. The same argument allows us to produce any multiple of d in each row. In fact,
every element of av for € I must be divisible by d since the entries of « are all divisible by d. We conclude that
17" = (dZ)™ which has finite index in Z".

Problem 4. Let p be a prime number, and let D be a central simple division algebra of dimension p? over a field
k. Pick a € D not in the center and write K for the subfield of D generated by a. Prove that D ®; K ~ M, (K)
(the p x p matrix algebra with entries in K).

We will first show that K ®; K has zero divisors. Let m,, € k[z] be the minimal polynomial of a over k. Then
K Qi K = k[z]/(ma) ®r K = K[z]/(m). Since K contains a root of mg, me = [[;~; ¢; for some irreducible
polynomials g; € K[z]. Therefore, K[z]/(ma) = K[z]/([1/2,9:) ~ [1i~, K[z]/(g:) by the Chinese Remainder
Theorem. It is clear that [}, K[z]/(g;) has zero divisors for m > 2.

Now K ® K is a subring of D®; K. Since K ®; K has zero divisors, we conclude that D ®y K is not a division
ring. Note that Z(D®y K) = Z(D)®; Z(K) = k®; K = K. The tensor product of a central simple algebra and a
simple algebra is simple. Therefore, D ®; K is a central simple K-algebra. By Artin-Wedderburn, D ®;, K is the
product of matrix algebras over division rings. However, dimg (D ®x K) = dimy (D) = p? so either D ®, K is a
division algebra or D ®; K ~ M, (K). By above, we have D ®; K ~ M,(K).

Problem 5. Let C be a category. A morphism f: A — B in C is called an epimorphism if for any two morphisms
g,h: B —> X inC, gof = hofimplies g = h. Let ALG be the category of Z-algebras, and let MOD be the
category of Z-modules.

(a) Prove that in MOD, f: M — N is an epimorphism if and only if f is a surjection.

(=) We will prove the contrapositive. Assume that f : M — N is not surjective. Then im(f) < N is a proper
Z-submodule. We define 7 : N — N/im(f) the canonical projection and g : N — N/im(f) the zero Z-module
homomorphism. Then gf and 7 f are zero maps so gf = wf. Let n € N such that n ¢ im(f). Then g # 7 since
g(n) = 0 +4im(f) while g(n) = n +im(f) # 0+ im(f). We conclude that f is not an epimorphism

(«) Let f : M — N be surjective. Let g,h : N — P be Z-module homomorphisms such that gf = hf. Let

n € N, then n = f(m) for some m € M. As a result, g(n) = g(f(m)) = h(f(m)) = h(n) so g = h. We conclude
that f is right-cancellative and f is an epimorphism.

(b) In ALG, does the equivalence of epimorphism and surjection hold? If yes, prove the equivalence, and if no,
give a counterexample (as simple as possible).

Let ¢ : Z — Q be the canonical inclusion morphism of Z-algebras. By Fall 2015 Problem 1, this morphism is a
non-surjective epimorphism.

Problem 6. Let G be a group with a normal subgroup N = (y, z) isomorphic to (Z/2Z)?. Suppose that G
has a subgroup @ = () isomorphic to the cyclic group Z/3Z such that the composition Q < G — G/N is an
isomorphism. Finally, suppose that xyz~! = z and zzz~' = yz. Compute the character table of G.

We will find the conjugacy classes of G. Since xy = zx and zz = yzx, we can write every element of G as
y'2lxk for 0 < 4,5 < 1 and 0 < i < 2. The relations allow reduction to the form y’z7z* without changing the
exponent. As a result, conjugation by any element will preserve the x exponent of any element. We will show that
the conjugacy classes are based on the exponent of z. The relations of G produce the conjugacy class {y, z,yz}. In
the equations below, we start with z.

yoy ! = yry = 2z
y(za)y™
2(zx)27! = 22 = yzz

= y2lr = yx

A similar argument starting with 22 gives the conjugacy class breakdown below.

{6}7 {y’ Z? yz}7 {'r) y'r7 Zx? yzx}’ {J;Z, ny’ Zz2’ yzx2}

Note that |G| = 12. Thus the sum of 1 and three squares needs to be |G| = 12. We cannot have an irreducible
representations of dimension higher than three. The only option is 12 = 12 + 12 + 12 + 32 so there should be three
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isomorphism classes of one-dimensional representations and one isomorphism class of 3-dimensional irreducible
representations.

We will first classify the characters of the one-dimensional irreducible representations. Let p; : G — C* for
1 < ¢ < 3 be the one-dimensional representations. Since y and z are order 2 elements of GG, they must map to
+1 in C*. Similarly, 2 will be sent to a third root of unity. The group C* is abelian so p(z) = p(zyz~!) =
p(x)p(y)p(x)~t = p(y) and p(yz) = p(zzz~?t) = p(z)p(2)p(x) "t = p(z). Let £ be a primitive third root of unity.
We find the final row of the character table by column orthogonality and the identity Z?Zl £ =0.

1| vy o

Xtrivial 1 1 1 1
Xp1 1 1 £ 52
Xp2 1 1 52 £
Xp 3| -1101]0

Problem 7. Let B be a commutative Noetherian ring, and let A be a Noetherian subring of B. Let I be the
nilradical of B. If B/I is finitely generated as an A-module, show that B is finitely generated as an A-module.

WE NEVER FIGURED THIS ONE OUT

Problem 8. Let F' be a field that contains the real numbers R as a subfield. Show that the tensor product
F ®g C is either a field or isomorphic to the product of two copies of F', F' x F.

We note that C ~ R[z]/(2? +1) so FrC ~ FQrR[z]/(z% +1) ~ F[z]/(z*+1). If 2% + 1 is irreducible in F[z],
then F[x]/(2?+ 1) is a field. If 22 + 1 has a root in F, then F[z]/(z? +1) ~ F[z]/(x — a) x F[z]/(x — B) ~ F x F
by the Chinese Remainder Theorem. Therefore, F ®g C is either a field or isomorphic to F' x F.

Problem 9. Show that there is no simple group of order 616.

As in Spring 2015 Problem 8, conjugation of a Sylow p-subgroup by an element g € G is another Sylow p-subgroup.
If there is only one Sylow p-subgroup, then the Sylow p-subgroup is normal in G.

Let G be a group with order 616 = 23-7-11. By Sylow’s Third Theorem, the number of Sylow 11-subgroups m; 1
divides 56 and is congruent to 1 modulo 11. Thus we could have m11 =1 or my1 = 56. As we will show, m11 =1
implies the Sylow 11-subgroup is normal in G. Thus, assume m;1 = 56. Next, the number of Sylow 7-subgroups
my divides 88 and is congruent to 1 modulo 7. We could have m; = 1,8,22,88. The argument will work for larger
choices for my; so assume my; = 8. The intersection of a Sylow 7-subgroup and Sylow 11-subgroup must be trivial
by an order consideration. Thus the Sylow subgroups chosen account for (11 + 55(10)) + (8(6)) = 609 elements.
A Sylow 2-subgroup of G will have order 8. As a result, there can be at most one Sylow 2-subgroup. Sylow’s
Theorems imply the existence of a Sylow 2-subgroup so m; = 1 for some j € {2,7,11}. By the above argument, we
conclude that G has a normal subgroup and G is not simple.

Problem 10. By one definition, a Dedekind domain is a commutative Noetherian integral domain R, integrally
closed in its fraction field, such that R is not a field and every nonzero prime ideal in R is maximal. Let R be a
Dedekind domain, and let S be a multiplicatively closed subset of R. Show that the localization R[S™!] is either
the zero ring, a field, or a Dedekind domain.

If 0 € S, then R[S™1] is the zero ring. If S = R\{0}, then R[S~!] is a field. Assume 0 ¢ S and S # S\{0}. It is
clear that R[S™!] is a commutative integral domain. By Fall 2015 Problem 2(a), there is a bijective correspondence
between the ideals of p = R that intersect trivially with S and the ideals of S™'p < R[S™!]. Let

S_l.[l C S_l.[g ...

be an increasing chain of ideals in R[S™!]. Then I; < I — ... is an increasing chain of ideals in R for I; := {r €
R:7e S~!I}. Since R is Noetherian, the chain terminates so I}, = I; for all i € N. As aresult S™'I = S~ 114,
for all i € N and the chain in R[S™!] terminates. We conclude that R[S~!] is Noetherian.
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By Spring 2016 Problem 4(b), we have a correspondence between prime ideals p = R that do not intersect S
and prime ideals S™'p = R[S™!]. Take a chain of prime ideals

0c S lpcStpc...

which corresponds to a chain of prime ideals 0 < p; < py < ... of R. Each non-zero prime ideal of R is maximal
so p; = py for all i € N. Thus S~!p; = S~'p; for all i € N. We conclude that each non-zero prime ideal of R[S™!]
is maximal.

We will show that R[S™!] is integrally closed in its fraction field. Let K be the fraction field of R and R[S™]
is a subring of K. Let £ € K be integral over R[S™']. If £ € R, then £ € R[S™'] so assume £ ¢ R. There is a
monic polynomial f = z™ + a,—12" "' + -+ + ag € R[S™'][] such that f(%) = 0. Each a; = {* for r; € R and

s; € 8. Define t := H;:ll s; €S so
T\ Tp_1 T\l r
0:<7) + "1(7> +...+£
S Sp—1 \S S0

n n—1
:t”(f> +t"r7‘7_1(f) +...+t"7;0

S Spn—1 \S So
r\" trp_y (tr\" t"r
S Sn—1 S S0
ote a#‘_ie e choice of t € S. us <= is a root of a monic polynomial in R|z|. Since R is integra
Not thttSl R by the ch fteS. Th t; t of poly lin R S R tegrally

closed, £ € R. Then £ = ’% € R[S7!] for some 7’ € R. We conclude that R[S™!] is integrally closed in K. As a

result, R[S™!] is a Dedekind domain.

Fall 2018

Problem 1. Let Qg = {£1, i, +j, £k} be the quaternion group of order 8.

(a) Show that every non-trivial subgroup of Qg contains —1.

Let H < Qg be a non-trivial subgroup. If —1 € H, then we are done. Otherwise, one of {+i,+j, £k} is in H.
But (£i)? = (£5)? = (+£k)? = —1 € H. Therefore, each non-trivial subgroup of Qg contains —1.

(b) Show that Qg does not embed in the symmetric group S7 (as a subgroup).

Let ¢ : Qs — S7 be an injective group homomorphism. This defines a group action of Qg on the set X =
{z1,. .27} via g - @ = 24(4)) for g € Qs. The orbits of the action partition X so [X| = > _ |Orb(z)[. By
Orbit-Stabilizer, |Orb(z)| = [@s : Stab(z)] = |Qs|/|Stab(z)| by |Qs| finite. Note |[Stab(z)| # 1 for all x € X
since |@Qs|/|Stab(z)| = 8 > 7, a contradiction. Thus Stab(x) is a non-trivial subgroup of Qg for all x € X. By
(a), —1 € Stab(z) for all z € X so ¢(—1) = e. This contradicts the injectivity of ¢. Therefore, there is no
embedding of Qg into S7.

Problem 2. Let G be a finitely generated group having a subgroup of finite index n > 1. Show that G has
finitely many subgroups of index n and has a proper characteristic subgroup (i.e. preserved by all automorphisms)
of finite index.

There are finite groups for which the statement does not hold. Conjugation by an element of a group is an
automorphism of the group (called an inner automorphism). Thus every characteristic subgroup of a group is
normal. The finite group As is simple and thus contains no non-trivial characteristic subgroups. Assume G is
infinite.

Let H < G be a subgroup of index n. Then G acts on the set of left cosets G/H = {¢1H, g2H, . .., g, H} via left
multiplication. This defines a group homomorphism ¢ : G — S, such that g-g;H = g4(4)(i)H. Note that g- H = H
if and only if g € H. Thus Stab(H) = H implying a one-to-one correspondence between the index n subgroups of
G and homomorphisms ¢ : G — S,,. Let G be finitely generated by {x1,...,x}, say. Then the image of each z;
in .S, determine uniquely each homomorphism ¢ : G — S,,. There are n! choices for the image of each x; so there
are finitely many homomorphisms ¢ : G — S,,. We conclude there are finitely many index n subgroups of G.
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Let 0 € Aut(G) and H < G be the index n subgroup in the problem statement. Now o(H) is a subgroup of
G since o is an automorphism. Note that the cosets are o(G)/o(H) = G/o(H) = {o(g1)o(H),...,0(gn)o(H)} so
o(H) is an index n subgroup of G. Define N := ﬂaEAut(G) o(H). There are finitely many index n subgroups of G so
N = ﬂ:’;l H; for some index n subgroups H; € G. We want to show that IV is a proper characteristic subgroup of
finite index in G. It is clear that IV is a subgroup that is fixed under all automorphisms of G. We can define a group
action of G on [[!, G/H; by component-wise left multiplication. Then Stab(Hi,Ho,...,Hy,) = (i, H; = N
since gH; = H; if and only if g € H;. By Orbit-Stabilizer,

[G: N] =[G : Stab(Hy, Ha, ..., Hy)] = |Otb(Hy, Ha, ..., Hyy)| < |Orb(Hy)| -+ |Orb(H,)| = [G 2 Hy] -+ [G : Hyl-

Since each H; is of finite index, [G : N] is finite. Therefore, N is a characteristic subgroup of G of finite index.
Note that N cannot be all of G since it is a subgroup of a H and NN is not trivial since it is a finite index subgroup
of an infinite group.

Problem 3. Let K/F be a finite extension of fields. Suppose that there exist finitely many intermediate fields
K/E/F. Show that K = F(z) for some z € K.

If F is a finite field, then K is also a finite field of the same characteristic. We know K* is cyclic so K = F(x)
for some x € K.

Assume F' is not finite. Let «, § € K. By assumption, there are only a finite number of distinct fields F'(« + ¢f3)
for all ¢ € F. Since F is infinite, there are ¢1,co € F with ¢; # ¢o such that E := F(a + ¢18) = F(a + c2f). Thus
(¢c1 —c2)B € E and B € E. Further, a € E and the field F(«, 8) can be generated by one element. By an inductive
argument, for F = F(ay,...,q,) there are corresponding cy, ..., ¢, such that F = F(a; + coas + -+ + cpay,).
Since K/F is a finite field extension, K = F(aq,...,a,) so K = F(x) for some z € K.

This proof is based on that of the Primitive Element Theorem found in Lang Section 5.4.

Problem 4. Let K be a subfield of the real numbers and f an irreducible degree 4 polynomial over K. Suppose
that f has exactly two real roots. Show that the Galois group of f is either S4 or of order 8.

Note that char(K) = 0 so each finite field extension is separable. Let 7, s € R be the two distinct real roots of f.
Let o € C be a complex root of f so @ is the final root of f. Since f is irreducible, [K[r] : K] = 4. Case 1: Assume
s€ K[r]. Then f = (x —r)(x — s)h for h € (F[r])[z] and deg(h) = 2. Note that K[r] < R but o ¢ R. Thus the
quadratic h is irreducible over K[r]. We conclude [K|[r,«a] : K] = [K[r,«] : K[r]][K][r] : K] = 8 where K[r,a] is
the splitting field of f over K. Then K[r,a]/K is Galois and |Gal(f)| = 8.

Case 2: Assume s ¢ K[r]. Then f = (x —r)g with g € (K[r])[z] and deg(g) = 3. Since K[r] c R and s ¢ K|[r],
the cubic g is irreducible over K[r]. Then [K|[r,s] : K] = 12 and f = (x — r)(z — s)h for h € (K[r, s])[z] and
deg(h) = 2. Since K|[r, s] c R, the quadratic h will be irreducible over K|[r,s]. We have K|[r,s,«] is the splitting
field of f over K so K|r,s,a]/K is Galois. Additionally, [K[r,s,a] : K] = |Gal(K|[r, s,a]/K)| = 24. The Galois
group defines a group action on the set of four roots of f. Therefore, we have an injective group homomorphism
¢ : Gal(K|r,s,a]/K) — Sy. By an order argument, ¢ is surjective and Gal(K|[r, s, a]/K) ~ Sy.

Problem 5. Let R be a commutative ring. Show the following:

(a) Let S be a non-empty saturated multiplicative set in R, i.e. if a,b € R, then ab € S if and only if a,b € S. Show
that R\S is a union of prime ideals.

Let a € R be a non-unit. Define the set € of all prime ideals p = R such that a € p. Note that €2 is non-empty
since a is contained in some maximal ideal of R. Take a totally ordered subset, {p;}ics, of decreasing elements
of Q. We want to show that q :=("),.; p; is an element of . Since a € p; for all i € I, a € q so q is non-empty.
Let bc e q for b,c € R. Then bce p; for all ¢ € I. If b,c € p; for all i € I, then we are done. Thus assume c ¢ p;
for some j € I. Then c ¢ p; for all p; < p;. Thus b € p; for all p; < p;. Since the subset is totally ordered, b € p;
for all i € I and b € q. By Zorn’s Lemma, there exists a minimal element p € 2 by inclusion.

Note that R* < S since 1 € S. Let a € R\S, and let p, be a minimal prime ideal containing a. Assume
po NS # . Then S~'p, = ST'R is not a prime ideal of S~'R. By the prime ideal correspondence and the
minimality of p,, { is not contained in a prime ideal of S™IR so 7 is a unit of S~1R. Then there is some
L € S7'R such that Z% = 1. For k € S, k(ra) = (kr)a = s € S. Since S is saturated, a € S, a contradiction.
Therefore, p, NS = & and R\S ¢ UaeR\S pa. By construction, R\S > UaeR\S po and R\S is a union of prime

ideals.
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(b)

If R is a domain, show that R is a UFD if and only if every non-zero prime ideal in R contains a non-zero
principal prime ideal.

(=) Let p c R be a prime ideal in a UFD R. Then for a € p, we have a factorization of a into irreducible and,
thus, prime elements, a = [}, pri. Since [T, € p and p is prime, p; € p for some 1 < i < n. Thus (p;) < p.

(<) Suppose that every non-zero prime ideal in R contains a non-zero principal prime ideal. Let S be the set
of all finite products of prime elements in R. It is clear that S is mulitplicatively closed and 0 ¢ S. Further,
units in R are empty products of primes so R* < S. We will show that S is saturated. If a,b € S, then abe S
by mulitplying the two factorizations. Let a,b € R such that ab e S. If both a and b are units, we are done so
let @ be a non-unit. Then ab = []!"_; p; for prime elements p; € R. If n = 1, we have ab = p; so either a or b
is a unit by the irreducibility of primes. By assumption b is a unit and a,b € S. Assume the statement is true
for all n < m. Take ab = H:il p;. Each p; divides either a or b. First, assume some p; divides b. Then there
is some ¢ € R such that b = p;c. By renumbering the primes, ac = ]_[7:11 pi. The inductive hypothesis implies
a,ce€ S and b = p;ce S. Next, if no p; divides b, we have ([ [/, p;) & = a for some z € R. Then zb = 1 and
be R* c S. Similarly,  is a unit so a € S. We conclude that S is saturated.

Let a € R be a non-zero non-unit. Either (a)nS # Jor (a)nS = &. If (a) n S # &, then there is some b e R
such that ab e S. By above, a € S so a is a product of prime elements of R. If (a) n S = ¢, then (a) € R\S
so (a) < p for some prime ideal p = R by part (a). There is a principal prime ideal (p) < p, but (p) € R\S
contradicts our choice of S. Therefore, every non-zero non-unit a € R has a factorization into a finite product
of prime and, thus, irreducible elements. Since an irreducible element will be a product of prime elements, it
must be a product of one prime element. Irreducible elements of R are prime so R is a UFD.

Problem 6. Let A be an integrally closed Noetherian domain with quotient field F and K /F be a finite separable
field extension.

(a)

If {1,...,2,} is a basis for K as an F-vector space, show that there exists {y1,...,y,} in K such that
Trg/p(ziy;) = 0;5 for all i, j.

Since K/F is a separable field extension, trace defines a non-degenerate bilinear form on K. Thus there exists
a basis {y1,...,yn} for K as an F-vector space such that Trg,p(w;y;) = d;; for all 4, 5.

If B is the integral closure of A in K, show that B is a finitely generated A-module.

Each x; € L is algebraic over K. Thus z; satisfies an equation a,z] + ar,lel + - 4+agp =0 for q; € A.

Multiply by a7~! so that a,x; is a root of a monic polynomial with coefficients in A. Since B is the integral
closure of A in K, we have a,x; € B. Let {uy,...,u,} be a basis for K as an F-vector space with u; € B for
1<i<n.

By (a), there is a dual basis {v1,...,v,} for K as an F-vector space such that Trg p(z;y;) = 0;;. Let € B,
then z = Z;”Zl zjv; for x; € K. Since u; € B, we have zu; € B. Now Trg,p(2u;) appears as a multiple of a
coefficient in the minimal polynomial of zu; so Trg/p(zu;) € A. Thus

n n n
Trg/p(zu;) = Z Trg/p(zjuivy) = Z v Tr/p(usvy) = Z xj0i; = x; € A.

Jj=1 j=1 j=1
We conclude that B < Z;’L:lAvj‘ WHY DOES THIS GIVE FINITELY GENERATED AS AN
A-MODULE. THE Vj MIGHT NOT BE IN B
This is the proof of Proposition 5.17 in Atiyah-MacDonald.

Problem 7. Let F': C — D be a functor with a right adjoint G. Show that F' is fully faithful if and only if the
unit of the adjunction 7 : Id¢ — GF is an isomorphism.

Let € : GF' — 1p be the counit of the adjunction. (=) Assume F is fully faithful. We will show that ny : Y —
GF(Y) is an isomorphism. Let f,g : X — Y be morphisms in C such that 7y o f = ny o g. By the adjunction,
Home(X,GF(Y)) ~ Homp(F(X),F(Y)) so ny o f and 7y o g map to the same morphism h : F(X) — F(Y).
Since F' is fully faithful, Fix y : Home(X,Y) — Homp (F(X), F(Y)). Thus f = g and ny is left cancellative. Since
F is full, we have h : GF(X) — X such that F(h) = ep(x) for each X € Ob(C). Then epx)o F(nx oh) =
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(npx)yo F(nx))o F(h) = F(h) = ep(x) = ep(x) © F(1x) for all X € Ob(C). Note that F is faithful so nx oh = 1x
and nx is right cancellative. We conclude 7 is an isomorphism.

(<) Assume 7 is an isomorphism. Let f € Home(X,Y). Since ny is an isomorphism, 7y o — is a natural
isomorphism Home (X, Y) ~ Home (X, GF(Y)). Via the adjunction, ep(yyoF(nyof) = epyyoF(ny)oF (f) = F(f).
As a result, Home (X,Y) ~ Home (X, GF(Y)) ~ Homp (F(X), F(Y)) via Fxy and F is fully faithful.

X F(X) F(f)
lf xyff lF(nm
Y - GR(Y) FY) 2" pary) 5% Ry

Problem 8. Give an example of a diagram of commutative rings whose colimit in the category of commutative
rings is different from its colimit in the larger category of rings (and ring homomorphisms).

We will show that the coproduct of two commutative rings is the tensor product over Z. Let A, B,C be
commutative rings with ring homomorphisms f: A — C and g : B — C. We need h(is(a)) = h(a®1) = f(a) and
h(ig(b)) = h(1®b) = g(b) for a € A and b € B. Extend h to a commutative ring morphism so h(a ® b) = f(a)g(b)
for a®b e A®z B. Thus h is the unique commutative ring morphism that causes the diagram to commute.

We will now show that the tensor product over Z is not the coproduct in the category of rings. Let A = B =
C = M>(Q) and take f = g = idps, (). Then h : M3(Q) ®z M2(Q) — M2(Q) can be defined as h(a ® b) = ab or
h(a ®b) = ba. These two ring morphisms are not equal since M3(Q) is not commutative. Thus M>(Q) ®z M2(Q)
does not satisfy the universal property of the coproduct.

Problem 9. Let f : M — N and g : N — M be two R-linear homomorphisms of R-modules such that idy; — gf
is invertible. Show that idy — fg is invertible as well and give a formula for its inverse. [Hint: You may use Analysis
to make a guess.]

Sinceidpr—gf : M — M is invertible, there is some R-module homomorphism ¢ : M — M such that c(idp—gf) =
idy = (idpy — gf)e. Note that cgf = ¢ —idy and gfec = ¢ — idy;. We claim the R-module homomorphism
idy + fcg: N — N is the inverse of idy — fg: N — N.

(idny + feg)(idy — fg) = idy — fg + feg — f(cgf)g
=idy — fg+ feg — f(c—idm)g
=idy — fg+ feg— feg+ fg

(idy — fg)(idy + feg) = idn + feg — fg— f(gfc)g

idy + feg — fg— f(e—idm)g

=idy + feg—fg—feg+yg
=idy.

Problem 10. Consider the real algebra A = R[z,y] = R[X,Y]/(X? + Y? — 1) where x and y are the classes of
X and Y respectively. Let M = A(1 + x) + Ay be the ideal generated by 1 + x and y. (This is the Mobius band.)

(a) Show that there is an A-linear isomorphism A? — M @ M mapping the canonical basis to (1 + z,y) and
(—y,1 +x).
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Let f: A> > M @ M be the A-linear homomorphism defined by f(1,0) = (1 + z,y) and f(0,1) = (—y, 1 + ).
We will show that f is injective. The ideal (X2 + Y2 — 1) < R[X,Y] is a prime ideal since X? + Y2 — 1 is
irreducible and R[X,Y] is a UFD. Thus A is an integral domain, and we can embed A into its quotient field
F. Let (a,b) € ker(f) for a,b e A. Then a(l +z) —by = 0 and ay + b(1 + ) = 0 as elements of A. We need

2
a = % € F from the first equation and, substituting into the second equation, 11717 +b(1 + x) = 0. Note

by? + b(1 + )2 = by? + ba? + 2bx + b = 2b(x + 1) via the relation of A so b = 0. Next, a = 0 and f is injective.
We will show that f is surjective. Note

fA=2,0)=(1+2)(1—2),y(l —2)) = (1 2%yl —2) = (*,y(1 - 2))
F0,9) = (=y*,y(1 +2))
implies f(1—z,0)+f(0,y) = (0,2y). Then (0, y) is contained in the image of f. Similarly, f(0,1—z)+f(—y,0) =
(—2y,0) so (y,0) is contained in the image of f. Continuing,
f(A+2,0) =1+ 2z + 22, y(1 + ))
F0,-y) = (¥*, —y(1 +2)) = (1 -2, —y(1 + 2))
and f(1+z,0)+ f(0,—y) = (2 + 22,0). Similarly, f(0,1+ )+ f(y,0) = (0,2 +2z) so (1 +z,0) and (0,1 + x)
are contained in the image of f. Since M is generated by {1 + z,y} as an A-module, f is surjective.
(b) Show that there is an A-linear isomorphism A — M ®4 M mapping 1 to (1 +z)® (1 +2)) + (y®y).
FIGURE OUT Injectivity

Let f: A —> M®y M be the A-linear homomorphism defined by f(1) = (1+2)®(1+z)) + (y®y). A general
element of M ®4 M is of the form (p1(1 + ) + q13) ® (p2(1 + ) + q2y) = (p1(1 + 2)) ® (p2(1 + ) + (p1()).
Thus (1+2)®(1+2), y®y, (1 +2)®y, and y® (1 + x) generate M ®4 M as an A-module. Note that

F@)=y(1+2)@0+2)+ (y®y) = y(1+2)@(1+2)+y®y’ =y (1 +2)* +y® (1 —2?)
=yR(1+22+2*) +y® (1 -2 =y® 2+ 22)

f@)=y(1+2) @0 +2)+ (y®y) =1+2)@u(1+2)+y*Qy=(1+2)°Qy+(1-2°)®y
=(1+22+2)Qu+(1-2H)Qy=(2+22)®y

so y® (1 + ) and (1 + 2) ® y are in the image of f. Similarly,

fl=2)=((1-2)(1+2)@1+2)+y@(1-2)y =y’ @1 +2)+y®(1—-2z)y
=y [y +ry) +y®(y—y) = y® (2y)

implies y ® y and, consequently, f(1) —y®y = (1 +z)® (1 + x) are contained in image of f. We conclude that
f is surjective.

Problem 11. Let G be a finite group, w be a primitive 3rd root of 1 in C and suppose that the complex character
table of G contains the row

1 w w? 1

Determine the whole complex character table of G, the order of the group and the order of its conjugacy classes.

Note that the number of columns, four, determines the number of conjugacy classes of G and the number of
isomorphism classes of irreducible representations. The first row of the character table corresponds to the trivial
representation. Let p : G — C be the one-dimensional representation described in the row given. Then we can
construct a one-dimensional representation p® p : G x G - C®¢ C ~ C. By including G in G x G via the
diagonal homomorphism, we find p ® p describes a one-dimensional representation with x,g,(9) = X,(g)?. Since
the characters x,g, differ from the current rows, p ® p describes a distinct isomorphism class of one-dimensional
representations.

By orthogonality of the second/third column and the first column, we find the zeros in the fourth row. Let
a = xu(e) and b := x,(g) for g € C4. Then ab = —3 by the orthogonality of columns one and four. Since a
represents the dimension of the irreducible representation p: G — M,(C), a > 0 is an integer so b € Q. With |G|
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finite, the trace of p(g) is the sum of eigenvalues that are all roots of unity. Thus b € Q is an algebraic integer so
b e Z. We conclude that a =1 and b= —3 or a = 3 and b = —1. If @ = 1, then |G| = 4. The order of some g € Cy
must be divisible by 3 since p(g%) = p(g)® = 1. This contradicts the order of G so a # 1. Thus a = 3 and b = —1.

As a result, |G| = 12 + 12 + 12 + 32 = 12. The rows are orthonormal under the inner product {(v,w) =
\%42?:1 |Ci|lv;w;. Row three implies 1 = 9+1|20 i and |C4| = 3. The inner product of rows two and one gives

0 — 1+|Co|w+|Cs|w?+3

2
Similarly, the inner product of rows three and one gives 0 = 1H|Calw +|Calwt3 g

2
|C3] = |C5] with 8 elements between the two conjugacy classes. We conclude |Cs| = |C3| = 4.

Cl = {6} 02 03 04
Xtrivial 1 1 1 1
Xp 1 w W1
X p®p 1 w? | w 1
Xou 3 0] 0 -1

Problem 12. Let F be a finite field and K c F the subfield of an algebraic closure generated by all roots of
unity. Find all simple finite dimensional K -algebras.

Let L/F be an algebraic extension. Then for each a € L, we have a finite extension F[a]/F. Then F[a] is the
finite field of order ¢ for ¢ some power of a prime. Then (F[a])* is cyclic of order ¢ — 1. Thus K] is a subfield of
K for each « € L so L is a subfield of K. We conclude that K is the algebraic closure of F'. By Artin-Wedderburn,
a simple finite dimensional K-algebra A is a matrix algebras with coefficients in division rings over K. However, if
dimg (D) is finite, we must have D c K by K algebraically closed. Thus A ~ M, (K) for some integer n > 1.

Spring 2019

Problem 1. Let G be a finite solvable group and 1 # N < G be a minimal normal subgroup. Prove that there
exists a prime p such that N is either cyclic of order p or a direct product of cyclic groups of order p.

https://math.stackexchange.com/questions/4051604/
given-a-finite-solvable-group-g-prove-that-a-minimal-normal-subgroup-h-is-a

Since G is solvable, N is solvable as well. The derived series of N will eventually reach the trivial subgroup
which implies that [N, N] is not all of N. Every characteristic subgroup of a normal subgroup of G is normal in G
(PROVE THIS). Thus [N, N] is normal in G. By assumption, N is minimal normal in G so [N, N] is the trivial
subgroup of G. We find that N is abelian.

For a prime p dividing the order of N, Cauchy’s Theorem implies that N has an element of order p. Since N is
abelian, the subgroup {n € N : n? = 1} is a non-trivial characteristic subgroup of N. Every characteristic subgroup
of a normal subgroup of G is normal in G so N = {n € N : n? = 1}. The classification of finite abelian groups
proves that IV is cyclic of order p or a direct sum of cyclic order p groups.

Problem 2. An additive group (abelian group written additively) @ is called divisible if any equation nx = y
with 0 # n € Z, y € @ has a solution z € Q. Let @ be a divisible group and A is a subgroup of an abelian
group B. Give a complete proof of the following: every group homomorphism A — ) can be extended to a group
homomorphism B — Q.

https://planetmath.org/ExampleOfInjectiveModule

Problem 3. Let d > 2 be a square-free integer. Show that the integer 2 in Z[v/—d] is irreducible but the ideal
(2) in Z[+/—d] is not a prime ideal.

Define the norm N : Z[v/—d] — Zs¢ as N(a + bv/—d) = (a + bv/—d)(a — by/—d) = a® + b*d. We can show
algebraically that the norm is multiplicative. Further, we will show N (a + bv/—d) = 1 if and only if a + bv/—d is a
unit in Z[y/—1]. (=) Assume N(a + by/—d) = 1. Then (a + by/—d)(a — by/—d) = 1 and a + by/—d is a unit. (<)
Assume a + by/—d is a unit. Then there is some element a’ + b'v/—d for which (a + by/—d)(a’ + ¥'v/—d) = 1. By
multiplicativity of the norm, N(a + by/—d) divides N(1) = 1. We conclude that N(a + by/—d) = 1.
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We will first show that 2 is irreducible in Z[v/—d]. Let a+by/—d be a non-unit factor of 2. Then N (a+by/—d) =
a® + b%d divides N(2) = 4. If N(a + by/—d) = 1 or N(a + bv/—d) = 4, the factorization of 2 includes a unit. Thus
N(a + by/—d) = 2 or a® + b?>d = 2. Since d > 2, we must have b = 0. Then a?® = 2 for integer a, which is not
possible. No such non-trivial factor of 2 exists.

We will now show that (2) is not prime in Z[v/—d]. If d is even, 2 divides —d but 2 does not divide either factor
in —d = v/—dv/—d. 1f d is odd, 2 divides 1+ d but 2 does not divide either factor of 1 +d = (1 + v/—d)(1 —+/—d).
Thus (2) is not a prime ideal. Note that this argument proves that Z[v/—d] is not a UFD since irreducible and
prime are equivalent notions in a UFD.

Problem 4. Let R be a commutative local ring and P a finitely generated projective R-module. Prove that P
is R-free.

DO THIS ONE

Problem 5. Let ®,, denote the nth cyclotomic polynomial in Z[X] and let a be a positive integer and p a
(positive) prime not dividing n. Prove that if p|®,(a) in Z,then p = 1 mod n.

Problem 6. Let F be a field of characteristic p > 0 and a € F'*. Prove that if the polynomial f = X? — a has
no root in F', then f is irreducible over F'.

Problem 7. Let F be a field and let R be the ring of 3 x 3 matrices over F' with (3,1) and (3,2) entry equal to

0. Thus,
F F F

R=|F F F
0 0 F

(a) Determine the Jacobson radical J of R.

(b) Is J a minimal left (respectively right) minimal ideal?
Problem 8. Prove that every finite group of order n is isomorphic to a subgroup of GL,,_1(C).

By Cayley’s Theorem, there is an injective homomorphism from G to S,,. There is an injective homomorphism S,
to GL,,(C) given by permuting the elements of C™ once a basis has been chosen. Let v € C™ be the vector of all 1s,
which is an eigenvector for each permutation matrix. Each permutation matrix in the basis 8 = {v, ea,...,e,} for
C™ will be a block matrix of (1) and a permutation matrix in GL,,_1(C). Thus there is an injective homomorphism
of S, to GL,_1(C). Compose this with the injection from Cayley’s Theorem to prove the claim.

Problem 9(a) Find a domain R and two nonzero elements a,b € R such that R is equal to the intersection of
the localizations R[1/a] and R[1/b] (in the quotient field of R) and aR + bR # R.

DO THIS ONE

Problem 10. Let C be an abelian category. Prove TFAE:
(1) Every object of C is projective.

(2) Every object of C is injective.
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(1) = (2): Assume that every object is projective. Let m : X — Y be a monomorphism for which there is a
morphism g : X — . We can build the short exact sequence

f

0 X y > ¢ 0
where C' = coker(m). By assumption, C is projective so the short exact sequence splits. In an abelian category
left and right split are equivalent so there is a morphism s : ¥ — X such that som = 1x. Define h = g o s and
hom=(gos)om =go(som)=g. Thus @Q is injective.

(1) < (2): Similar argument.

Fall 2019

Problem 1. Show that every group of order 315 is the direct product of a group of order 5 with a semidirect
product of a normal subgroup of order 7 and a subgroup of order 9. How many such isomorphism classes are there?

How do we show that there is only one Sylow 5-subgroup?

Assume that there is a normal Sylow 5-subgroup denoted Ps. Let H be the product of a Sylow 3-subgroup and
Sylow 7-subgroup of G. By order considerations, the intersection of any Sylow 3-subgroup and Sylow 7-subgroup
is trivial so |H| = 63. Similarly, |Ps n H| = 1 and G = P;H. With P; normal in G, we have G ~ P5 x,, H. Since 5
is prime, Ps is cyclic and Aut(Ps) ~ Z/47. The image of any h € H via v : H — Aut(Ps) is trivial since its order
must divide 63 and 4. We conclude that G ~ P5 x H.

We would like to classify all groups H of order 63. By Sylow’s Third Theorem, the number of distinct Sylow
7-subgroups in H satisfies ny = 1 (mod 7) and n7|9. Thus ny = 1 and there is a unique normal Sylow 7-subgroup
denoted P;. Let P53 be some Sylow 3-subgroup of H. By order considerations, |Ps n Pr| = 1 so |H| = |P3P;| and
H = P3P;. Since Py is normal in H, H ~ P; x, P3. Again by Sylow’s Third Theorem, the number of distinct
Sylow 3-subgroups in H satisfies n3 = 1 (mod 3) and n3|7 song =1 or ng = 7.

Case 1: If ng = 1, then H ~ P; x P3. Note that 7 is prime so Py ~ Z/7Z is cyclic of order 7. Further, P; ~ Z/9Z
or P3 ~ 7/37 x Z/3Z. There are 2 isomorphism classes.

Case 2: If ng = 7, then ¢ : P; — Aut(P;) is non-trivial. Since P7 is cyclic of order 7, Aut(P;) ~ Z/6Z. Then
the image of ¢ is the unique order 3 subgroup of Aut(P7). There are 2 isomorphism classes.

We conclude that G ~ Ps x (P; x Ps). There are 4 isomorphism classes.

Problem 2. Let L be a finite Galois extension of a field K inside an algebraic closure K of K. Let M be a
finite extension of K in K. Show that the following are equivalent:

(a) LnM =K,
(b) [LM : K] =[L: K]|[M : K],

(c¢) every K-linearly independent subset of L is M-linearly independent.

Problem 3. Let I be the ideal (2% — y? + 22, (vy + 1)? — 2,23) of R = C[z,y,2]. Find the maximal ideals of
R/I, as well as all of the points on the variety

V(I) = {(a,b,c) e C*: f(a,b,c) =0 for all feI}.

By ideal correspondence, the maximal ideals of R/I are in bijection with the ideals of R containing I. Hilbert
Nullstellensatz reveals that the maximal ideals of R are of the form (z — a,y — b,z — ¢) for a,b,c € C. Let m be a
maximal ideal. Since m contains 23, it must contain z. We reduce the other relations to 22 — y? and (xy + 1)2. If
m contains 2 — y2, then it contains either z — y or o + y. If m contains (zy + 1)2, then it contains xy + 1. Case 1:
Assume m contains z — y. Multiply by —y to obtain —zy + 32 in m. Then y? 4 1 is in m so either y +i or y — 1 is
in m. Case 2: Assume m contains = + y. Then —zy — y? is in m and so is 1 — y2. Thus either y + 1 or y — 1 is in
m. The maximal ideals of R containing I are (x — 1,y +1,2), (x+ 1,y —1,2), (x —4,y — ¢, 2), and (x + i,y + 1, 2)
which correspond to the points (1,—1,0), (—1,1,0), (¢,¢,0), and (—i, —%,0) in the variety.

Problem 4. Find all isomorphism classes of simple (i.e., irreducible) left modules over the ring M,,(Z) of n by
n matrices with Z-entries with n > 1.
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DO THIS ONE
Problem 6. Classify all finite subgroups of GL(2,R) up to conjugacy.
See Spring 2017 Problem 1.

Problem 7. Let G be the group of order 12 with presentation
G={g,h:g"=1,n=1,ghg”' = h?).

Find the conjugacy classes of G and the values of the characters of the irreducible complex representations of G of
dimension greater than 1 on representatives of these classes.

The final relation of G implies that gh = h?g and gh? = hg. We can use these relations to write every element
of G as ¢g'h? for 0 < i < 3 and 0 < j < 2. Further, we have the relations h%g® = g3h and hg® = ¢g3h? by inverting
the above relations. Clearly, Cy = {e} is a conjugacy class. The relations

ghg™' = ghg® = h?
gh2971 _ gh2g3 =}
show that Cy = {h, h?} is a conjugacy class. We find
hgh™' = hgh?® = gh
h(gh)h™' = gh?

g(gh)g™" = g*hg® = gh?
h(gh®>)h™' = hgh = g
g(gh*)g~" = g°h*g® = gh

so C3 = {g,gh,gh?} is a conjugacy class. By similar computation, we have conjugacy class Cy = {g3, g°h, g3h?}.
The equations

thhfl _ hg2h2 _ gh2gh2 _ g2
h(g*h)h™! = hg® = gh®g = ¢*h
g—l — g3hg3 _ thQ
h~" = hg*h = gh”gh = g*h

9(g®h?) gt = ¢3h2g® = g*h

prove that C5 = {g?} and Cs = {g°h, g?h?} are conjugacy classes. All elements of G’ have been placed in conjugacy
classes.

The commutator [G,G] has elements of the form ghg='h™! = ghg®h? = h. Thus (h) = [G,G]. We see that
G/{h) is cyclic of order 4 and, thus, abelian. We conclude [G, G] = {(h) and there are |G/[G, G]| = 4 one-dimensional
non-isomorphic irreducible representations of G. Each one-dimensional p; : G — C* sends h to 1. The image of

g must be a fourth root of unity. Further, 12 = 4 + a? + b? for a and b the dimensions of the other irreducible
representations of G. We see that a < 3 and b < 3 so a = b = 2 so we obtain the following character table.

e|lh| g | g ]| g |g*h
vil1[1[ 11 [1]1
Y2 | L[ 1] i | 1| =] -1
ya |11 -1] 1 |-1] 1
xa |11 =i | =1 i | -1
X5 | 2
X6 | 2
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We will construct a two-dimensional irreducible representation of G over C. Define a set map p on the generators

so 1 : G — GLy(G) is a group homomorphism as desired. There is no non-trivial, proper G-invariant subspace of
C? which proves y is irreducible. Compute the characters ys by taking the traces of the relevant matrices. We can
complete the final row of the character table by column orthogonality of column j with column 1.

el h | g lg | g |d*n
il T |1 [1]1]1
o 1] 1 | i | 1] =] -1
s 1| 1 |=1] 1] -1 1
ya 1] 1 | =i | 1] i | -1
xs 2] -1] 0 |20 1
Yo |2/ =110 ] 2 [0 -1

Problem 8. Let M be a finitely generated module over an integral domain R. Show that there is a nonzero
element u € R such that the localization M[1/u] is a free module over R[1/u].

DO THIS ONE

Problem 9. Let A be a unique factorization domain which is a Q-algebra. Let K be the fraction field of A.
Let L be a quadratic extension field of K. Show that the integral closure of A in L is a finitely generated free
A-module.

Problem 10. Compute the Galois groups of the Galois closures of the following field extensions:
(a) C(z)/C(z" + 1),
(b) C(z)/C(z* + 22 + 1),

where C(y) denotes the field of rational functions over C in a variable y.

Spring 2020

Problem 1. Let G be a group defined by G = {a,b : a®> = b2 = 1). Determine the order of all non-trivial finite
quotient groups.
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Problem 2. Let G be a finite group of order n > 1 and consider its group algebra Z[G] embedded in Q[G]. Let
A = Z[G]/a for the ideal a generated by g — 1 for all g € G.

(a) Prove that the algebra Q[G] is the product of Q and Q- a, where Q- a is the Q-span of a in Q[G]. [Hint: First
identify the unit 1g.q.]

(b) Let B be the projected image of Z[G] in Q- a. Prove that A®z[c) B ~ G as groups if and only if G is a cyclic
group.
Problem 3. Prove that a noetherian commutative ring A is a finite ring if the following two conditions are
satisfied:

(a) the nilradical of A vanishes,

(b) localization at every maximal ideal is a finite ring.
DO THIS ONE

Problem 4. Compute the dimension of the tensor products of two algebras Q[v/2] ®z Q[v/2] over Q and
(@[\/ﬁ] ®z R over R. Is R ®z R finite dimensional over R?

DO THIS ONE

Problem 5. If K # Q appears as a subfield (sharing the identity) of some central simple algebra over Q of
Q-dimension 9, determine (isomorphism classes of) the groups appearing as the Galois group of the Galois closure
of K over Q.

Problem 7. Let G be a p-group and 1 # N < G be a non-trivial normal subgroup.

(a) Show that N contains a non-trivial element of the center Z(G) of G.

Let G be a nontrivial p-group, and P the set of order-p elements of N. We have seen that P is non-empty, and
indeed that |P| is congruent to —1 mod p. Now consider the action of G on P by conjugation. The stabilizer
under this action of any x in P is the centralizer C'(x) of x, which is the subgroup of G consisting of all elements
that commute with . The orbit of 2 then has size [G : C(z)]. But G is a p-group, so [G : C(z)] is a power of
p. Hence [G : C(z)] is either 1 or a multiple of p. Since |P| is not a multiple of p, it follows that at least one of
the orbits is a singleton. Then C(z) = G, which is to say that  commutes with every element of G. We have
thus found a nontrivial element x of the center of G.

(b) Give an example where Z(N) ¢ Z(G).
Take G = Dy, the dihedral group of order 8. Let N = {r) be the cyclic subgroup of G generated by rotation
by % counter-clockwise. Then Z(N) = N but Z(G) = {r?).
Problem 8. Let R be a ring.

(a) Show that an R-module X is indecomposable if Endg(X) is local. (Recall that a ring is local if the sum of
non-invertible elements remains non-invertible).

DO THIS ONE
(b) Suppose that every finitely generated R-module M is isomorphic to X; @ --- @ X,, with all End(X;) local.

Show that such a decomposition is unique: If X1 ®---®X,, ~ Y1 P --@Y,, then m = n and there is a bijection
o € S, and isomorphisms X; ~ Y, ;).

DO THIS ONE

(¢) Give an example of an isomorphism X; @ X3 ~ Y] @Y, with End(X;) and End(Y;) local that is not the direct
sum of any isomorphisms X; ~ Y;, even up to renumbering the Y;.

DO THIS ONE
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Problem 10. Let R be a commutative ring and M a left R-module. Let f : M — M be a surjective R-linear
endomorphism. [Hint: Let R[X] act on M via f.]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f=! can be described as a
polynomial in f.

DO THIS ONE

(b) Show that this fails if M is not finitely generated.
DO THIS ONE

Fall 2020

Problem 1. Let p < ¢ < r be primes and G a group of order pgr. Prove that G is not simple and, in fact, has a
normal Sylow r-group.

We will first prove that G is not simple. Let n, be the number of distinct Sylow p-subgroups, n, be the number
of distinct Sylow g¢-subgroups, and n, be the number of distinct Sylow r-subgroups. By Sylow’s Third Theorem,
we know the following

np =1 (mod p), nylgr
ng =1 (mod q), nglpr
n,. =1 (mod r), n.|pq.

We conclude that n, = 1,p,q,pqg. Since r > p and r > ¢, p and ¢ can’t be congruent to 1 modulo r. Thus n, = 1
or n, = pq. If n,. = 1, we’re done so assume n,. = pq. Every Sylow r-subgroup contains the identity and r» — 1 order
r elements of G. Thus there are pg(r — 1) = pgr — pq order r elements of G. Similarly, n, = 1, p, r, pr. Since ¢ > p,
p can’t be congruent to 1 modulo ¢g. If n, = 1, we're done so assume that n, = r, the smallest other possibility. As
above, there are (¢ — 1) = rq — r elements of order ¢ in G. We have n, = 1,¢,7, gr so assume that n, = ¢. Then
there are g(p — 1) = pg — g elements of order p in G. In total this accounts for

(pagr —pq) + (rq—r)+ (pg—q)+1=pgr+rq—r—q+1

elements of G. Since r and g are greater than 1, rq = r + ¢ and this exceeds the order of G. Thus there is some
normal Sylow subgroup and G is not simple.

Let N be a normal Sylow subgroup of G. If |N| = r, we are done so assume |N| = ¢ without loss of generality.
Then G/N is a group of order pr, which implies that G/N has a normal subgroup of order r. By the subgroup
correspondence, there is a normal subgroup H of G containing N for which H/N is order r. Thus |H| = ¢r and
H contains a normal subgroup of order r denoted P,.. We want to prove that P, is normal in G. Let g € G. Then
lgP.g~'| = r and gP.g~! < H since H is normal in G. Since P, is a normal Sylow r-subgroup of H, P, is the
unique Sylow 7-subgroup of H. We conclude that gP,.¢g~! = P, and P, is normal in G.

Problem 2. Show that groups of order 231 = (3)(7)(11) are semi-direct products and show that there are
exactly two such groups up to isomorphism.

Let G be a group of order 231 with P5 a Sylow 3-subgroup, Pr a Sylow 7-subgroup, and P;; a Sylow 11-subgroup.
Since |P; n P;| = 1 for distinct ¢ and j in {3,7,11}, we conclude that |G| = |P3P;P11| and G = P3P;Pi;. By Fall
2020 Problem 1, Pj; is normal in G. Let n; be the number of distinct Sylow 7-subgroups in G. Sylow’s Third
Theorem proves that ny = 1 (mod 7) and n7|33. The only option is ny = 1 and P; is normal in G. Thus the cyclic
subgroup P7Py; of order 77 is normal in G and G ~ P; Py x, P3. We have Aut(P;Pyy) ~ Z/67 x Z/10Z and P;
cyclic of order 3. Therefore, p : P3 — Aut(P;P1) is either trivial or sends a generator of Ps to an order 3 element
of Z/6Z. The cases of the latter produce isomorphic semidirect products so there are only two groups of order 231
up to isomorphism.

Problem 3. A ring R (commutative or non-commutative) is called a domain if ab = 0 in R implies a = 0 or
b = 0. Suppose that R is a domain such that M, (R), the ring of n x n matrices over R, is a semisimple ring. Prove
that R is a division ring.
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Problem 4. Let M be a left R-module. Show that M is a projective R-module if and only if there exist m; € M
and R-homomorphisms f; : M — R for each i € I such that the sets {m; : i € I} and {f; : i € I} satisfy:

(a) If me M, then f;(m) = 0 for all but finitely many i € I.
(b) If me M, then m = Y, _; fi(m)m,;.

DO THIS ONE

Problem 5. Let F be a field and f(X) = X® + 3 € F[X]. Determine a splitting field K of f(X) over F and
determine [K : F] and Gal(K/F) for each of the following three fields: F' = Q,Fs, F7.

Problem 6. Let K; ¢ Ky ¢ K3 be fields with K3/Ky and K3/K; both Galois. Let L be a minimal Galois
extension of K containing K3. Show if the Galois groups Gal(K3/K3) and Gal(K,/K) are both p-groups so is
the Galois group Gal(L/K7).

Problem 7. Let R be a Dedekind domain with quotient field K and I a nonzero ideal in R. Show both of the
following:

(a) Every ideal in R/I is a principal ideal.
DO THIS ONE

(b) If J is a fractional ideal of R, i.e., 0 # J < K is an R-module such that there exists a d € R with dJ < R, then
there exists a 0 # x in K such that I + zJ = R.

DO THIS ONE

Problem 8. Consider R = C[X,Y]/(X?, XY). Determine the prime ideals P of R. Which of the localizations
Rp are integral domains?

DO THIS ONE

Problem 9. Let G be a finite group, F a field, and V a finite dimensional F-vector space with G — GL(V) a
faithful irreducible representation. Show that the center Z(G) of G is cyclic.
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