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Be advised there are likely enormous errors. I received help from Alex Wertheim and Harris Khan. I looked at
Yacoub Kureh’s and Ian Coley’s solutions for a couple of the problems.
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Problem 1. Let G be a finite group. Let ZrGs be the group algebra of G with augmentation ideal a. Show that
a{a2 » G{G1 as abelian groups for the derived group G1 of G.

View a{a2 as an abelian group. We will define the group homomorphism f : G Ñ a{a2 as fpgq “ re ´ gs. Let
gi, gj P G. Note that

e´ gigj “ pe´ giq ` pe´ gjq ´ pe´ giqpe´ gjq

and pe ´ giqpe ´ gjq P a2. Thus fpgigjq “ re ´ gigjs “ re ´ gis ` re ´ gjs and f is a group homomorphism. Since
a{a2 is abelian, we have f : G{G1 Ñ a{a2 where fp “ f for p : GÑ G{G1 the standard projection.

Let |G| “ n and list all of G as tg1, . . . , gnu. Each a P a is
řn
i“1p´aiqgi for ai P Z. Since

řn
i“1 ai “ 0, we

can write a uniquely as a “
řn
i“1 aipe ´ giq. Then we can define h : a Ñ G{G1 as hpaq “

śn
i“1 g

ai
i . Take some

b “ pe´ giqpe´ gjq “ e´ gi ´ gj ` gigj , then hpbq “ rgis
´1rgjs

´1rgigjs “ prgis
´1rgisqprgjs

´1rgjsq “ res since G{G1

is abelian. Thus a2 Ă kerphq and h factors through a{a2 as h : a{a2 Ñ G{G1. Now hfprgsq “ hre ´ gs “ rgs and
fhprasq “ fp

śn
i“1rgis

aiq “
řn
i“1 aifprgisq “

řn
i“1 aire´ gis for a “

řn
i“1 aipe´ giq. We conclude a{a2 » G{G1.
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Problem 2. Let Fp denote the finite field of p elements. Consider the covariant functor F from the category
of commutative Fp-algebras with a multiplicative identity to abelian groups sending a ring R to its p-th roots of
unity, that is, F pRq “ tζ P R|ζp “ 1u. Answer the following questions and justify your answers.

(a) Give an example of a finite local ring R such that F pRq has p2 elements.

Assume that p ‰ 2 so p ě 3. Let R :“ Fprxs{px3q so R is finite. We note that Fprxs is a PID and the ideals of
R are in bijective correspondence with the ideals of Fprxs containing px3q. Thus the non-trivial, proper ideals
of R are principal generated by x or x2. The ideal pxq is maximal since R{pxq » Fprxs{pxq » Fp is a field and
px2q Ă pxq. Therefore, R is a local ring. Since R has characteristic p ě 3, we have

pax2 ` bx` cqp “ pax2qp ` pbxqp ` cp “ ax2p ` bxp ` c “ c.

Thus a pth root of unity in R will have c “ 1. There are p2 choices for a and b so there are p2 distinct pth
roots of unity in R.

Assume p “ 2. Let R :“ F2rxs{px
4q. As above, R is a finite local ring. Since R is characteristic 2,

pax3 ` bx2 ` cx` dq2 “ pa2x6 ` b2x4 ` c2x2 ` d2q “ cx2 ` d

for a, b, c, d P F2. Then c “ 0 and d “ 1 gives a second root of unity in R. We have 4 choices for a and b so R
has 4 second roots of unity as desired.

(b) Let AutpF q be the set of natural transformations of F into itself inducing a group automorphism of F pAq for
all commutative rings A with identity. Prove that F is representable and use the Yoneda Lemma to compute
the order of AutpF q.

Let C be the category of commutative Fp-algebras. We want to show that F is naturally isomorphic to
HomCpR,´q for some R P ObpCq. Let G be the cyclic group of order p generated by g P G, and define
R :“ FprGs to be the corresponding group ring over Fp. Any Fp-algebra homomorphism f : R Ñ A satisfies
fp1q “ 1, fixing Fp. We note that f is determined by the image of g. The order of g P R is p so fpgq must have
order dividing p. Thus fpgq “ 1 or fpgq is a nontrivial element of order p.

For each A P ObpCq, we can construct ηA : F pAq Ñ HomCpR,Aq by sending ζ P F pAq to the Fp-algebra
homomorphism f : RÑ A given by fpgq “ ζ. For an Fp-algebra homomorphism h : AÑ B, we need to show
that the following diagram commutes.

F pAq F pBq

HomCpR,Aq HomCpR,Bq

h

ηA ηB

h˝´

Let ζ P F pAq. We have ηBphpζqq “ f 1 where f 1 : R Ñ B is the unique Fp-algebra homomorphism given by
f 1pgq “ hpζq. Similarly, hpηApζqq “ h ˝ f where f : R Ñ A is the unique Fp-algebra homomorphism given
by fpgq “ ζ. The image of g determines the Fp-algebra homomorphisms so f 1 “ h ˝ f and h ˝ ηA “ ηB ˝ h.
We conclude that η is a natural transformation. Each ζ P F pAq determines one and only one Fp-algebra
homomorphism f : RÑ A with fpgq “ ζ. Thus η is a natural isomorphism and F is representable.

We defined AutpF q as the set of invertible natural transformations of F into itself, a subset of NatpF, F q. By
above, F is represented by R so NatpF, F q » NatpHomCpR,´q, F q. Yoneda Lemma gives a natural bijection
between the natural transformations of HomCpR,´q to F and the set F pRq. Thus |NatpF, F q| “ |F pRq|. Every

element of R “ FprGs is of the form
řp´1
i“0 aig

i. Since Fp is commutative of characteristic p, we have

˜

p´1
ÿ

i“0

aig
i

¸p

“

p´1
ÿ

i“0

api pg
iqp “

˜

p´1
ÿ

i“0

ai

¸

e.

An element
řp´1
i“0 aig

i P R is a pth if and only if
řp´1
i“0 ai “ 1. There are p different possibilities for the sum of

the coefficients with |R| “ pp. Thus |F pRq| “ pp´1.

ASK SOMEONE ABOUT THIS PARTWe will show that η P NatpF, F q is an automorphism if and only
if ηF pidRq ‰ 1. (ñ) If η is an automorphism, then ηR is a bijection between HomCpR,Rq and F pRq. For
f P HomCpR,Rq, we have ηRpfq “ F pfqpηRpidRqq “ fpηRpidRqq, a pth root of unity of R. Thus ηRpidRq ‰ 1
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since fp1q “ 1 for all f P HomCpR,Rq. (ð) The image of the g P R determines an endomorphism of R, and
g P F pRq must map to another element of F pRq. Assume ηRpidRq ‰ 1. There is an element f P HomCpR,Rq
such that fpηRpidRqq “ g. This implies that ηA is a bijection between HomCpR,Rq and F pRq. Therefore,

|AutpF q| “ |F pRq| ´ 1 “ pp

p ´ 1 “ pp´1 ´ 1.

Problem 3. Pick a non-zero rational number x. Determine all possibilities for the Galois group G of the normal
closure of Qr 4

?
xs over Q, where 4

?
x is the root of X4 ´ x with maximal degree over Q.

Note that Q is perfect so all finite extensions of Q are separable.
Case 1: Assume x “ y4 for some y P Q, then the roots of X4 ´ x are t˘y,˘yiu. A root of maximal degree is

yi, and Qryis “ Qris is the splitting field of the irreducible polynomial X2 ` 1 over Q. Thus Qris{Q is a Galois
extension of degree 2. The only group of order 2 is Z{2Z so GalpQris{Qq » Z{2Z.

Case 2: Assume x “ y2 for some y P Q and x ‰ z4 for all z P Q. Then the roots of X4´x are t˘
?
y,˘

?
yiu for

?
y P R and X4´x “ pX2´ yqpX2` yq. The two polynomials X2´ y and X2` y are irreducible over Q since they

do not have roots over Q. Thus all of the roots have degree 2 so we can take 4
?
x “

?
y. Then Qr?ys is the splitting

field of X2 ´ y over Q and Qr?ys{Q is Galois. Once again, the Galois group is order 2 so GalpQr?ys{Qq » Z{2Z.

Case 3: Assume x “ ´y2 for some y P Q and x ‰ z4 for all z P Q. Then the roots of X4 ´ x are t
?
yξj8u for ξ8

a primitive eighth root of unity and j “ 1, 3, 5, 7. Note that ξ8 “
?

2
2 ` i

?
2

2 . These roots are not rational so X4´x
can only factor as a product of quadratics. If 2y is the square of a rational number, then pX ´

?
yξ8qpX ´

?
yξ7

8q “

X2 ´
?

2yX ` y and pX ´
?
yξ3

8qpX ´
?
yξ5

8q “ X ´
?

2yX ` y. The normal closure K is a degree 2 extension
of Q and GalpK{Qq » Z{2Z. In all other cases, none of the possible pairings of roots yields a quadratic with
coefficients in Q. Thus X4 ´ x is irreducible and the normal closure K is the splitting field of X4 ´ x. It is

clear that K Ă Qr
?

2y, is. Continuing, 4
?
xξ8 “

?
2y
2 `

?
2y
2 i. We see that 2 4

?
xξ8 ` 4

?
xξ8 “

?
2y P K. Then

2
y p
?

2y 4
?
xξ8 ´

y
2 q “ i P K as well. We conclude K “ Qr

?
2y, is. Note the polynomials X2 ´ 2y and X2 ` 1 are

irreducible so Qr
?

2ys{Q and Qris{Q are degree 2 Galois extensions with Qr
?

2ys X Qris “ Q since Qr
?

2ys Ă R.
Then GalpK{Qq » GalpQr

?
2ys{Qq ˆGalpQris{Qq » Z{2Zˆ Z{2Z.

Case 4: Assume x ‰ y2 for all y P Q and x ą 0. The roots are t˘ 4
?
x,˘ 4

?
xiu where we take 4

?
x to be the

real fourth root of x. By assumption, X4 ´ x has no roots in Q. None of the possible pairings of px ´ αq for α a
root of X4 ´ x gives a quadratic with coefficients in Q. Thus X4 ´ x is irreducible and all the roots have degree
4, justifying the choice of 4

?
x as the real fourth root. Let K be the normal closure of Qr 4

?
xs{Q. Since X4 ´ x is

irreducible, K will be the splitting field of X4 ´ x. We note that K Ă Qr 4
?
x, is since X4 ´ x splits in Qr 4

?
x, is.

Additionally, 4
?
x P K and 1

x p
4
?
xq3p 4

?
xiq “ i P K so K “ Qr 4

?
x, is.

We build the tower of field extensions below. We know that rQr 4
?
xs : Qs “ 4 and rQris : Qs “ 2. Since

Qr 4
?
xs Ă R, we have Qr 4

?
xs X Qris “ Q and rQr 4

?
x, is : Qs “ 8, as a result. Note that Qr 4

?
xs{Q is not a normal

extension so Qr 4
?
x, is{Q is not an abelian extension. Thus GalpQr 4

?
x, is{Qq is a nonabelian group of order 8.

This leaves the quaternion group or the dihedral group. Complex conjugation τ is an order 2 automorphism. In
both D4 and Q8, there is an element of order 4. Let σ P GalpK{Qq be such an element. If σp 4

?
xq “ ´ 4

?
x, then

σp 4
?
xiq “ 4

?
xi or σp 4

?
xiq “ ´ 4

?
xi. In either case, σ2 is the identity, a contradiction. Thus σp 4

?
xq “ ˘ 4

?
xi.

The argument will work for either choice so assume σp 4
?
xq “ 4

?
xi. We see that στp 4

?
xq “ σp 4

?
xq “ 4

?
xi and

τσp 4
?
xq “ τp 4

?
xiq “ ´ 4

?
xi. Thus σ and τ do not commute. The order 2 element ´1 in the quaternion group

commutes with the order 4 elements. We conclude GalpQr 4
?
x, is{Qq » D4.

Qr 4
?
x, is

Qr 4
?
xs

Qris

Q

Case 5: Assume x ‰ y2 for all y P Q and x ă 0. Let z “ |x|. Then the roots of X4 ´ x are t 4
?
zξi8u for 4

?
z

the real fourth root and i P t1, 3, 5, 7u. The roots are not contained in Q and none of the possible pairings of roots
yields a quadratic with coefficients in Q. Thus X4 ´ x is irreducible and the normal closure K is the splitting field
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of X4 ´ x. It is clear that K Ă Qr 4
?

4z, is since 4
?
zξ8 “ 4

?
zp
?

2
2 `

?
2

2 iq. But, 4
?
zξ8 ` 4

?
zξ7

8 “
4
?
z
?

2 “ 4
?

4z P K

and 4
?
zξ3

8 `
4
?
zξ5

8 “
4
?
z
?

2i “ 4
?

4zi P K. Then p 1
4z qp

4
?

4zq3p 4
?

4ziq “ i P K. We conclude that K “ Qr 4
?

4z, is.
This is Case 4 since 4z P Q so GalpK{Qq » D4.

Problem 4. Let D be a 9-dimensional central division algebra over Q and K Ă D be a field extension of Q of
degree greater than 1. Show that K bQ K is not a field and deduce that D bQ K is no longer a division algebra.

Note K is a finite extension of Q and Q is perfect. By the Primitive Element Theorem, K » Qrxs{pfq for some
irreducible polynomial f P Qrxs. Since f is no longer irreducible in K, pfq is neither a maximal nor a prime ideal
of Krxs. We conclude K bQ K » Krxs{pfq is not a field and, further, not a domain. Alternatively, we can factor
f “ px´αqpx´βq for α, β P K, and KbQK » Krxs{pfq » Krxs{px´αqˆKrxs{px´βq by the Chinese Remainder
Theorem. (Note that the extension is separable so α and β are distinct.) Therefore, K bQK is not even a domain.

Now K bQ K is a commutative subring of DbQ K that is not a domain. We conclude that DbQ K cannot be
a division algebra.

Problem 5. Let R be a commutative algebra over Q of finite dimension n. Let ρ : R Ñ MnpQq be the regular
representation, and define Tr : RÑ Q by the matrix trace of ρ. If the pairing px, yq “ Trpxyq is non-degenerate on
R, prove that R is semi-simple.

We will show that a non-degenerate trace implies that R has no nontrivial nilpotent elements. Let r P R be
nilpotent with rk “ 0. Then ρprq is a matrix such that ρprkq “ ρprqk “ 0. Then the minimal polynomial of ρprq
has the form Xm for some m. We conclude that Trprq “ 0 since Trprq appears as a non-leading coefficient in the
minimal polynomial. In particular, rx is nilpotent for all x P R since R is commutative. Thus Trprxq “ 0 for all
x P R. If px, yq is non-degenerate, then R has no nontrivial nilpotent elements. In other words, the nilradical of R
is trivial.

Every ideal of R is closed under multiplication by R, which means each ideal is a Q-subspace of a finite-
dimensional vector space. Thus R is Artinian by a dimension argument for a descending chain of ideals. In
an Artinian commutative ring, each prime is maximal (see Atiyah-MacDonald ADD A REFERENCE) so the
Jacobson radical and nilradical are equal. Since the nilradical is trivial, the Jacobson radical of A is trivial.
A Artinian implies there are finitely many maximal ideal tmiu for 1 ď i ď ` (see Atiyah-MacDonald ADD
REFERENCE). Thus X`i“1mi “ 0. By the Chinese Remainder Theorem,

A » A{ X`i“1 mi » ‘
`
i“1A{mi.

Each A{mi is a simple R-module so R is a semisimple R-module. This shows R is a semisimple ring.

Problem 6. Let G be a finite group and let p be the smallest prime number dividing the order of G. Assume
G has a normal subgroup H of order p. Show that H is contained in the center of G.

Conjugating elements of H by G is a group action since H is a normal subgroup. The fixed points of the action
are exactly the elements of H in ZpGq. Thus p “ |H| “ |ZpGq XH| `

ř

hRZpGq |Orbphq|. The identity is contained

in H and ZpGq which implies |H X ZpGq| ě 1 and |Orbphq| ă p for all h R ZpGq. Orbit-Stabilizer gives us
|Orbphq| “ rG : Stabphqs so |Orbphq| divides |G|. Since p is the smallest prime that divides |G|, we conclude there
are no elements h R ZpGq. Thus H Ă ZpGq.

Problem 7. Let G be a finite group and P a Sylow 2-subgroup of G. Assume P is cyclic, generated by an
element x. Show that the signature of the permutation of G given by g ÞÑ xg is ´1. Deduce that G has a non-trivial
quotient of order 2.

Let |G| “ n “ 2km for gcdp2,mq “ 1. Then |P | “ 2k. Let σ P Sn be the permutation described by left
multiplication by x. Then σpxiq “ xi`1 for all 0 ď i ď 2k ´ 1. The set of right cosets G{P has order m
and each element g P G appears in one and only one of the cosets. Choose representatives gi P G so that
G{P “ tP, Pg1, . . . , Pgm´1u. Then σ has a unique (up to reordering) representation as a product of disjoint cycles
given by

σ “ pe, x, . . . , x2k´1qpg1, xg1, . . . , x
2k´1g1q ¨ ¨ ¨ pgm´1, xgm´1, . . . , x

2k´1gm´1q.
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Each cycle has length 2k so each cycle is odd. We have m cycles so there are an odd number of odd cycles. Thus
sgnpσq “ ´1.

Act on G via left multiplication by G. Then define the set H to be all g P G such that left multiplication by g
is an even permutation. Then e P H, H is closed under multiplication, and H is closed under inverses so H is a
subgroup of G. Every element either represents an even or odd permutation. By above, x R H so rG : Hs “ 2 and
H is a normal subgroup of G. We have G{H is a quotient of order 2 as desired.

Problem 8. Let A be a ring. Assume there is an infinite chain of left ideals I0 Ă I1 Ă ¨ ¨ ¨ Ă A with Ii ‰ Ii`1

for i ě 0. Show that A has a left ideal that is not finitely generated as a left A-module.

Define I :“
Ť8

i“0 Ii. We will show that I is a proper ideal. Let a, b P I. Then a P Ik for some k and b P I` for
some `. Without loss of generality, assume k ě `. Then a, b P Ik. Since Ik is an ideal, a ` b P Ik so a ` b P I.
Similarly, let r P A and a P I. Then a P Ik for some k and ra P Ik since Ik is an ideal. Thus ra P I and I is an
ideal of A. If 1 P I, then 1 P Ik for some k. We would have Ik “ Ik`1 “ ¨ ¨ ¨ “ A, a contradiction. Therefore, I is a
proper ideal of A.

Assume for the sake of contradiction that I is finitely generated as a left A-module. Let tx1, . . . , xnu be the
generating set. Each xi P Iki for some ki. Define k :“ maxni“1 ki, then xi P Ik for all i. This would imply that
Ik “ Ik`1 “ ¨ ¨ ¨ “ A, a contradiction. Thus I is an ideal of A that is not finitely generated as a left A-module.

Problem 9. Let A be a ring and let i, j P A such that i2 “ i and j2 “ j. Show that the left A-modules Ai and
Aj are isomorphic if and only if there are a, b P A such that i “ ab and j “ ba.

(ñ) Assume Ai and Aj are isomorphic. Let φ : AiÑ Aj be such an isomorphism with inverse ψ : Aj Ñ Ai. Then
φpiq “ cj and ψpjq “ di for some c, d P A. Note that φpiq “ φpi2q “ iφpiq “ icj and ψpjq “ ψpj2q “ jψpjq “ jdi.
Let a :“ icj and b :“ jdi. Then

ab “ picjqpjdiq “ icjdi “ icψpjq “ ψpicjq “ ψpφpiqq “ i

ba “ pjdiqpicjq “ jdicj “ jdφpiq “ φpjdiq “ φpψpjqq “ j

as desired.
(ð) Assume i “ ab and j “ ba for some a, b P A. Then we can define a left A-module homomorphism

φ : AiÑ Aj by φpiq “ ia “ aj. Extend φ A-linearly. We can also define an A-module homomorphism ψ : Aj Ñ Ai
by extending ψpjq “ jb “ bi A-linearly. Let r P A. Then

ψpφpriqq “ ψprφpiqq “ ψpriaq “ ψprajq “ raψpjq “ rajb “ rabi “ ri2 “ ri

φpψprjqq “ φprψpjqq “ φprjbq “ φprbiq “ rbφpiq “ rbia “ rbaj “ rj2 “ rj.

We conclude that φ is an isomorphism.
This construction is from Yacoub Kureh’s solutions.

Problem 10. Let n be a positive integer. Let An be the Q-algebra generated by elements x1, . . . , xn, y1, . . . , yn
with relations xixj “ xjxi, yiyj “ yjyi, and yixj ´ xjyi “ δij for 1 ď i, j ď n. Show that there is a representation
of An on the vector space Qrt1, . . . , tns where xi acts by multiplication by ti and yi acts as B{Bti.

WRITE THIS ONE

Spring 2015

Problem 1. What are the coproducts in the category of groups?

We will define the free product of a family of groups GiiPI . As a set, ˚iPIGi is all words on the letters
Ť

iPI Gi.
We reduce letters from the same group via the group multiplication. Define the group operation as concatenation.
The identity element is the empty word, concatenation is associative, and the inverse of a reduced word g1 ¨ ¨ ¨ gn is
g´1
n ¨ ¨ ¨ g´1

1 . Thus the free product of a family of groups is a group.
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Define the inclusion homomorphisms ij : Gj Ñ ˚kPIGk as ijpgq “ g. We want to show that ˚iPIGi satisfies
the universal property of the coproduct. Let fi : Gi Ñ A be a family of group homomorphisms. For the diagram
below to commute, h : ˚kPIGk Ñ A must be defined as hpgq “ fjpgq for g P Gj . Then we extend h to a group
homomorphism. For a reduced word g1 ¨ ¨ ¨ gn P ˚kPIGk, we have hpg1 ¨ ¨ ¨ gnq “ hpg1q ¨ ¨ ¨hpgnq “ fj1pg1q ¨ ¨ ¨ fpgnq
for gi P Gji . Since h is uniquely determined by the tfjujPI , the free product is the coproduct in the category of
groups.

Gj2

Gj1 ˚kPIGk

A

ij2 fj2
ij1

fj1

h

Problem 2. Let C be the category of groups and C1 be its full subcategory with objects the abelian groups. Let
F : C1 Ñ C be the inclusion functor. Determine the left adjoint of F and show that F has no right adjoint.

Let f : GÑ H be a group homomorphism where H is abelian. The commutator subgroup rG,Gs is generated the
subgroup generated by tg1g2g

´1
1 g´1

2 P G g1, g2 P Gu. For g1, g2 P G, we have pg1rG,Gsqpg2rG,Gsq “ g1g2rG,Gs “
g1g2pg

´1
2 g´1

1 g2g1qrG,Gs “ g2g1rG,Gs “ pg2rG,Gsqpg1rG,Gsq. Thus G{rG,Gs is an abelian group. Note fpg1g2q “

fpg1qfpg2q “ fpg2qfpg1q “ fpg2g1q and fprG,Gsq “ 0. Since rG,Gs Ă kerpfq, there is a unique abelian group
homomorphism h : G{rG,Gs Ñ H such that ph “ f for projection p : GÑ G{rG,Gs.

We will define the functor L : C Ñ C1 as LpGq :“ G{rG,Gs for rG,Gs the commutator subgroup. Note that a
morphism of groups f : G Ñ H gives a unique morphism f : G Ñ H{rH,Hs by composing with the projection.
Since H{rH,Hs is an abelian group, the above argument implies f factors uniquely through G{rG,Gs as f “ pg for
p : G Ñ rG,Gs the projection. Note that gparG,Gsq “ fpaqrH,Hs for a P G. Define Lpfq :“ g. Let 1G : G Ñ G
be the identity group homomorphism. Then 1G : G Ñ G{rG,Gs factors uniquely as the identity on G{rG,Gs.
We have Lp1Gq “ 1LpGq. Now let f : G Ñ H and g : H Ñ I be two group homomorphisms. Then gf : G Ñ I
gives Lpgfq “ h for h : G{rG,Gs Ñ I{rI, Is an abelian group homomorphism defined as hparG,Gsq “ pgfqpaqrI, Is.
Now Lpfq : G{rG,Gs Ñ H{rH,Hs gives LpfqparG,Gsq “ fpaqrH,Hs and Lpgq : H{rH,Hs Ñ I{rI, Is gives
LpgqpfpaqrH,Hsq “ gpfpaqqrI, Is. Thus Lpgfq “ LpgqLpfq and L is a covariant functor.

We want to show that HomCpA,F pBqq and HomC1pLpAq, Bq are in bijective correspondence for A P ObpCq and
B P ObpC1q and the bijection is functorial in A and B. As we have seen, some f P HomCpA,F pBqq factors uniquely
through LpAq “ A{rA,As since B is an abelian group. Define the natural isomorphism Φ whereby ΦA,Bpfq is this
unique morphism. Thus HomCpA,F pBqq » HomC1pLpAq, Bq via ΦA,B . Let g : A1 Ñ A be a morphism of groups.
Then we want to show the diagram below commutes. Note that gprA,Asq Ă rA1, A1s “ kerpA1 Ñ A1{rA1, A1sq so
g factors uniquely through A{rA,As. We note that Lpgq : A{rA,As Ñ A1{rA1, A1s is this unique morphism. Then
ΦA,Bpfq ˝ Lpgq : A1{rA1, A1s Ñ B descends from f ˝ g : A1 Ñ AÑ B. By construction, ΦA1,Bpf ˝ gq descends from
f ˝ g. The uniqueness of these morphisms implies ΦA,Bpfq ˝ Lpgq “ ΦA1,Bpf ˝ gq and we are functorial in A. A
similar argument shows the bijection is functorial in B. We conclude that L is a left adjoint to F .

HomCpA,F pBqq HomC1pLpAq, Bq

HomCpA
1, F pBqq HomC1pLpA

1q, Bq

ΦA,B

´˝g ´˝Lpgq

ΦA1,B

We will show that F does not have a right adjoint. We will first prove that a left adjoint functor F preserves
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coproducts. Let G be the right adjoint. Let Ai be objects of C and B an object of D. Then

HomC

˜

F

˜

ž

i

Ai

¸

, B

¸

» HomD

˜

ž

i

Ai, B

¸

»
ź

i

HomDpAi, GpBqq

»
ź

i

HomCpF pAiq, Bq

» HomC

˜

ž

i

F pAiq, B

¸

.

By Yoneda Lemma, F p
š

iAiq »
š

i F pAiq. The coproduct in the category of groups is the free product while the
coproduct in the category of abelian groups is the direct sum. The free product Z ˚ Z is not isomorphic to Z‘ Z
so F does not have a right adjoint.

Problem 3. Let R be a ring. Show that R is a division ring if and only if all R-modules are free.

(ñ) Assume that R is a division ring and let M be a left R-module. Let S be the set of all possible generating
sets of M ordered by inclusion. The set S is not empty since M P S. Let txiuiPI0 Ą txiuiPI1 Ą . . . be a decreasing
chain of elements of S. We claim X :“

Ş8

j“1txiuiPIj is a generating set of M . Assume some m P M is not in the
span of the elements of X. Then there is some index k such that m is not in the span of txiuiPIk , contradicting
our choices. By Zorn’s Lemma, there is a minimal element txiuiPI of S. If txiuiPI is linearly independent, we are
done. Assume otherwise so we have

řn
j“1 rjxj “ 0 where we only choose rj ‰ 0. Then x1 “ ´r

´1
1 p

řn
j“2 rjxjq and

the set txiuiPIzx1 is a strictly smaller generating set. This contradicts our construction, which implies txiuiPI is a
basis for M . We conclude that all left R-modules are free. We make the same argument for right R-modules.

(ð) We will prove that an injective R-module homomorphism is surjective when R is a left Artinian ring (and
thus left Noetherian). We can construct the descending chain impfq Ą impf2q Ą . . . of left R-modules. Then the
descending chain terminates and impfkq “ impfk`1q for some k. Take b P R. Then fkpbq P impfkq “ impfk`1q so
there is some c P R such that fk`1pcq “ fkpbq. Then fkpb´ fpcqq “ 0 and fk injective implies b “ fpcq. Thus f is
surjective.

Assume that all R-modules are free. Thus all R-modules are projective and R is semisimple. Then R is left
Artinian and, consequently, left Noetherian. Right multiplication f : R Ñ R by some a P R is a left R-module
homomorphism. Since Ra is free as a left R-module, f is an injective R-module homomorphism. By above, f is a
surjective left R-module homomorphism. There is some b P R such that fpbq “ ba “ 1. We conclude that every
element a P R has a left inverse. Let c be the left inverse of b. Then c “ cpbaq “ pcbqa “ a and each element of R
has an inverse. We conclude R is a division ring.

Problem 4. Let M “ Z
”

1
p

ı

and N “ Q{Z, where Z
”

1
p

ı

Ă Q is the subring generated by 1
p for a prime p. Show

(a) M is an Artinian module but not a Noetherian module

Note that M is the localization of Z away from the set S :“ tpk : k P N, k ě 1u. Let Ik :“
´

1
pk

¯

be Z-

submodules of M . If Ik “ Ik`1, then there is some r P Z such that r
pk
“ 1

pk`1 . In other words, there is some

s P S such that sprpk`1 ´ pkq “ pksprp ´ 1q “ 0. Since Z is an integral domain, this cannot occur. We have
an ascending chain I1 Ă I2 Ă . . . that does not terminate so M is not Noetherian.

Let A Ă M be a proper Z-submodule. Then there is a maximum k P N for which a
pk
P A for a P Z

and gcdpa, pq “ 1. In this case, gcdpa, pkq “ 1 so there are integers `,m such that ma ` `pk “ 1. Then

m a
pk
“

1´`pk

pk
“ 1

pk
P M . Thus b

pi P M for all b P Z and i ď k. In other words, A “

´

1
pk

¯

. Take a strict

descending chain A1 Ą A2 Ą . . . of Z-submodules of M . Then A1 “

´

1
pk

¯

for some k P N. Then 1
pj R A2 for

all natural numbers j ě k. Thus A2 “

´

1
pi

¯

for i ă k. Continuing this argument, the descending chain must

terminate. Thus M is Artinian.
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(b) N is neither Noetherian nor Artinian.

The counterexample in (a) proves that N is not Noetherian.

Order the prime numbers tpiuiPN. Define Ni as the Z-submodule of N generated by
!

1
pi
, 1
pi`1

, . . .
)

. Since

the pi P Z are prime, 1
pi´1

R Ni for each natural number i ě 2. Then we can construct a descending chain

N1 Ą N2 Ą . . . that does not terminate. We conclude that N is not Artinian.

Problem 5. Let K and L be quadratic field extensions of a field k. Prove that K bk L is an integral domain if
and only if the k-algebras K and L are not isomorphic.

(ñ) We will prove the contrapositive. Assume K » L. We have K » krxs{pfpxqq for an irreducible quadratic
fpxq P krxs. Then K bk L » K bk K » K bk krxs{pfpxqq » Krxs{pfpxqq. Note that fpxq has a root in K so
fpxq “ px´aqpx´bq for a, b P K. By the Chinese Remainder Theorem, Krxs{pfpxqq » Krxs{px´aqˆKrxs{px´bq »
K ˆK. It is clear that K ˆK is not an integral domain by taking the elements p1, 0qp0, 1q “ p0, 0q. We conclude
that K bk L is not an integral domain.

(ð) We will prove the contrapositive. Assume KbkL is not an integral domain. Since K is a quadratic extension
of k, K » krxs{pfpxqq for an irreducible quadratic fpxq P krxs. We have Kbk L » krxs{pfpxqqbk L » Lrxs{pfpxqq.
Since KbkL is not an integral domain, fpxq is not prime in Lrxs. Note that Lrxs is a UFD so fpxq is not irreducible
in Lrxs. Thus fpxq has a root α P L with α R k. The field homomorphism ϕ : K » krxs{pfpxqq Ñ L given by
ϕpxq “ α and ϕpaq “ a for a P k is well-defined. Any field homomorphism is injective since kerpϕq is an ideal of
K. Note that L can be viewed as a 2-dimensional vector space over k with basis t1, αu. Then ϕ is surjective since
ϕpax` bq “ aα` b for a, b P k. We conclude that K » L.

Problem 6. Let K Ă L be subfields of C and let p be a prime. Assume K contains a non-trivial p-th root of
unity. Show that L{K is a degree p Galois extension if and only if there is an element a P K that does not admit
a p-th root, such that L “ Kp p

?
aq.

(ñ) Assume that L{K is a degree p Galois extension. Let G :“ GalpL{Kq. Then G is cyclic, generated by some
σ P G. Let ξ be a primitive p-th root of unity. Since some primitive p-th root of unity is contained in K, we have
all primitive p-th roots of unity in K. Thus ξ P K and σpξq “ ξ. Since L{K is separable, the Primitive Element

Theorem implies L “ Krβs for some β in the algebraic closure of K. Define α :“
śp´1
i“0 σ

ipβqξp´i. Then

σpαq “ σ

˜

p´1
ź

i“0

σipβqξp´i

¸

“

p´1
ź

i“0

σi`1pβqσpξqp´i “
p´i
ź

i“0

σi`1pβqξp´i “
p
ź

i“1

σipβqξp´i`1 “ αξ

σpαpq “ σpαqp “ pαξqp “ αpξp “ αp

shows that α R K. Additionally G is cyclic so αp is fixed by G and αp P K. Define a :“ αp P K. Then the splitting
field M :“ Krαs of xp ´ a is a subfield of L that strictly contains K. Then rM : Ks ‰ 1 divides rL : Ks “ p so
rM : Ks “ p. We conclude that L “M “ Kr p

?
as.

(ð) Assume there is an element a P K that does not admit a p-th root and L “ Kp p
?
aq. Then L is the splitting

field of xp ´ a over K. The roots of xp ´ a are t p
?
aξiu for ξ a primitive p-th root of unity and 0 ď i ď p´ 1. Since

C is perfect, L{K is a separable and thus Galois extension. Note p
?
a R K so there is some σ P GalpL{Kq that does

not fix p
?
a. The image of p

?
a is a root which gives σp p

?
aq “ p

?
aξi for some 1 ď i ď p´ 1. We have σpp p

?
aq “ p

?
a

and σjp p
?
aq ‰ p

?
a for all 1 ď j ď p´ 1 since p is prime. The order of σ must be at least p. However, L{F Galois

implies p ď |GalpL{F q| “ rL : F s “ rKp p
?
aq : Ks ď p. Thus rL : Ks “ p.

Problem 7. Determine the ring endomorphisms of F2rt, t
´1s, where t is an indeterminate.

Let R :“ F2rt, t
´1s. For a ring endomorphism f : R Ñ R, we have fp1q “ 1 so f fixes the base field F2. Let

a P Rˆ. We note 1 “ fp1q “ fpaa´1q “ fpaqfpa´1q “ fpa´1qfpaq so f will send units to units with fpaq “ fpaq´1.
Each endomorphism of R is thus determined by the image of t since fpt´1q “ fptq´1. Take a nonzero p P R. Then
there is some k P Z such that tkp P F2rts and tkp has a nonzero constant term. If p P Rˆ, then tkp P Rˆ via
ptkpqpp´1t´kq “ 1. If tkp P Rˆ, then the product of two units t´kptkpq “ p is also an element of Rˆ. Thus tkp is a
unit of R if and only if p is a unit of R so it is sufficient to classify pF2rtsq

ˆ. We show below that pF2rtsq
ˆ “ t1u.

Thus Rˆ “ ttku for k P Z, and a ring endomorphism f : RÑ R will always be defined by fptq “ tk for some k P Z.
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Let pptq “ a0 ` ¨ ¨ ¨ ` ant
n P pF2rtsq

ˆ with an ‰ 0. Then there is some qptq “ b0 ` ¨ ¨ ¨ ` bmt
m P F2rts

such that qptqpptq “ 1. Distributing the product, the constant term a0b0 “ 1 so a0, b0 P Fˆ2 . Looking at the
highest degree term, anbm “ 0 so bm “ 0 since F2 is an integral domain. Then the next largest term in the
expansion yields anbm´1 “ 0 so bm´1 “ 0. We can continue this argument to show that bi “ 0 for all i ě 1.
Then b0pa0 ` ¨ ¨ ¨ ` ant

nq “ 1 implies n “ 0. In F2rts, the set of units is t1u. (The more general result is
f “ a0 ` . . . ant

n P Rrts is a unit if and only if a0 P R
ˆ and ai is nilpotent for all i ě 1.)

Problem 8. Let G be a finite group of order pq, where p and q are distinct primes. Show that

(a) G has a normal subgroup distinct from 1 and G

Without loss of generality, assume p ą q. Let mp denote the number of Sylow p-subgroups of G. By Sylow’s
Third Theorem, mp ” 1 (mod p) and mp divides q. Since q is prime, mp is either 1 or q. But q ı 1 (mod p)
since p ą q. Thus mp “ 1. Conjugation of a subgroup H Ă G by g P G is again a subgroup of G of order |H|.
Thus we will obtain a Sylow p-subgroup of G when we conjugate a Sylow p-subgroup by any element g P G.
Since we have a unique Sylow p-subgroup P Ă G, gPg´1 “ P and P is normal in G.

(b) if p ı 1 (mod q) and q ı 1 (mod p), then G is abelian.

Without loss of generality, assume p ą q. By (a), the Sylow p-subgroup P Ă G is a normal subgroup of G.
Sylow’s Theorems imply the existence of some Sylow q-subgroup Q Ă G. The subgroup P XQ is a subgroup
of both P and Q. Then |P XQ| “ 1 since |P | and |Q| are relatively prime. All of this implies G “ P ¸Q for
some group homomorphism ϕ : Q Ñ AutpP q. We have AutpP q » Z{pp´ 1qZ. The generator a P Q has order
q so it needs to map to an element of order dividing q, leaving 1 or q. By assumption, p ı 1 (mod q) so ϕpaq
is the identity automorphism. Thus G » P ˆQ for P,Q cyclic (which implies abelian). We conclude that G is
abelian.

Problem 9. Let G be a finite group of order pn for a prime p. Show that the group ring FprGs over the finite
field Fp with p elements has a unique maximal two-sided ideal.

List the elements of G as tgiu
pn

i“1 where e “ g1. Let ε : FprGs Ñ Fp be the augmentation homomorphism given

by εp
řpn

i“1 aigiq “
řpn

i“1 ai. It is clear that ε is surjective. Let I :“ kerpεq be the augmentation ideal. Since
FprGs{I » Fp, we note that I is a two-sided maximal ideal of FprGs. Thus I contains the Jacobson radical of FprGs
which we will denote JpFprGsq.

For an element a P I, we can write a “
řpn

i“1 aigi with
řpn

i“1 ai “ 0. Then a “
řpn

i“2p´aiqpe ´ giq and I is

generated by te´ giu
pn

i“2. The products Ik for k P N are generated by products of k not necessarily distinct choices

of te ´ giu
pn

i“2. We note that pe ´ giq
pn “ 1p

n

´ gp
n

i “ 0 since Fp is characteristic p. Thus there is some large
N P N such that IN “ 0 and I is a nilpotent ideal. Every nilpotent ideal is contained in the Jacobson radical so
I Ă JpFprGsq and I “ JpFprGsq. We conclude that I is the unique two-sided maximal ideal of FprGs.

Problem 10. Let E, M and F be finite abelian groups and consider group homomorphisms

E M F.
f g

Assume g is injective. Show that |cokerpg ˝ fq| “ |cokerpgq| ¨ |cokerpfq| where |X| denotes order of a finite set X.

We will show that in abelian groups, cokerpfq is given by M{impfq. Note that impfq is a normal subgroup of
the abelian group M so the quotient M{impfq is well-defined. Let q : M Ñ M{impfq be the projection. Then
given any abelian group Q for which the diagram below commutes, we want a unique abelian group morphism
h : M{impfq Ñ Q. Note that q1pfpeqq “ 0 for all e P E so q1pimpfqq “ 0. In other words, impfq Ă kerpq1q and q1

factors uniquely through M{impfq.

M

E M{impfq

Q

q
q1

0

f

0

h
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Now g injective implies |impgq| “ |M | and |impgfq| “ |impfq|. Thus by the finiteness of the abelian groups in
question,

|cokerpg ˝ fq| “ |F |{|impgfq| “ |F |{|impfq| “ |F |{|impgq| ¨ |M |{|impfq| “ |cokerpgq| ¨ |cokerpfq|

as desired.

Fall 2015

Problem 1. Show that the inclusion ZÑ Q is an epimorphism in the category of rings with multiplicative identity.

We want to show that f : Z Ñ Q is right cancellative. Let g, h : Q Ñ R be ring homomorphisms such that
gf “ hf for R a ring with identity. For a, b P Z we have

g
´a

b

¯

“ gpaqgpb´1q “ gpaqgpbq´1 “ hpaqhpbq´1 “ h
´a

b

¯

since gpaq “ gpfpaqq “ hpfpaqq “ hpaq for all a P Z. We conclude g “ h and f is an epimorphism

Problem 2. Let R be a principal ideal domain with field of fractions K.

(a) Let S be a non-empty multiplicatively closed subset of Rzt0u. Show that RrS´1s is a principal ideal domain.

We will first prove that the ideals of RrS´1s are in one-to-one correspondence with the ideals of R that are
disjoint from S. Let I Ă R be an ideal. We claim S´1I is a proper ideal of RrS´1s when I X S “ H. Since
I is a proper ideal R, S´1I “ RrS´1s implies I contains some element of S. Thus I X S “ H means S´1I
is a proper subset of RrS´1s. For a

s ,
b
t P S

´1I, we have ta`sb
st P S´1I since ta ` sb P I and st P S. For

r
t P S

´1R and a
s P RrS

´1s, we have ra
st P S

´1I since ra P I and st P S. Given an ideal J Ă RrS´1s, define
I :“ ta P R : a

1 P Ju. If a
s P J , then s

1
a
s “

a
1 P J so I is the set of all numerators of J . If J Ă RrS´1s is a

proper ideal, then 1
1 R J so 1 R I is a proper subset of R. Now ra P I for all a P I and r P R since r

1
a
1 “

ra
1 P J .

For a, b P I we have a
1 `

b
1 “

a`b
1 P J so a` b P I. We conclude that I Ă R is a proper ideal.

Returning to the problem, let J Ă RrS´1s be an ideal. Then the ideal I Ă R of all numerators of J is principal.
Let I “ paq for a P R. Then we claim that J “

`

a
1

˘

. Certainly J Ą
`

a
1

˘

. Let j
s P J . Then j “ ra for some

r P R and r
s
a
1 “

ra
s “

j
s . We conclude J “

`

a
1

˘

and RrS´1s is a principal ideal domain.

(b) Show that any subring K containing R is of the form RrS´1s for some multiplicatively closed subset S of Rzt0u.

Let R Ă T Ă K be a subring. Define S :“ ts P Rzt0u : 1
s P T u. Since 1

1 P T we have 1 P S. Given s, t P S, we
have 1

s
1
t “

1
st P T so st P S. Thus S is a multiplicatively closed subset of R and T Ą RrS´1s. Let a

s P T and
we want to show a

s P S
´1R. We can assume gcdpa, sq “ 1 since R is a UFD. In the PID R, Bezout’s identity

implies there are elements k, ` P R such that ka` `s “ 1. Thus k
1
a
s `

s
s
`
1 “

ka``s
s “ 1

s P T so a
s P RrS

´1s. We
conclude T “ RrS´1s for a multiplicatively closed set S of Rzt0u.

Problem 3. Let k be a field and define A “ krX,Y s{pX2, XY, Y 2q.

(a) What are the principal ideals of A?

Take a polynomial with coefficients in k. We can reduce all terms of degree greater than or equal to 2. Thus
the general element of A is aX ` bY ` c for a, b, c P k. Clearly p0q and p1q “ A are principal ideals. A
nontrivial, proper principal ideal will have some element ax ` by ` c. Assume a ‰ 0. Since k is a field, the
ideals paX ` bY ` cq “ pX ` a´1bY ` a´1cq. If a “ 0, then the element bY ` c gives the same principal ideal
as Y ` b´1c if b is nonzero. If b “ 0, we see pcq “ p1q “ A if c ‰ 0 since c has an inverse in k or pcq “ p0q for
c “ 0. Thus all principal ideals have one of the following forms tp0q, A, pX ` aY ` bq, pY ` cqu for a, b, c P k.

FIX THIS, GUYS WITH NONZERO CONSTANT TERMS ARE UNITS

(b) What are the ideals of A?

Take a nontrivial, proper ideal I Ă A. If I is principal, then I is listed above. Assume I is not principal. Then
there is some element aX ` bY ` c for a or b nonzero. First assume a ‰ 0. Then pX ` a´1bY ` a´1cq P I
and take B :“ a´1b and C :“ a´1c for B,C P k. Since I is not principal, there is some pdX ` eY ` fq P I
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such that dX ` eY ` f is not a multiple of X ` BY ` C. If d “ 0, then we have pY ` F q P I for F :“ e´1f .
We find pX ` BY ` Cq ´ BpY ` F q “ X ` pC ´ BF q P I. Given any element pgX ` hY ` iq P I, we find
pgX ` hY ` iq ´ gpX ` pC ´ BF qq ´ hpY ` F q “ pi ´ gpC ´ BF q ´ hF q P I. If i ´ gpC ´ BF q ´ hF ‰ 0,
then I “ A, contradicting our choice. Thus pgX ` hY ` iq “ gpX ` pC ´ BF qq ` hpY ` F q and we have
I “ pX ` pC ´BF q, Y ´ F q.

If d ‰ 0, we have pX`EY `F q P I for E :“ d´1e and F :“ d´1f . Reducing, pX`EY `F q´pX`BY `Cq “
pE´BqY `pF ´Cq P I and we know pE´BqY `pF ´Cq ‰ 0 by construction. If E´B “ 0, then F ´C ‰ 0
and I “ A, contradicting our choice. Thus E ´B ‰ 0 and we have Y ` pE ´Bq´1pF ´Cq P I. We are now in
the case of d “ 0 so I “ pX ` J, Y ` pE ´Bq´1pF ´ Cqq for J P k.

We now take a “ 0. Then we have pY ` b´1cq P I. Let C :“ b´1c. Take pdX ` eY ` fq P I such that
dX` eY ` f is not a multiple of Y `C. We have pdX` eY ` fq´ epY `Cq “ pdX`pf ´ eCqq P I. We cannot
have d “ 0 since I is proper. Then I “ pX `D,Y ` Cq for D :“ d´1pf ´ eCq as above. Thus all ideals of A
are of the form tp0q, A, pX ` aY ` bq, pY ` cq, pX ` d, Y ` equ for a, b, c, d, e P k.

Problem 4. Let K be a field and let L be the field KpXq of rational functions over K.

(a) Show that there are two unique K-automorphisms f and g of the field L “ KpXq such that fpXq “ X´1 and
gpXq “ 1 ´ X. Let G be the subgroup of the group of K-automorphisms of L generated by f and g. Show
that |G| ą 3.

We define f : LÑ L as fpkq “ k for k P K and fpXq “ X´1. Then extend f to a K-homomorphism. Similarly,
g : LÑ L is defined as gpkq “ k for k P K and gpXq “ 1´X. Then we extend g to a K-homomorphism. We

will now show that f and g are automorphisms of L. Since L is a field, f and g are injective. Take ppXq
qpXq P L

for ppXq, qpXq P KrXs. Then f
´

ppX´1
q

qpX´1q

¯

“
fpppX´1

qq

fpqpX´1qq
“

ppXq
qpXq . Thus f is a K-automorphism. Similarly,

g
´

pp1´Xq
qp1´Xq

¯

“
ppXq
qpXq so g is a K-automorphism.

Note that f ‰ g via the image of X. Then G contains at least te, f, gu where e is the identity K-automorphism.

Now gfpXq “ gpX´1q “ 1
1´X and fgpXq “ fp1´Xq “ 1´X´1 “ X´1

X . If 1
1´X “ X´1

X , then X`p1´Xq2

Xp1´Xq “ 0

and X would be algebraic over K, a contradiction. Thus gf ‰ fg as K-automorphisms. A similar argument
shows that both gf and fg are distinct from e, f , and g. Thus G contains at least te, f, g, fg, gfu and |G| ą 3.

It will be important later to show that |G| ě 6. Take fgfpXq “ f
´

1
1´X

¯

“ 1
1´X´1 “

X
X´1 . Then a similar

argument to above shows that fgf is distinct from e, f , g, fg, and gf . Thus |G| ě 6.

(b) Let E “ LG. Show that P “ pX2
´X`1q3

X2pX´1q2 P E.

We want to show that P is fixed under f and g action.

fpP q “
fppX2 ´X ` 1q3q

fpX2pX ´ 1q2q
“
pX´2 ´X´1 ` 1q3

X´2pX´1 ´ 1q2
“
p 1´X`X2

X2 q3

p1´Xq2

X2X2

“
p1´X `X2q3

X2p1´Xq2
“ P

gpP q “
gppX2 ´X ` 1q3q

gpX2pX ´ 1q2q
“
pp1´Xq2 ´ p1´Xq ` 1q3

p1´Xq2p´Xq2
“
pX2 ´X ` 1q3

X2pX ´ 1q2
“ P

Thus P P LG.

(c) Show that L{KpP q is a finite extension of degree 6.

We construct a polynomial with coefficients in KpP q for which X is a root. Define

ppT q :“ pT 2 ´ T ` 1q3 ´ P pT 2pT ´ 1q2q

for ppT q P KpP qrT s so ppXq “ 0. Since p is degree 6, rL : KpP qs ď 6. Note that P P LG by (b) so
KpP q Ă LG Ă L. By the final argument of (a), we have 6 ď rL : LGs ď rL : KpP qs ď 6. Therefore, L{KpP q is
a finite extension of degree 6.

(d) Deduce that E “ KpP q and that G is isomorphic to the symmetric group S3.

The chain of inequalities in (c) implies rL : LGs “ 6. By Artin’s Theorem, L{LG is a Galois extension with
Galois group GalpL{LGq » G. The finite Galois extension satisfies |G| “ rL : LGs “ 6. By (a), it is clear that
G is not abelian. The only nonabelian group of order 6 is S3. Thus G » S3.
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Problem 5.

(a) Let G be a group of order pev with v and e positive integers, p prime, p ą v, and v not a multiple of p. Show
that G has a normal Sylow p-subgroup.

By Sylow’s Third Theorem, the number of Sylow p-subgroups mp satisfies mp ” 1 (mod p) and mp divides v.
Thus mp “ kp ` 1 for k ě 0. However, p ą v and mp|v implies k “ 0. We conclude mp “ 1. Let P be the
unique Sylow p-subgroup of G. As in Spring 2015 Problem 8, conjugation of P by an element g P G is another
Sylow p-subgroup. Thus gPg´1 “ P and P is a normal Sylow p-subgroup of G.

(b) Show that a nontrivial finite p-group has a nontrivial center.

Let H be a nontrivial finite p-group. Thus |H| “ pk for k ą 0. Act on the set H by H via conjugation. An
element is fixed by conjugation if and only if the element is in the center of H. The class equation implies

|H| “ |ZpHq| `
ÿ

hPH,hRZpHq

|Orbphq|.

We have p||H| and |Orbphq| “ rG : Stabphqs by Orbit-Stabilizer. Thus p||Orbphq| for each h R ZpHq. We
conclude that p divides |ZpGq| “ |H| ´

ř

hPH,hRZpHq |Orbphq|. Note |ZpHq| ą 1 since the identity of H is

contained in the center. Thus |ZpHq| ě p so H has a nontrivial center.

Problem 6. Let F be a field of characteristic not 2. Let a and b be nonzero elements of F . Let R be the
F -algebra R “ F xi, jy{pi2 ´ a, j2 ´ b, ij ` jiq, the quotient of the free associative algebra on 2 generators by the
given two-sided ideal.

(a) Let F be the algebraic closure of F . Show that R bF F is isomorphic as an F -algebra to the matrix algebra
M2pF q.

Let α P F be such that α2 “ a and β P F such that β2 “ b. Define the F -algebra homomorphism f :

F xi, jy bF F Ñ M2pF q by fp1b 1q “

ˆ

1 0
0 1

˙

, fpib 1q “

ˆ

α 0
0 ´α

˙

, and fpj b 1q “

ˆ

0 β
β 0

˙

.

f

ˆ

ib
α´1

2
` 1b

1

2

˙

“

ˆ

1
2 0
0 ´ 1

2

˙

`

ˆ

1
2 0
0 1

2

˙

“

ˆ

1 0
0 0

˙

f

ˆ

ib
α´1

2
´ 1b

1

2

˙

“

ˆ

1
2 0
0 ´ 1

2

˙

´

ˆ

1
2 0
0 1

2

˙

“

ˆ

0 0
0 ´1

˙

f

ˆ

1

2
pib α´1qpj b β´1q ` j b

β´1

2

˙

“

ˆ

0 1
2

´ 1
2 0

˙

`

ˆ

0 1
2

1
2 0

˙

“

ˆ

0 1
0 0

˙

f

ˆ

1

2
pib α´1qpj b β´1q ´ j b

β´1

2

˙

“

ˆ

0 1
2

´ 1
2 0

˙

´

ˆ

0 1
2

1
2 0

˙

“

ˆ

0 0
´1 0

˙

We see that f is surjective since the above matrices generate M2pF q as an F -algebra. By construction, pi b
1q2 ´ pab 1q, pj b 1q2 ´ pbb 1q, and pib 1qpj b 1q ` pj b 1qpib 1q are all elements in the kernel of f . With the
above relationships, we can reduce all other elements to the form c1pib1q`c2pjb1q`c3pib1qpjb1q`c4p1b1q.

fpc1pib1q`c2pjb1q`c3pib1qpjb1q`c4p1b1qq “ c1

ˆ

α 0
0 ´α

˙

`c2

ˆ

0 β
β 0

˙

`c3

ˆ

0 αβ
´αβ 0

˙

`c4

ˆ

1 0
0 1

˙

.

If the above is zero, we need ci “ 0 for all 1 ď i ď 4. Thus kerpfq is the normal subgroup of F xi, jy bF F
generated by tpib1q2´pab1q, pjb1q2´pbb1q, pib1qpjb1q`pjb1qpib1qu. Then f : pF xi, jybF F q{ kerpfq »
RbF F Ñ M2pF q is an isomorphism.

(b) Give a basis for R as an F -vector space, justifying your answer. (You may use (a).)

By (a), RbF F » M2pF q is a central simple F -algebra. Note F Ă ZpRq. If ZpRq ‰ F , then it is a k-dimensional

vector space over F for some k. Thus ZpRqbF F »
Àk

i“1 F . But, ZpRbF F q “ ZpRqbF ZpF q “ ZpRqbF F “
F . Thus ZpRq “ F . If R is not simple, then there is a two-sided ideal I Ă R. Then I bF F would be a proper
two-sided ideal of R bF F . Since R bF F is simple, R is simple. Thus R is a central simple F -algebra and
dimF pRq “ dimF pRbF F q “ dimF pM2pF qq “ 4.

By the argument in (a), we have that t1b1, ib1, jb1, ijb1u is linearly independent in RbF F as an F -vector
space. Thus t1, i, j, iju is a linearly independent set and a basis of R as an F -vector space.

12



Problem 7. Show the symmetric group S4 has exactly two isomorphism classes of irreducible complex repre-
sentations of dimension 3. Compute the characters of these two representations.

We will first show that the abelianization S4{rS4, S4s has order 2. The commutator subgroup rS4, S4s is generated
by elements ghg´1h´1 P S4. Each ghg´1h´1 is an even permutation so rS4, S4s Ă A4. The nonidentity elements of
A4 are of the form pijqpk`q or pijkq for 1 ď i, j, k, ` ď 4. Without loss of generality, we will show p123q, p14qp23q P
rS4, S4s. Notice p23qp12qp23qp12q “ p123q P rS4, S4s and p123qp234qp132qp243q “ p14qp23q P rS4, S4s as desired.
Thus rS4, S4s “ A4 and |S4{rS4, S4s| “ 2.

Each one-dimensional representation of S4 is a group homomorphism ρ : S4 Ñ Cˆ. Since Cˆ is an abelian
group, ρ factors uniquely through the abelian group S4{rS4, S4s. If two one-dimensional representations are equal on
S4{rS4, S4s, then they were equal as homomorphisms from S4. Thus the number of one-dimensional representations
of S4{rS4, S4s is equal to the number of one-dimensional representations of S4. By above, S4{rS4, S4s has two
conjugacy classes so it has two one-dimensional irreducible representations. We conclude that S4 should have two
one-dimensional representations. (This works for one-dimensional irreducible representations of any group.)

Now the trivial representation and the sign representation, sgn : S4 Ñ Cˆ, are the two one-dimensional
representations of S4. The conjugacy classes of S4 are based on cycle type of which there are five. Since |S4| “ 24,
we have 24 “ 1 ` 1 ` a2 ` b2 ` c2 for a, b, c P N representing the dimensions of the three other irreducible
representations. If we take c ě 4, we are left with a2 ` b2 “ 6, which cannot occur. Thus 1 ă a, b, c ď 3. We
cannot have a “ b “ c “ 2 so, without loss of generality, take c “ 3. Then we need 13 “ a2 ` b2 so the only option
is a “ 2 and b “ 3. Thus S4 has two 3-dimensional irreducible representations.

We will realize the two irreducible representations in question. Define the vector space V :“ tpviq P R4 :
ř4
i“1 vi “ 0u. Then V has a left S4 action via σpviq “ pvσpiqq for σ P S4. Then tp´1, 1, 0, 0q, p´1, 0, 1, 0q, p´1, 0, 0, 1qu

is a basis for V . The action described gives an irreducible representation for S4 since p23qp´1, 1, 0, 0q “ p´1, 0, 1, 0q
and p24qp´1, 1, 0, 0q “ p´1, 0, 0, 1q. In other words, there is no S4-invariant subspace of V . Let ρ : S4 ÑM3pCq be
the described irreducible representation.

e (12) (123) (12)(34) (1234)
χsgn 1 -1 1 1 -1
χρ 3 1 0 -1 -1

Now ρb sgn is an irreducible representation of S4ˆS4. Include S4 along the diagonal of S4ˆS4 to make ρb sgn a
representation of S4. The character χρbsgnpgq “ χρpgqχsgnpgq which gives the following row of the character table.

e (12) (123) (12)(34) (1234)
χρbsgn 3 -1 0 -1 1

We have an inner product on the space of class functions such as xχµ, χνy “
1
|G|

ř

gPG χµpgqχνpg
´1q. We know that

xχρbsgn, χρbsgny “ 1 if and only if ρ b sgn is an irreducible representation. We note that the number of elements
in each conjugacy class are 1, 6, 8, 3, 6 respectively. Since g´1 and g are in the same conjugacy class for all g P S4,

xχρbsgn, χρbsgny “
1

24
p1p9q ` 6p1q ` 8p0q ` 3p1q ` 6p1qq “ 1.

Thus ρb sgn is the other irreducible representation of S4.

Problem 8. Let F be a field. Show that the group SLp2, F q is generated by the matrices

ˆ

1 e
0 1

˙

and

ˆ

1 0
e 1

˙

for elements e in F .

The group SLp2, F q is all 2 ˆ 2 contains matrices with determinant one. Let A “

ˆ

a b
c d

˙

be a general matrix

in SLp2, F q. Case 1: If a “ 0 or d “ 0, then c “ ´b´1. Case 2: If b “ 0 or c “ 0, then d “ a´1. Case 3: Assuming

nonzero a, b, c, d P F , then A “

ˆ

d´1p1` bcq b
c d

˙

. We will show that we can construct each of these cases with
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the matrices

ˆ

1 e
0 1

˙

and

ˆ

1 0
e 1

˙

. Let a, b, e, f P F . Case 1 is given by the following.

ˆ

1 e
0 1

˙ˆ

1 0
´e´1 1

˙

“

ˆ

0 e
´e´1 1

˙

ˆ

0 e
´e´1 1

˙ˆ

1 ep1´ aq
0 1

˙

“

ˆ

0 e
´e´1 a

˙

ˆ

1 0
´e´1 1

˙ˆ

1 e
0 1

˙

“

ˆ

1 e
´e´1 0

˙

ˆ

1 ep1´ aq
0 1

˙ˆ

1 e
´e´1 0

˙

“

ˆ

a e
´e´1 0

˙

Case 2 can be constructed by the following.

ˆ

0 ´be
e´1b´1 0

˙ˆ

0 e
´e´1 ´e´1b´1a

˙

“

ˆ

b a
0 b´1

˙

ˆ

0 ´e´1

e ´e´1b´1a

˙ˆ

0 e´1b´1

´be 0

˙

“

ˆ

b 0
a b´1

˙

Let c, d P F . Case 3 begins as follows.

ˆ

b a
0 b´1

˙ˆ

c 0
d c´1

˙

“

ˆ

bc` ad ac´1

b´1d b´1c´1

˙

Then pb´1c´1q´1p1` pac´1qpb´1dqq “ bcp1` ab´1c´1dq “ bc` ad, the first row, first column entry above. We can

generate every matrix in Cases 1, 2, and 3. We conclude SLp2, F q is generated by

ˆ

1 e
0 1

˙

and

ˆ

1 0
e 1

˙

.

Problem 9.

(a) Let R be a finite-dimensional associative algebra over a field F . Show that every element of the Jacobson
radical of R is nilpotent.

Let x P JpRq such that x ‰ 0. Thus x R F . By finite dimension, t1, x, . . . , xnu is a linearly dependent set

for some n P N. Choose n minimal. If xn “ 0, we are done so assume otherwise. Then xn “
řn´1
i“0 aix

i and

0 “ xn ´
řn´1
i“0 aix

i. Factor out xj for maximal j which implies aj ‰ 0. Define bi :“ a´1
j ai so bj “ 1. Then

0 “ ajx
j

˜

a´1
j xn´j ´

n´1
ÿ

i“j

bix
i´j

¸

“ ajx
j

˜

1´

˜

n´1
ÿ

i“j`1

pbix
i´j´1q ´ a´1

j xn´j´1

¸

x

¸

.

Since x P JpRq, we have
´

1´
´

řn´1
i“j`1pbix

i´j´1q ´ a´1
j xn´j´1

¯

x
¯

P Rˆ so ajx
j “ 0. Then aj P R

ˆ implies

xj “ 0, contradicting the minimality of n. We conclude that xn “ 0 for some n. Therefore, every element of
the Jacobson radical is nilpotent.

(b) Let R be a ring. Is an element in the Jacobson radical of R always nilpotent? Is a nilpotent element of R
always in the Jacobson radical? Justify your answers.

In Problem 2, we derived the correspondence of ideals in a localization. We want to show that a prime ideal
of R maps to a prime ideal of S´1R for S a multiplicatively closed subset of Rzt0u with 1 P S under this
correspondence. Let p Ă R be a prime ideal. Let a

s
b
t “

ab
st P S

´1p. Then ab P p so a P p or b P p since p is

prime. Thus a
s P S

´1p or b
t P S

´1p. Note that 1
1 P S

´1p implies there is some a
1 P S

´1p such that sa “ 1 for
a P p. Thus 1 P p, a contradiction. We conclude S´1p is proper and, as a result, S´1p is a prime ideal of S´1R.

An element of the Jacobson radical is not always nilpotent. In commutative rings, the nilradical, the set of all
nilpotent elements, is the intersection of all prime ideals of the ring. The Jacobson radical is the intersection of
all maximal ideals of R. The ring Zrxs has maximal ideal p2, xq. Let R “ Zrxsp2,xq be the localization of Zrxs
with S “ Zrxszp2, xq. Then R is local with JpRq “ S´1p2, xq. Note Zrxs{p2q » pZ{2Zqrxs, which is an integral
domain. Thus p2q is a prime ideal of Zrxs. Similarly, Zrxs{pxq » Z, an integral domain. Thus pxq is a prime

14



ideal of Zrxs. By the argument above, S´1p2q and S´1pxq are prime ideals of R. We see that S´1p2q XS´1pxq
is a strict subset of the Jacobson radical S´1p2, xq. Take for instance 2`x

1 P JpRq but 2`x
1 is not nilpotent.

A nilpotent element is not always in the Jacobson radical of a ring R. Let R “ M2pCq and A :“

ˆ

0 1
0 0

˙

P

M2pCq. It is clear that A2 is the zero matrix so A is nilpotent. Then we have
ˆ

1 0
0 1

˙

´

ˆ

0 0
1 0

˙ˆ

0 1
0 0

˙

“

ˆ

1 0
0 1

˙

´

ˆ

0 0
0 1

˙

“

ˆ

1 0
0 0

˙

.

The result is not invertible so A R JpRq.

Problem 10. Let p be a prime number. For each abelian group K of order p2, how many subgroups H of Z3

are there with Z3{H isomorphic to K.

Note that Z3 is abelian so each subgroup H Ă Z3 is normal. Let S be the set of surjective group homomorphisms
f : Z3 Ñ K and T be the set of all subgroups H of Z3 for which Z3{H » K. Then define a set map Φ : S Ñ T by
Φpfq “ kerpfq. Let AutpKq be the group automorphism of K, and AutpKq acts on S by post-composition. Denote
by S{AutpKq the set of orbits of S under the action by AutpKq. Let σ P AutpKq, then kerpσ ˝ fq “ kerpfq since σ
is injective. As a result, Φ : S{AutpKq Ñ T is a well-defined set map. Surjectivity of Φ follows from the fact that
each subgroup H for which Z3{H » K defines a surjective group homomorphism f : Z3 Ñ Z3{H » K.

We want to show that Φ is injective. Let f, g P S such that kerpfq “ kerpgq. By the universal property of
quotients, f factors through Z3{ kerpfq, and there is some isomorphism α : Z3{ kerpfq Ñ K such that α ˝ π “ f for
π : Z3 Ñ Z3{H the canonical quotient homomorphism. Similarly, β ˝π “ g for an isomorphism β : Z3{ kerpgq Ñ K.
Then f “ pα ˝ β´1q ˝ g where pα ˝ β´1q P AutpKq, and f and g are in the same AutpKq-orbit of S. We conclude
that Φ is a bijection.

It is sufficient to find the number of surjective group homomorphisms f : Z3 Ñ K for each K. There are only
two abelian groups of order p2: Z{p2Z and Z{pZ ˆ Z{pZ. Case 1: Let K “ Z{p2Z. We need only find images
for the 3 generators of the free abelian group Z3. Let x, y P Z{p2Z be non-generating elements. They are classes
represented by integers divisible by p. Then representatives of x` y are divisible by p and x` y does not generate
Z{p2Z. Thus at least one of the generators of Z3 must map to a generator of Z{p2Z in order for the homomorphism
to be surjective. There are φpp2q “ p2 ´ p generators of Z{p2Z for Euler’s totient function ϕ. There are p6 total
homomorphisms and p3 homomorphisms that are not surjective. Since |AutpZ{p2Zq| “ ϕpZ{p2Zq “ p2 ´ p, there

are p6´p3

p2´p “ p4 ` p3 ` p2 total subgroups H of Z3 for which Z3{H » Z{p2Z.

Case 2: Let K “ Z{pZ ˆ Z{pZ. Once again, we need only find images for the 3 generators of the free abelian
group Z3. Note that K is no longer generated by just one element. For the homomorphism to be surjective, we
need the image of at least two of the generators of Z3 to map to generators of K. This equates to sending one
generator to a nontrivial element a P K and sending a second to an element outside the subgroup generated by a
in K. The subgroup generated by a will have order p. We have three scenarios. If the first generator is sent to a
nonzero a P K, we have pp2 ´ 1qpp2 ´ pqpp2q ` pp2 ´ 1qppqpp2 ´ pq options depending on the image of the second
generator. If the first generator is sent to zero, we have pp2 ´ 1qpp2 ´ pq options. In total, we have p6 ´ p4 ´ p3 ` p
surjective homomorphisms. There are pp2 ´ 1qpp2 ´ pq “ p4 ´ p3 ´ p2 ` p automorphisms of K which implies
p6´p4´p3`p
p4´p3´p2`p “ p2 ` p` 1 subgroups H of Z3 such that Z3{H » Z{pZˆ Z{pZ.

Spring 2016

Problem 1.

(a) Give an example of a unique factorization domain A that is not a PID. You need not show that A is a UFD
(assuming it is), but please show that your example is not a PID.

Let A :“ Zrxs. We know that A is a UFD by an application of Gauss’s Lemma. Let I :“ p2, xq and we claim
that I is not a principal ideal. We will first show that I is a proper ideal of A. For 1 ‰ 2a` bx, we would need
b “ 0. Then there are no possible choices for a since 1 R 2Z. Thus 1 R I and I is a proper ideal of A.

Assume I “ ppq for some p P A. Then there is an r P A such that rp “ 2. Since Z is an integral domain,
0 “ degprpq “ degprq ` degppq so degppq “ 0. Thus p P Z and the only integer divisors of 2 are ˘1,˘2. Since
I is a proper ideal, p “ ˘2. We note p2q “ p´2q so take p “ 2. Now there is some s P A such that sp “ x.
However, 2s “ x cannot occur. We conclude that I is not principal.
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(b) Let R be a UFD. Let p be a prime ideal such that 0 ‰ p and there is no prime ideal strictly between 0 and p.
Show that p is principal.

Let a P p be some nonzero element. Since R is a UFD, we can factor a as a product of irreducible elements
a “

śn
i“1 p

ki

i . In a UFD, irreducible implies prime so each pi is prime in R. Since a P p and p is a prime ideal,
one of the pi P p. Thus ppiq Ă p. Since ppiq is a prime ideal, we must have ppiq “ p and p is principal.

Problem 2. Consider the functor F from commutative rings to abelian groups that takes a commutative ring
R to the group R˚ of invertible elements. Does F have a left adjoint? Does F have a right adjoint? Justify your
answers.

We will show that F has a left adjoint. Define the functor L : AbGroup Ñ CRing as LpAq “ ZrAs, the group
ring over Z. For an abelian group morphism f : X Ñ Y , we define Lpfq : ZrXs Ñ ZrY s as Lpfqpxq “ fpxq and
extend Z-linearly. Note that Lpfq is well-defined since x P X is a unit in ZrXs and it maps to a unit in ZrY s.
Additionally, Lpfq is a unique commutative ring morphism that agrees with f on X since Z is initial in CRings.
Let 1X : X Ñ X be the identity morphism. Then Lp1Xqp

ř

xPX axxq “
ř

xPX axx and Lp1Xq “ 1LpXq for ax P Z.
Let f : X Ñ Y and g : Y Ñ Z be two abelian group morphisms. Then Lpgfqp

ř

xPX axxq “
ř

xPX axgpfpxqq “
Lpgqp

ř

xPX axfpxqq “ LpgqpLpfqp
ř

xPX axxqq for ax P Z. Thus Lpgfq “ LpgqLpfq and L is a functor.
We want to show that L is a left adjoint to F . Let f : A Ñ F pBq be an abelian group morphism for

A P ObpAbGroupq and B P ObpCRingq. Define a natural transformation ΦA,B : HomAbGrouppA,F pBqq Ñ
HomCRingpLpAq, Bq by ΦA,Bpfqpxq “ fpxq and extend Z-linearly. By above, this is well-defined and the unique
commutative ring morphism that agrees with f on X. Since units must map to units in a commutative ring mor-
phism, every h P HomCRingpLpAq, Bq restricts to a morphism in HomAbGrouppA,F pBqq. Thus ΦA,B is a bijection.
We want to show that the bijection is functorial in A and B. Let g : A1 Ñ A be a morphism of abelian groups. We
want the diagram below to commute. Let f P HomAbGrouppA,F pBqq as before. Then ΦA,Bpfq ˝ Lpgq : LpA1q Ñ B
extends the morphism f ˝ g : A1 Ñ F pBq. By definition, ΦA1,Bpf ˝ gq is also a morphism that extends f ˝ g. The
uniqueness in our choices of this morphism implies ΦA,Bpfq ˝Lpgq “ ΦA1,Bpf ˝ gq and the diagram commutes. The
argument for B is similar so the bijection is functorial in A and B. Therefore, L is a left adjoint to F .

HomAbGrouppA,F pBqq HomCRingpLpAq, Bq

HomAbGrouppA
1, F pBqq HomCRingpLpA

1q, Bq

ΦA,B

´˝g ´˝Lpgq

ΦA1,B

We will now show that left adjoints preserve initial objects. Let L : C Ñ D and R : D Ñ C be an adjoint pair.
Let A P ObpCq be an initial object. Then HomDpLpAq, Bq » HomCpA,RpBqq for any B P ObpDq. But A initial
in C implies HomCpA,RpBqq has only one element. We conclude that HomDpLpAq, Bq has only one element and
LpAq is initial in D.

In this problem, we want to show that F does not have a right adjoint. Assume F has a right adjoint G for
the sake of contradiction. We will prove that F preserves initial objects. Let I be an initial object of C and B any
object in D. Then

HomDpF pIq, Bq » HomDpI,GpBqq

and HomDpI,GpBqq is one element by the definition of an initial object. Thus F pIq is initial in D. We note that
Z is initial in CRings, but F pZq » Z{2Z since ˘1 are the only units in Z. The abelian group Z{2Z is not initial
since HomAbGrouppZ{2Z,Z{2Zq has two elements, the trivial morphism and an isomorphism. Thus F cannot have
a right adjoint.

Problem 3. Let R be a ring which is left Artinian (that is, Artinian with respect to left ideals). Suppose that
R is a domain, meaning that 1 ‰ 0 in R and ab “ 0 implies a “ 0 or b “ 0 in R. Show that R is a division ring.

Let the ring homomorphism f : R Ñ R be right multiplication by some nonzero a P R. Then fpbq “ 0 implies
ba “ 0 so a “ 0 or b “ 0 by R a domain. Since a ‰ 0, we have b “ 0 and f is injective. Note that this means fk is
injective for all k. We have the chain of decreasing left R-modules,

impfq Ą impf2q Ą . . .
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Since R is Artinian, the chain terminates so impfkq “ impfk`1q for some k P N. Let b P R be any element. Then
fkpbq P impfkq so there is some c P R such that fk`1pcq “ fkpbq. Rearranging, fkpfpcq ´ bq “ 0 and fpcq “ b by
injectivity of fk. We conclude that f is surjective. Then fpbq “ 1 for some b P R which implies ba “ 1. We have
shown that every nonzero element a P R has a left inverse. In particular, b has a left inverse, say, c P R. Then
a “ pcbqa “ cpbaq “ c so ba “ ab “ 1. Thus every nonzero a P R is invertible. We conclude R is a division ring.

Problem 4. Let A be a commutative ring, S a multiplicatively closed subset of A, AÑ ArS´1s the localization.

(a) Which elements of A map to zero in ArS´1s?

An element a P A maps to a
1 P ArS

´1s. If a
1 “ 0, then there is some s P S such that sa “ 0. Thus 0 P Sa for

the set Sa “ tsa : s P Su. All elements a P A such that 0 P Sa map to zero in the localization so this classifies
all elements of A that map to zero.

(b) Let p be a prime ideal in A. Show that the ideal generated by the image of p in ArS´1s is prime if and only if
the intersection of p with S is empty.

Denote the image of p in ArS´1s by S´1p. (ñ) Assume pX S ‰ H and we will prove the contrapositive. Let
s P pXS, then s

1 P S
´1p so s

1
1
s “

1
1 P S

´1p. Thus S´1p “ ArS´1s and the image of p in ArS´1s is not a prime
ideal. (ð) Assume pX S “ H. Then S´1p is a prime ideal by the arguments in Fall 2015 Problems 2(a) and
9(b).

Problem 5. Let A be the ring Cxu, vy{puv´vu´1q, the quotient of the free associative algebra on two generators
by the given two-sided ideal.

(a) Show that every nonzero A-module M has infinite dimension as a complex vector space.

Assume that M is a finite dimensional C-vector space. Pick a basis β. We note that left multiplication by u
is a C-linear transformation of M . Thus there is a matrix A in the basis β such that Ax “ ux. Let B be the
matrix that represents left multiplication by v. We have AB ´ BA “ I. However, TracepAB ´ BAq “ 0 and
TracepIq ‰ 0, a contradiction. We conclude that M is infinite dimensional as a C-vector space.

(b) Let M be an A-module with a nonzero element y such that uy “ 0. Show that the elements y, vy, v2y, . . . are
C-linearly independent in M .

Take
ř8

i“0 cipv
iyq “ 0 for only finitely many nonzero ci P C. Take N to be the maximal i for which ci ‰ 0. Left

multiplication by u gives u
´

řN
i“0 cipv

iyq
¯

“
řN
i“1 cipiv

i´1y ` viuyq “
řN
i“1 iciv

i´1y where the initial term is

sent to zero. Then we have

0 “ uN

˜

N
ÿ

j“1

cipv
iyq

¸

“ pN !cN qy.

Since y ‰ 0, we have cN “ 0. Continue this process by multiplying by uN´1 and so on. We conclude that
ci “ 0 for all 0 ď i so ty, vy, v2y, . . . u is linearly independent.

Problem 6. Let K be a field of characteristic p ą 0. For an element a P K, show that the polynomial
P pXq “ Xp ´X ` a is irreducible over K if and only if it has no root in K. Show also that, if P is irreducible,
then any root of it generates a cyclic extension of K of degree p.

(ñ) We will prove the contrapositive. Assume P has a root α P K. We can immediately conclude that P is not
irreducible in K since P “ pX ´ αqg for some g P KrXs.

(ð) We will prove the contrapositive. Assume P is reducible so P “
śk
i“1 gi for irreducible gi P KrXs with

degpgiq ă p. Let α P K be a root of g :“ g1. Then α is a root of P and αp ´ α ` a “ 0. Since K is a field of
characteristic p, we have Fp Ă K for Fp the field of p elements. Let k P Fp. Then

pα` kqp ´ pα` kq ` a “ αp ` kp ´ α´ k ` a “ αp ` k ´ α´ k ` a “ αp ´ α` a “ 0.

We conclude that the set of roots of P is tα ` k : k P Fpu Ă Krαs, which implies P is separable over K. Further,
Krαs is the splitting field of P so Krαs{K is a Galois extension. Let G :“ GalpKrαs{Kq and take σ P G. Then
σpαq “ α` k for k P Fp. We see that σ`pαq “ α` k`. Assume that k ‰ 0. Then k` “ 0 in Fp implies k “ 0 in Fp
or p|` “ 0 in Z. Thus the order of σ is at least p. Since σppαq “ α, we know the order of σ is p. Then |G| ě p,
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contradicting our assumption that degpgq ă p. We have σpαq “ α and |G| “ 1. Thus g “ pX ´ αq, which implies
P has a root in K.

Assume P is irreducible. Let α P K be a root of P . By above, the roots of the separable polynomial P are
tα` k : k P Fpu so P splits in Krαs. Then Krαs{K is Galois with rKrαs : Ks “ p. The Galois group GalpKrαs{Kq
is order p and, thus, cyclic. We conclude that any root of P generates a cyclic extension of K of degree p.

The polynomial in question is an example of an Artin-Schreier polynomial.

Problem 7. Show that for every positive integer n, there exists a cyclic extension of Q of degree n which is
contained in R.

By Dirichlet’s Theorem, there is some odd prime integer p such that p ” 1 (mod 2n). Let ξ be a primitive
pth root of unity. We know that Qrξs{Q is a Galois extension with rQrξs : Qs “ ϕppq “ p ´ 1 for ϕ : Z Ñ Z
Euler’s totient function. The Galois group G :“ GalpQrξs{Qq » pZ{pZqˆ » Z{pp ´ 1qZ, which is cyclic. Complex
conjugation τ : Qrξs Ñ Qrξs is an order two Q-automorphism of Qrξs. Let H be the order two subgroup of G
generated by τ and K :“ QrξsH . We have K Ă R since K is fixed by complex conjugation. (For a more explicit
description, K “ Qrξ ` ξ´1s.) Then Artin’s Theorem implies Qrξs{K is Galois with rQrξs : Ks “ 2. As a result,
rK : Qs “ p´1

2 “ n. Since Qrξs{Q is cyclic, H is a normal subgroup of G so K{Q is Galois with GalpK{Qq » G{H.
The group G{H is cyclic so K{Q is a cyclic extension of Q of degree n with K Ă R.

Problem 8. Determine the character table of S4, the symmetric group on 4 letters. Justify your answer.

In Fall 2015 Problem 7, we started the character table for representations of S4 over C. The only remaining row
of the character table corresponds to the 2-dimensional irreducible representation which we denote µ : S4 ÑM2pCq.
We will use column orthogonality to complete the table below.

e (12) (123) (12)(34) (1234)
χtrivial 1 1 1 1 1
χsgn 1 ´1 1 1 ´1
χµ 2 0 ´1 2 0
χρ 3 1 0 ´1 ´1

χρbsgn 3 ´1 0 ´1 1

Problem 9. Show that if G is a finite group acting transitively on a set X with at least two elements, then
there exists g P G which fixes no point of X.

Let n :“ |G| and k :“ |X| ě 2. Note that |Stabpxq| is all g P G such that gx “ x. For each g P Stabpxq, we have
x P Fixpgq “ tx P X : gx “ xu and visa versa. We conclude

ř

xPX |Stabpxq| “
ř

gPG |Fixpgq|. By Orbit-Stabilizer
and |G| finite, |Stabpxq| “ |G|{|Orbpxq| for all x P X. But G acts transitively on X so |Orbpxq| “ |X| “ k and
|Stabpxq| “ n

k . Then
ř

gPG |Fixpgq| “
ř

xPX
n
k “ n. Since |Fixpeq| “ k ě 2, we have

ř

gPG,g‰e |Fixpgq| ă n ´ 1. If
all non-identity g P G have |Fixpgq| “ 1, we would have

ř

gPG,g‰e |Fixpgq| “ n ´ 1. By the pigeonhole principle,
there is some g such that |Fixpgq| “ 0 as desired.

Problem 10.

(a) Determine the Galois group of the polynomial X4 ´ 2 over Q, as a subgroup of a permutation group. Also,
give generators and relations for this group.

We determine the Galois group of X4 ´ 2 over Q in Case 4 of Fall 2014 Problem 3. We find GalpX4 ´ 2q »
D4 “ xr, s : r4 “ s2 “ e, rs “ sr3y. The roots of X4 ´ 2 are t 4

?
2, 4
?

2i,´ 4
?

2,´ 4
?

2iu so identify these as roots
1, 2, 3, and 4 respectively. Then D4 as a subgroup of S4 is the subgroup generated by tp1234q, p24qu.

(b) Determine the Galois group of the polynomial X3 ´ 3X ´ 1 over Q. (Hint: for polynomials of the form
X3 ` aX ` b, the quantity ∆ “ ´4a3 ´ 27b2, known as the discriminant, plays a key theoretical role.) Explain
your answer.

Let K be the splitting field of an irreducible polynomial in F rxs with roots tα1, . . . , αnu. Define δ :“
ś

iăjpαi´

αjq, and the discriminant ∆ :“ δ2. For σ P Galpfq, σpδq “ signpσqδ SHOW THIS so σp∆q “ ∆ for all
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σ P Galpfq. Thus ∆ P F , and each σ P Galpfq such that σpδq “ δ must be an even permutation of the roots of
f . If δ P F , then Galpfq must be a subgroup of An.

For a degree 3 polynomial, there will be at least one real root. The other roots could both be real or could be
a conjugate pair of complex roots. Let the roots of f be tx, a` bi, a´ biu for a, b, x P R, then

δ “ px´ pa` biqqpx´ pa´ biqqpa` bi´ pa´ biqq “ 2bipx2 ´ 2x` pa2 ` b2qq.

Note ∆ “ δ2 ă 0. In this problem, ∆ “ ´4a3 ´ 27b2 “ ´4p´3q3 ´ 27p´1q2 “ 81 ą 0 so the roots of f are real.
Since ∆ “ 92, we have δ P Q. By above, Galpfq embeds in A3, and |Galpfq| ď |A3| “ 3. By the rational root
test, f is irreducible over Q. Then rF rαs : F s “ 3 “ |Galpfq| “ |A3| for some α P R a root of f . We conclude
Galpfq » A3.

Fall 2016

Problem 1. Let G be a group generated by a and b with only relation a2 “ b2 “ 1 for the group identity 1.
Determine the group structure of G and justify your answer.

We claim G » Z{2Z ˚ Z{2Z, the free product of the additive group of order two with itself. Let the first copy
of Z{2Z have generator 1 and the second copy have generator 11. Define the set map f : ta, bu Ñ Z{2Z ˚ Z{2Z
as fpaq “ 1 and fpbq “ 11. By the universal property of free groups, there is a unique group homomorphism
f : F Ñ Z{2Z ˚ Z{2Z such that fpaq “ 1 and fpbq “ 11 where F is the free group on the generators ta, bu. By
construction, f is surjective and a2, b2 P kerpfq. Let N be the normal subgroup of F generated by ta2, b2u so
N Ă kerpfq. Thus f descends to a unique group homomorphism f : F {N Ñ Z{2Z ˚ Z{2Z. Take an element
w P kerpfq. If w is the empty word in F {N , then w P N so we may assume that w is a reduced non-empty word.
Without loss of generality, w “ ak1b`1 ¨ ¨ ¨ aknb`n where the integers ki “ 1 for 1 ă i ď n and the integers `j “ 1 for
1 ď j ă n. The same argument will work if w starts with b`1 . We have

0 “ fpwq “ fpak1b`1 ¨ ¨ ¨ aknb`nq “ fpaqk1fpbq`1 ¨ ¨ ¨ fpaqknfpbq`n “ pk1 ¨ 1qp`1 ¨ 1
1q ¨ ¨ ¨ pkn ¨ 1qp`n ¨ 1

1q.

This can only occur if n “ 1 and `n “ 0. In this case, w “ aga´1 for g P N . Since N is normal in F , w P N ,
contradicting the choice of w. We conclude that kerpfq contains only the empty word and G » F {N » Z{2Z˚Z{2Z
by the First Isomorphism Theorem.

Problem 2. Let K be a semi-simple quadratic extension over Q and consider the regular representation ρ :
K ÑM2pQq. Compute the index of ρpKˆq in the normalizer of ρpKˆq in GL2pQq, and justify your answer.

By Artin-Wedderburn, K is isomorphic to a product of matrix algebras over division rings. Since dimQpKq “ 2,
the only options are K » QˆQ or K » Qrαs for α a root of an irreducible quadratic in Qrxs.

Case 1: Let K » QˆQ. Then tp1, 0q, p0, 1qu is a basis of K as a Q-vector space. Let px, yq P K for x, y P Qzt0u
and we will construct ρpx, yq by multiplying the basis elements by px, yq.

px, yqp1, 0q “ px, 0q

px, yqp0, 1q “ p0, yq

ρpx, yq “

ˆ

x 0
0 y

˙

Let A P GL2pQq so A :“

ˆ

a b
c d

˙

for a, b, c, d P Q and ad´ bc ‰ 0. Then

Aρpx, yqA´1 “

ˆ

a b
c d

˙ˆ

x 0
0 y

˙

1

ad´ bc

ˆ

d ´b
´c a

˙

“
1

ad´ bc

ˆ

adx´ bcy abpy ´ xq
cdpx´ yq ´bcx` ady

˙

.

For A to be in the normalizer of ρpKˆq, we need abpy ´ xq and cdpx´ yq “ 0. Since x and y can be distinct this
implies one of a or b must be zero and one of c or d is zero. By assumption, A is invertible so a “ 0 implies d “ 0
and b “ 0 implies c “ 0. We conclude that an element A in the normalizer of ρpKˆq will be of the form

ˆ

a 0
0 d

˙

or

ˆ

0 b
c 0

˙
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for nonzero a, b, c, d P Q. Therefore, the index of ρpKˆq in the normalizer is 2.

Case 2: We note that the root of an irreducible quadratic has the form α “ ´b`
?
b2´4ac

2a for a, b, c P Q. Thus

Qrαs “ Qr
?
b2 ´ 4acs. Let r :“ b2 ´ 4ac and r is not a square in Q since K{Q is a degree 2 extension. Then

K » Qr
?
rs which has basis t1,

?
ru as a Q-vector space. We construct ρpx` y

?
rq for x, y P Q as follows.

px` y
?
rq1 “ x` y

?
r “ px, yq

px` y
?
rq
?
r “ ry ` x

?
r “ pry, xq

ρpx, yq “

ˆ

x y
ry x

˙

Let A P GL2pQq so A :“

ˆ

a b
c d

˙

for a, b, c, d P Q and ad´ bc ‰ 0. Then

Aρpx, yqA´1 “

ˆ

a b
c d

˙ˆ

x y
ry x

˙

1

ad´ bc

ˆ

d ´b
´c a

˙

“
1

ad´ bc

ˆ

ax` by ary ` bx
cd` dy cry ` dx

˙ˆ

d ´b
´c a

˙

“
1

ad´ bc

ˆ

pad´ bcqx` pbd´ acrqy ´b2y ` a2ry
d2y ´ c2ry pad´ bcqx` pacr ´ bdqy.

˙

For A to be in the normalizer of ρpKˆq, we need the following equations to be satisfied. Take y P Q to be non-zero.

pad´ bcqx` pbd´ acrqy “ pad´ bcqx` pacr ´ bdqy

pbd´ acrqy “ pacr ´ bdqy

bd´ acr “ 0

bd “ acr

rpd2y ´ c2ryq “ ´b2y ` a2ry

pb2 ` pd2 ´ a2qr ´ c2r2qy “ 0

b2 ` pd2 ´ a2qr ´ c2r2 “ 0

If b “ 0, then acr “ 0. Since A is invertible, a ‰ 0 and c “ 0. From the second equation, pd2 ´ a2qr “ 0 and r ‰ 0
implies d “ ˘a. Assume b ‰ 0. Then d “ acr

b and, substituting into the second equation,

0 “ b2 `

ˆ

´acr

b

¯2

´ a2

˙

r ´ c2r2

“ pb2 ´ c2r2q ´
a2r

b2
`

b2 ´ c2r2
˘

“ pb2 ´ c2r2q

ˆ

1´
a2r

b2

˙

.

As a result, either b “ ˘cr or b “ ˘a
?
r. We cannot have b “ a

?
r since a, b P Q and

?
r R Q by assumption. If

b “ ˘cr, we have d “ acr
˘cr “ ˘a. Note that the matrices A such that b “ 0 is a subset of this type of normalizer.

The case b “ cr implies A P ρpKˆq whereas b “ ´cr produces the coset

ˆ

´1 0
0 1

˙

ρpKˆq. We conclude that ρpKˆq

has index 2 in the normalizer.

Problem 3. Let A be an integral domain with field of fractions F . For an A-ideal a, prove that a is an A-
projective ideal finitely generated over A if there exists an A-submodule b of F such that ab “ A, where ab is an
A-submodule of F generated by ab for all a P a and b P b.

We will first show that a is a finitely generated ideal of A. Since ab “ A, there is a finite sum
řn
i“1 aibi “ 1 for

ai P a and bi P b. Let a P A, then a “ ap
řn
i“1 aibiq “

řn
i“1 aipabiq. Since ab “ A, we have abi P A for all 1 ď i ď n.

Thus taiu
n
i“1 is a generating set of A as an A-module.
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Now we will show that a is a projective ideal of A. Since a is finitely generated by taiu
n
i“1, there is a short exact

sequence

0 kerpfq An a 0
f

with fpeiq “ ai for teiu
n
i“1 the standard generating set of An. Define the A-module homomorphism h : aÑ An by

hpaq “
řn
i“1pabieiq. Then fphpaqq “ fp

řn
i“1pabieiqq “

řn
i“1 abifpeiq “

řn
i“1 abiai “ a. We conclude that h is a

splitting and An » a‘ kerpfq. Since a is a direct summand of a free A-module, a is a projective A-module.

Problem 4. Let D be a dihedral group of order 2p with normal cyclic subgroup C of order p for an odd prime
p. Find the number of n-dimensional irreducible representations of D (up to isomorphisms) over C for each n, and
justify your answer.

Let D :“ xr, s : rp “ s2 “ e, rs “ sr´1y be the dihedral group of order 2p. We will find the commutator subgroup
rD,Ds Ă D. Any element of the commutator subgroup is of the form prisqprjsqprisq´1prjsq´1 for some 0 ď i, j ď

p´ 1. Reducing this, we end up with r2i´2j . Further, r
p`1
2 srp´

p`1
2 s´1 “ r

p`1
2 r

p`1
2 ss “ r

2p`2
2 “ r P rD,Ds. Thus

rD,Ds is the subgroup of D generated by r and |D{rD,Ds| “ 2. Thus there are two non-isomorphic classes of
one-dimensional representations of D.

We now classify the conjugacy classes of Dp. Note that it is sufficient to conjugate each element only by the
generators r and s. The identity makes up one conjugacy class. When we conjugate s we notice risrp´i “ r2is.
Since p is odd, we can continue this process to obtain the conjugacy class ts, rs, . . . , rp´1su. When we conjugate
ri we have sris´1 “ sris “ rp´i for 1 ď i ď p´ 1. Conjugating by s again yields srp´is´1 “ srp´is “ ri. Thus we
have the conjugacy classes tri, rp´iu for 1 ď i ď p´1

2 . In total, this is p`3
2 conjugacy classes.

Using the intuition of D as permutations of vertices of a regular p-gon, we can construct the classes of 2-

dimensional irreducible representations. We can construct φk : D ÑM2pCq as φkprq “

ˆ

cosp2πk{pq ´ sinp2πk{pq
sinp2πk{pq cosp2πk{pq

˙

,

the rotation by 2πk
p counterclockwise in the plane, and φkpsq “

ˆ

1 0
0 ´1

˙

for 1 ď k ď p´1
2 , the reflection about

the x-axis in the plane. Each φk is an irreducible representation of D since there are no subspaces of C2 invariant
under these transformations. Further, these are non-isomorphic irreducible representations since the characters
χφkprq “ 2 cosp2πk{pq differ for each k.

The sum of the squares of the dimensions of these representations is 1 ` 1 `
`

p´1
2

˘

22 “ 2 ` p2p ´ 2q “ 2p,
the order of the group. Thus these are all isomorphism classes of irreducible representations of D over C. We
conclude that there are two one-dimensional and p´1

2 two-dimensional isomorphism classes of irreducible complex
representations of D.

Problem 5. Let f P F rXs be an irreducible separable polynomial of prime degree over a field F and let K{F
be a splitting field of f . Prove that there is an element in the Galois group of K{F permuting cyclically all roots
of f in K.

Note that K{F is a Galois extension since f is separable and K is the splitting field of f . Let α P K be a root
of f . Then F rαs{F is a field extension with rF rαs : F s “ p since f is irreducible. Then K{F rαs{F is a tower of
field extensions so p “ rF rαs : F s|rK : F s. Now |GalpK{F q| “ rK : F s since K{F is a finite Galois extension of
F . Thus p||GalpK{F q| and Cauchy’s Theorem implies there is some element σ P GalpK{F q of order p. We know
σ permutes the roots of f , of which there are p, so σ must permute the roots cyclically.

Problem 6. Let F be a field of characteristic p ą 0. Prove that for every a P F , the polynomial xp ´ a is either
irreducible or split into a product of linear factors.

Let α P F be some pth root of a in the algebraic closure of F . Then xp ´ a “ px´ αqp since F is characteristic
p. If α P F , we conclude that f splits into a product of linear factors. Thus assume α R F and we want to show
that f is irreducible over F . We can factor f “

śn
i“1 gi into irreducible gi P F rxs. Each gi must be of the form

gi “ px´αq
ki for some integer ki satisfying 1 ă ki ď p. In this case, rF rαs : F s “ ki and ki “ kj for all 1 ď i, j ď n.

However, p “ degpfq “
řn
i“1 ki “ nk1 implies k1 “ 1 or k1 “ p. Since k1 ą 1 by assumption, k1 “ p and f is

irreducible.

21



Problem 7. Let f P QrXs and ξ P C a root of unity. Show that fpξq ‰ 21{4.

We will assume that fpξq “ 21{4 for some f P QrXs and draw a contradiction. We know that Qrξs{Q is a Galois
extension with GalpQrξs{Qq » pZ{nZqˆ for ξ a primitive nth root of unity. In particular, GalpQrξs{Qq is abelian so
Qrξs{Q is an abelian Galois extension. By assumption fpξq “ 21{4 so 21{4 P Qrξs and Qr21{4s{Q is a subextension
of Qrξs{Q. By the Galois correspondence, Qr21{4s “ pQrξsqH for some subgroup H Ă GalpQrξs{Qq and Qr21{4s{Q
should be a normal extension since any subgroup of an abelian group is normal. The minimal polynomial of 21{4

over Q is x4 ´ 2 (which is irreducible by Eisenstein’s Criterion). But x4 ´ 2 does not split in Qr21{4s so Qr21{4s{Q
is not a Galois extension, contradicting our assumption. We conclude that fpξq ‰ 21{4 for all f P QrXs.

Problem 8. Prove that if a functor F : C Ñ Sets has a left adjoint functor, then F is representable.

Let L : Sets Ñ C be the left adjoint to F . Then we know that ΦA,B : HomCpLpAq, Bq » HomSetspA,F pBqq for
some natural isomorphism Φ and A P ObpSetsq and B P ObpCq. Let A :“ t˚u be a set with one element. Then
HomSetspA,F pBqq » F pBq as sets via the morphism hB : HomSetspA,F pBqq Ñ F pBq with hBpαq :“ αp˚q. Thus
HomCpLpAq, Bq » HomSetspA,F pBqq » F pBq for all B P ObpCq.

Define a natural transformation ηB : HomCpLpAq, Bq Ñ F pBq by ηBpfq :“ ΦA,Bpfqp˚q. Since ΦA,B is an
isomorphism and HomSetspA,F pBqq » F pBq by choosing the image of ˚ P A, we conclude that ηB is an isomorphism
for each B P ObpCq. Let f P HomCpLpAq, Bq, and let g : B Ñ C be a morphism in C for C P ObpCq. We want to show
the diagram below commutes. Since Φ is a natural transformation, the square on the left commutes. The square on
the right commutes since F pgqphBpαqq “ F pgqpαp˚qq and hCpF pgq ˝ αq “ pF pgq ˝ αqp˚q for α P HomSetspA,F pBqq.
Therefore, the diagram commutes. We conclude that F is represented by LpAq P ObpCq.

HomCpLpAq, Bq HomSetspA,F pBqq F pBq

HomCpLpAq, Cq HomSetspA,F pCqq F pCq

ΦA,B

ηB

g˝´ F pgq˝´

hB

F pgq

ΦA,C

ηC

hC

Problem 9. Let F be a field and a P F . Prove that the functor from the category of commutative F -algebras
to Sets taking an algebra R to the set of invertible elements of the ring RrXs{pX2 ´ aq is representable.

In the category of F -algebras, F is initial. Thus a morphism from the F -algebra A :“ F rB1, B2, C1, C2s{pB1C1`

aB2C2 ´ 1, B1C2 ´ B2C1q is determined by the image of Bi and Cj for 1 ď i, j ď 2. We can define a natural
transformation ηR : HomF -algpA,Rq Ñ R4 via ηRpfq :“ pfpB1q, fpB2q, fpC1q, fpC2qq. Let g : R Ñ S be an
F -algebra homomorphism of commutative F -algebras R and S. Let f P HomF -algpA,Rq. Then ηSpg ˝ fq “
pgfpB1qq, gfpB2q, gfpC1q, gfpC2qq and pg, g, g, gq ˝ ηRpfq “ pgfpB1qq, gfpB2q, gfpC1q, gfpC2qq. Thus the diagram
below commutes.

HomF -algpA,Rq R4

HomF -algpA,Sq S4

ηR

g˝´ pg,g,g,gq

ηS

We have R2 » RrXs{pX2´aq as R-modules via the isomorphism fpb, cq “ pbX` cq. If pb1, b2q P R
2 maps to a unit

in RrXs{pX2 ´ aq, then there is some pc1, c2q P R
2 such that b1c1 ` ab2c2 “ 1 and b1c2 ´ b2c1 “ 0. Similarly, the

existence of such a pc1, c2q implies pb1, b2qmaps to a unit of RrXs{pX2´aq. Therefore, ηR is an isomorphism between
HomF -algpA,Rq and F pRq for each commutative F -algebra R. Further, the set of units of a ring S is naturally
isomorphic to the set tpx, yq P S2 : xy “ 1u. Thus we have a natural isomorphism µ : HomF -algpA,´q Ñ F . We
conclude that A represents the functor F .

ADD SOME CONTEXT FOR THIS PROBLEM FROM ALEX
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Problem 10. Let F be a field and A a simple subalgebra of a finite dimensional F -algebra B. Prove that
dimF pAq divides dimF pBq.

This problem is incorrect as written. A counterexample is B “ M2pF q ‘M3pF q where A “ M2pF q. Then A is
a simple subalgebra of a finite-dimensional F -algebra B. However, dimF pAq “ 4 does not divide dimF pBq “ 13.

Spring 2017

Problem 1. Choose a representative for every conjugacy class in the group GLp2,Rq. Justify your answer.

Each conjugacy class of matrices in GLp2,Rq has a unique representative in rational canonical form. For 2 ˆ 2
matrices, the invariant factors of A P GLp2,Rq could be tfu for f “ x2´ax´b P Rrxs or tg, hu where g|h. Since the
sum of the degrees of g and h is 2, we see that degpgq “ degphq “ 1. We can take g and h monic so g “ h “ x´ c
for some c P R. Thus the possible rational canonical forms for a matrix in GLp2,Rq are

ˆ

0 b
1 a

˙

or

ˆ

c 0
0 c

˙

for a, b, c P R. Each conjugacy classes of GLp2,Rq has a representative of the form above.

Problem 2. Let G be the group with presentation xx, y : x4 “ 1, y5 “ 1, xyx´1 “ y2y, which has order 20. Find
the character table of G.

We will first find the conjugacy classes of G. Note that we only need to check conjugation by the generators x
and y. Since xy “ y2x, we can write each element of G as yixj for some 0 ď i ă 5 and 0 ď j ă 4. Additionally,

pyixjqpykx`qpyixjq´1 “ yi`2jkxj``x´jy´i “ yi`2jkx`y´i “ y´i`2jkx`

so the exponent of x remains unchanged by conjugation. By the formula above, conjugating ykx` by y will result
in yk´1x`. Thus the conjugacy classes are

t1u, ty, y2, y3, y4utx, yx, y2x, y3x, y4xu, tx2, yx2, y2x2, y3x2, y4x2u, tx3, yx3, y2x3, y3x3, y4x3u,

which implies 5 isomorphism classes of irreducible representations. We will now find the commutator subgroup
rG,Gs. The generators of rG,Gs have the form pyixjqpykx`qpyixjq´1pykx`q´1 “ py´i`2jkx`qx´`y´k “ y´i`p2

j
´1qk.

We can pick i “ 4, j “ 0, k “ 0, and ` “ 1, which implies rG,Gs is the cyclic subgroup of G generated by y. Then
the number of isomorphism classes of one-dimensional representations is |G{rG,Gs| “ 4 by the argument in Fall
2015 Problem 7. There are 4 one-dimensional representations and 5 conjugacy classes. Since the order of G is the
sum of the squares of the dimensions of the irreducible representations, 20 “ 12 ` 12 ` 12 ` 12 ` k2 so k “ 4.

We will now determine the 4 one-dimensional representations. Since x is order 4, it must map to ˘1,˘i in Cˆ.
Similarly, y is order 5 so y must map to a fifth root of unity in Cˆ. The character is equal to the representation
in the one-dimensional case so the representation is the same on each conjugacy class. Let ρi : G Ñ Cˆ be one-
dimensional representations for 1 ď i ď 3 and µ : G Ñ GL4pCq be the 4-dimensional irreducible representation.
For ρi : GÑ Cˆ, ρipyq “ ρipy

2q “ ρipyq
2 so ρpyq “ 1. We can fill in the character table below based on the image

of x. The last row of the table is found by column orthogonality.

1 y x x2 x3

χtrivial 1 1 1 1 1
χρ1 1 1 i ´1 ´i
χρ2 1 1 ´1 1 ´1
χρ3 1 1 ´i ´1 i
χµ 4 ´1 0 0 0

Problem 3. Find the number of subgroups of index 3 in the free group F2 “ xu, vy on two generators. Justify
your answer.
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Let X “ t1, 2, 3u be a set of order 3. Assume there is a transitive group action of F2 on X. Then Stabp1q is a
subgroup of G with rG : Stabp1qs “ |Orbp1q| “ 3 by Orbit-Stabilizer. Now assume H is an index 3 subgroup of
F2. Then the set F2{H of left cosets has order 3. We have a transitive group action of F2 on the set F2{H given
by left multiplication. Let g P F2. We have g ¨H “ H if and only if g P H. As a result, StabpHq “ H. The two
situations describe a bijection between index 3 subgroups of G and stabilizers of transitive group actions on sets of
three elements.

We will find the number of transitive group actions of F2 on the set X “ t1, 2, 3u with H :“ Stabp1q. In the
case of |X| “ 3, this is equivalent to finding a homomorphism φ : F2 Ñ S3 whose image contains a 3-cycle. The
image of u and v under φ uniquely determines φ by the universal property of free groups. We will break into cases.
Note that 2 and 3 can are interchangeable so φpuq “ p13q cases produce the same stabilizers of 1 as the φpuq “ p12q
cases. Similarly, we do not have to consider φpuq “ p132q.

φpuq “ e implies φpvq P tp123q, p132qu

φpuq “ p12q implies φpvq P tp13q, p23q, p123q, p132qu

φpuq “ p23q implies φpvq P tp12q, p13q, p123q, p132qu

φpuq “ p123q implies φpvq P te, p12q, p13q, p23q, p123q, p132qu

The symmetry of 2 and 3 also allows us to remove the cases tφpuq “ e, φpvq “ p132qu, tφpuq “ p23q, φpvq “ p13qu,
and tφpuq “ p23q, φpvq “ p132qu. We are left with 13 suitable group homomorphisms φ : F2 Ñ S3 for which Stabp1q
determines all distinct subgroups of F2 of index 3.

Problem 4. Show that the ring R “ Crx, ys{py2 ´ x3 ` 1q is a Dedekind domain. (Hint: Compare R with the
subring Crxs.)

It is sufficient to show that R is the integral closure of Crxs in the fraction field of R, Cpxqrys{py2 ´ px3 ´ 1qq.
Let α P Cpxqrys{py2 ´ px3 ´ 1qq be integral over Crxs. The set t1, yu is a basis for Cpxqrys{py2 ´ px3 ´ 1qq as a
Cpxq-vector space. Thus α “ p ` qy for p, q P Cpxq. If q “ 0, α P Crxs Ă R so we may assume q ‰ 0. Let
m “ T 2 ´ 2pT ` pp2 ` q2px3 ´ 1qq P CpxqrT s be the minimal polynomial of α over Cpxq. Since Crxs is a UFD,
Gauss’s Lemma implies that m P CrxsrT s. Then 2p P Crxs gives p P Crxs. Since p2 ` q2px3 ´ 1q P Crxs, we have
q2px3 ´ 1q P Crxs. From x3 ´ 1 square-free in Crxs, we conclude q P Crxs and α P R. Therefore, R is the integral
closure of Crxs in Cpxqrys{py2 ´ px3 ´ 1qq, which implies R is a Dedekind domain.

Problem 5. Let S be a multiplicatively closed subset of a commutative ring R. For a prime ideal I in R with
I X S “ H, show that the ideal I ¨ RrS´1s in the localized ring RrS´1s is prime. Also, show that sending I to
I ¨RrS´1s gives a bijection between the prime ideals in R that do not meet S and the prime ideals in the localized
ring RrS´1s.

We want to show that a prime ideal of R maps to a prime ideal of RrS´1s for S a multiplicatively closed subset
of Rzt0u with 1 P S under this correspondence. Let p Ă R be a prime ideal. Let a

s
b
t “

ab
st P S

´1p. Then ab P p so

a P p or b P p since p is prime. Thus a
s P S

´1p or b
t P S

´1p. Note that 1
1 P S

´1p implies there is some a
1 P S

´1p
such that sa “ 1 for a P p. Thus 1 P p, a contradiction. We conclude S´1p is proper and, as a result, S´1p is a
prime ideal of RrS´1s.

Let S´1p P RrS´1s be a prime ideal. Then the set p1 “ tr P R : r1 P S
´1pu is a proper ideal of R by Fall 2015

Problem 2(a). Let ab P p1 for a, b P R. Then ab
1 P p which implies a

1 P p or b
1 P p by primality of p in RrS´1s. Thus

a P p1 or b P p1 and p1 is a prime ideal of R. Note that S´1p1 “ p and we have constructed a bijection between the
prime ideals in R that do not meet S and the prime ideals in the localized ring RrS´1s.

Problem 6. Prove the following generalization of Nakayamas Lemma to noncommutative rings. Let R be a ring
with 1 (not necessarily commutative) and suppose that J Ă R is a left ideal contained in every maximal left ideal
of R. If M is a finitely generated left R-module such that JM “M , prove that M “ 0.

We will prove that if x is contained in each left maximal ideal of a ring R, then 1 ´ rx is left invertible for all
r P R. Assume x is contained in each left maximal ideal of a ring R. For the sake of contradiction, assume 1´ rx is
not left invertible for some r P R. Then 1´ rx is contained in some left maximal ideal m Ă R by a Zorn’s Lemma
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argument. But x P m so p1´ rxq ` rx “ 1 P m, a contradiction. We conclude that 1´ rx is left invertible for each
r P R.

Let tx1, . . . , xnu be a minimal generating set of M as a left R-module. Then xi “
řn
j“1 aijxj for aij P J by

assumption. For x1, we have p1 ´ a11qx1 “
řn
j“2 a1jxj . Note that J is a subset of the intersection of all left

maximal ideals so 1´ a11 is left invertible by above. Thus

x1 “

n
ÿ

j“2

pp1´ a11q
´1a1jqxj ,

contradicting the minimality of the generating set. We conclude that there is cannot be a nontrivial generating set
so M “ 0.

Problem 7. Find rK : Qs where K is a splitting field of X6 ´ 4X3 ` 1 over Q.

Let f “ X6´4X3`1. Using the quadratic formula for X3, we find the roots of f are t
3
a

2˘
?

3ξiu for 0 ď i ď 2

where ξ is a primitive third root of unity. Let α :“
3
a

2`
?

3 be the real third root. We have 1
α “

3
a

2´
?

3 after

simplification and α3 ´ 2 “
?

3 P K. Thus α,
3
a

2´
?

3, ξ P Qrα, is so K Ă Qrα, is. Then

α2pαξq ´

ˆ

1`

?
3

2

˙

“ p2`
?

3q

ˆ

1

2
`

?
3

2
i

˙

´

ˆ

1`

?
3

2

˙

“

ˆ

?
3`

3

2

˙

i P K

4
`?

3´ 3
2

˘

3

ˆ

?
3`

3

2

˙

i “
4
`

3´ 9
4

˘

i

3
“ i P K.

Since α, i P K, we have K Ą Qrα, is and K “ Qrα, is,
We construct the tower of fields below. We know Qris Ć Qrαs since Qrαs Ă R by choice of α. Additionally,

Qris X Qrαs is a subfield of Qris so Qris X Qrαs “ Qris or Qris X Qrαs “ Q. We have Qris X Qrαs “ Q. Since
Qris{Q is a normal extension, Qris and Qrαs are linearly disjoint. This implies that rK : Qs “ rQris : QsrQrαs :
Qs “ 2rQrαs : Qs. Assume α P Qr

?
3s so Qrαs “ Qr

?
3s. Then G :“ GalpK{Qq has order 4. However, G needs

to define a transitive group action on the set of 6 roots of X6 ´ 4X3 ` 1. Neither the cyclic group of order 4 nor
Z{2Z ˆ Z{2Z would satisfy this condition. Therefore, α R Qr

?
3s and Qr

?
3s Ă R imply the degree 3 polynomial

X3 ´ p2 `
?

3q P Qr
?

3srXs is irreducible. We conclude that rQrαs : Qs “ rQrαs : Qr
?

3ssrQr
?

3s : Qs “ 6 and
rK : Qs “ 12.

K “ Qrα, is

Qrαs

Qr
?

3s Qris

Q

3

2

2

Problem 8. Let M be an abelian group (written additively). Prove that there is a functor F from the opposite
of the category of rings to the category of sets taking a ring R to the set of all left R-module structures on M . Is
the functor F representable?

A left R-module structure on M is equivalent to a ring morphism f : R Ñ EndpMq with scalar multiplication
defined as r ¨ m “ fprqpmq. Thus define F : Ringsop

Ñ Sets as F pRq :“ HomRingsoppEndpMq, Rq and F pgq :
F pRq Ñ F pSq as F pgqpfq “ g ˝ f P HomRingsoppEndpMq, Sq for g P HomRingsoppR,Sq and f P F pRq. Then
F p1Rqpfq “ f for all f P F pRq so F p1Rq “ 1F pRq. Let g P HomRingsoppR,Sq and h P HomRingsoppS, T q, then
F ph ˝ gqpfq “ ph ˝ gq ˝ f “ F phqpg ˝ fq “ pF phq ˝ F pgqqpfq. Therefore, F is a functor from the opposite category
of rings to the category of sets.
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We define a natural transformation ηR : HomRingsoppR,EndpMqq Ñ F pRq as ηRpfq :“ f . Let g : R Ñ S
be a morphism in the opposite category of rings. We want to show that the diagram below commutes. By our
construction, it is trivial. We have F pgqpηRpfqq “ g ˝ f and ηSpg ˝ fq “ g ˝ f . Therefore, the functor F is
representable.

HomRingsoppEndpMq, Rq F pRq

HomRingsoppEndpMq, Sq F pSq

ηR

g˝´ F pgq

ηS

Problem 9. Let R be a ring. Prove that if the left free R-modules Rn and Rm are isomorphic for some positive
integers n and m, then Rn and Rm are isomorphic as right R-modules.

Let φ : Rn Ñ Rm be a left R-module isomorphism with inverse ψ : Rm Ñ Rn. Pick the standard basis te1, . . . , enu
for Rn and tf1, . . . , fmu for Rm. Then φpeiq “

řm
j“1 aijfj for each 1 ď i ď n and aij P R. Multiplication by the

nˆm matrix A “ paijq represents φ. Similarly, ψpfkq “
řn
`“1 bk`e` for each 1 ď k ď m and bk` P R gives an nˆm

matrix B “ pbk`q. Since ψ ˝ φ “ idRn and φ ˝ ψ “ idRm , we have BA “ In and AB “ Im. Left multiplication by
A is a right R-module homomorphism since Apxrq “ pAxqr for x P Rn and r P R. We conclude that Rn » Rm as
right R-modules.

Problem 10. Let K{F be a (finite) Galois field extension with G “ GalpK{F q and let H Ă G be a subgroup.
Determine in terms of H and G the group GalpKH{F q of all field automorphisms of KH over F .

Note that K{F Galois implies that KH{F is a separable extension. By the Primitive Element Theorem, KH “

F rαs for some α P K. For an automorphism τ P GalpKH{F q, there is an extension σ : K Ñ K such that
σpαq “ τpαq and σpxq “ x for x P F . Thus σ P G, which implies that each τ P GalpKH{F q can be viewed as a
restriction of an element in G.

Take an element σ P G. We want to show that σ|KH P GalpKH{F q if and only if σ P NGpHq. (ñ) Assume
σ|KH P GalpKH{F q so σpKHq Ă KH . Let h P H and x P KH . Then σhσ´1pxq “ σphpσ´1pxqqq “ σpσ´1pxqq “ x
since σ´1pxq P KH . We note σhσ´1 fixes all x P KH so σhσ´1 P H. Thus σ P NGpHq. (ð) We will prove the
contrapositive. Assume σ|KH R GalpKH{F q. Then there is some y P KH for which σpyq “ z R KH . Thus there is
some h P H such that hpzq ‰ z so σ´1phpσpyqqq “ σ´1phpzqq ‰ y. As a result, σphpσ´1pxqqq R H and σ R NGpHq.

The above result allows us to define the restriction homomorphism r : NGpHq Ñ GalpKH{F q by rpσq “ σ|KH .
The first argument shows that r is surjective. It is clear that H Ă kerprq since h P H fixes all elements of KH .
Take σ P kerprq so σ fixes each x P KH . Then the subgroup I Ă G generated by H Y tσu has KI Ą KH .
This implies I Ă H and, by construction, I Ą H so H “ I. Thus σ P H. We conclude that kerpfq “ H and
GalpKH{F q » NGpHq{H by the First Isomorphism Theorem.

Fall 2017

Problem 1. Let G be a finite group, p a prime number, and S a Sylow p-subgroup of G. Let N “ tg P G|gSg´1 “

Su. Let X and Y be two subsets of ZpSq (the center of S) such that there is g P G with gXg´1 “ Y . Show that
there exists n P N such that nxn´1 “ gxg´1 for all x P X.

Let G act on a set X with g ¨ x “ y for g P G and x, y P X. We want to show that StabpY q “ gStabpxqg´1 Ă G.
Let h P Stabpyq. Then g´1hg ¨ x “ g´1h ¨ y “ g´1 ¨ y “ x so g´1hg P Stabpxq. We have g´1Stabpyqg Ă Stabpxq.
Next let k P Stabpxq. Then gkg´1 ¨ y “ gk ¨ x “ g ¨ x “ y and gStabpxqg´1 Ă Stabpyq. Since conjugation by an
element of a group is an invertible operation, Stabpyq “ gStabpxqg´1.

We can define an N -action on S via conjugation. Define StabpXq :“
Ş

xPX Stabpxq Ă G. Since X,Y Ă ZpSq,
we have S Ă StabpXq and S Ă StabpY q. Note that S is a Sylow p-subgroup of StabpXq and StabpY q. By the result
above applied to each y P Y , we have StabpY q “ gStabpXqg´1. Conjugation preserves the order of subgroups so
gSg´1 Ă StabpY q is a Sylow p-subgroup of StabpY q. By Sylow’s Second Theorem, the two Sylow p-subgroups S
and gSg´1 are conjugate in StabpY q. Thus there exists an h P StabpY q such that hpgSg´1qh´1 “ S. We note that
hg P N . Additionally, phgq ¨ x “ h ¨ pgxg´1q “ gxg´1 since h P StabpY q. Let n :“ hg P N and nxn´1 “ gxg´1 for
all x P X.
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Problem 2. Let G be a finite group of order a power of a prime number p. Let ΦpGq be the subgroup of G
generated by elements of the form gp for g P G and ghg´1h´1 for g, h P G. Show that ΦpGq is the intersection of
the maximal proper subgroups of G.

Let G be a p-group that acts on a finite set X. We will first show that |XG| ” |X| (mod p) where XG “ tx P
X : |Orbpxq| “ 1u. The orbits partition X so

|X| “ |XG| `
ÿ

xPX,xRXG

|Orbpxq|.

By Orbit-Stabilizer, |Orbpxq| “ rG : Stabpxqs “ |G|{|Stabpxq| by |G| finite. For x R XG, we have |Orbpxq| “
|G|{|Stabpyq| ą 1 so p will divide |G|{|Stabpyq| “ |Orbpxq|. Therefore, |X| ” |XG| modulo p.

Let |G| “ pk. Let H Ă G be a maximal proper subgroup of G so |H| “ pk´1. Let H act on G{H by left
multiplication. If aH P XH , then bpaHq “ aH for all b P H. Thus aba´1 P H and a P NGpHq. Similarly,
taking some a P NGpHq gives aH P XH . Therefore, XH “ rNGpHq : Hs and the above result implies rNGpHq :
Hs ” rG : Hs ” 0 (mod p). We conclude rNGpHq : Hs “ p and NGpHq “ G since |H| “ pk´1. Now that H
is a normal subgroup of G, the set G{H is a group of order p. The only such group is the cyclic group Z{pZ so
G{H » Z{pZ. If g R H for g P G, then the left cosets gH and H are not equal. Thus gH is a generator of G{H so
pgHqp “ gpH “ H. Further, G{H is abelian so the canonical projection p : GÑ G{H factors through π : G{rG,Gs
for rG,Gs the commutator subgroup. Thus kerpπq “ rG,Gs Ă kerppq “ H and H contains all elements of the form
ghg´1h´1 for g, h P H. Therefore, ΦpGq is contained in the intersection of the maximal proper subgroups of G.

Now we will show that for each g R ΦpGq, there is some maximal proper subgroup M of G such that g RM . In
particular, g R rG,Gs so grG,Gs P G{rG,Gs is a non-trivial element of an abelian group. Since G is finite, G{rG,Gs

is a finite abelian group. Our classification of finitely generated Z-modules implies G{rG,Gs »
À`

i“1 Z{p
k`
i Z. Since

g R ΦpGq, it cannot be a product of a pth power of some h P G and an element of rG,Gs. Thus the element grG,Gs
has to be a generator for one of the direct summands. By reordering the summands, assume grG,Gs generates the
first. Let S :“ tgiu

`
i“2 be a set of elements gi P G such that girG,Gs generates the ith direct summand. Let T be

a set of generators for rG,Gs. Then the set S Y T Y tgnu generates a subgroup M of G. By construction, g R M
so M is proper. M is maximal in G since G would be generated by tgu YM and gp PM . We conclude that ΦpGq
is the intersection of the maximal proper subgroups of G.

Problem 3. Let k be a field and A a finite-dimensional k-algebra. Denote by JpAq the Jacobson radical of A.
Let t : AÑ k be a morphism of k-vector spaces such that tpabq “ tpbaq for all a, b P A. Assume kerptq contains no
non-zero left ideal. Let M be the set of elements a in A such that tpxaq “ 0 for all x P JpAq. Show that M is the
largest semi-simple left A-submodule of A.

We want to show that M is the sum of all of the simple modules of A. Let N be a simple left A-module. Then
JpAqN “ 0 by the definition of the Jacobson radical as the annihilator of all simple left A-modules. Since tpxnq “ 0
for n P N and all x P JpAq, we have N ĂM . Thus M contains the sum of all the simple left A-submodules of A.

Take a descending chain of left ideals of A. Each left ideal is a finite-dimensional k-vector space. Thus the
chain must terminate, and A is left Artinian as a left A-module. The same argument works for right ideals so A
is Artinian as a ring. Consequently, A{JpAq is an Artinian ring. Since JpAq is a two-sided ideal of A, we have
JpAqM is a left ideal contained in kerptq. We assume kerptq contains no non-zero left ideal so JpAqM “ 0. Thus M
has the structure of a left A{JpAq-module. Now A{JpAq is Artinian and has trivial Jacobson radical so A{JpAq is
a semisimple ring. We conclude that M is a semisimple left A{JpAq-module. In other words, M is the direct sum
of simple left A{JpAq-modules. These simple A{JpAq-modules are simple as A-modules so M is a semisimple left
A-module. Since M contains the sum of all simple left A-modules, M is the largest semisimple left A-submodule
of A.

Problem 4. Let R be a commutative Noetherian ring and A a finitely generated R-algebra (not necessarily
commutative). Let B be an R-subalgebra of the center ZpAq. Assume A is a finitely generated B-module. Show
that B is a finitely generated R-algebra.

Let tx1, . . . , xmu generate A as a C-algebra and ty1, . . . , ynu generated A as a B-module. Then xi “
řn
j“1 bijyj

and yiyj “
řn
k“1 bijkyk for some bij , bijk P B. Let B0 be the R-algebra generated by the set tbij , bijku. Since R

is Noetherian and B0 is finitely generated as an R-algebra, B0 is a Noetherian as a ring. Every element of C is
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a polynomial in the xi, which we can write in terms of the yj . Then B Ă ZpAq and yiyj “
řn
k“1 bijkyk allow us

to reduce this expression to a linear combination of the yj with coefficients in B0. Thus A is a finitely generated
B0-module, which implies A is a Noetherian B0-module. Initially, B is an R-subalgebra of A and B0 Ă B so B has
the structure of a B0-submodule of A. Thus B is finitely generated as a B0-module. B0 is finitely generated as an
R-algebra so B is finitely generated as an R-algebra.

This proof is based on that of Proposition 7.8 in Atiyah MacDonald.

Problem 5. Let A be a ring and M an A-module that is a finite direct sum of simple A-modules. Let
f P EndZpMq. Assume f ˝ g “ g ˝ f for all g P EndApMq. Consider a positive integer n.

(a) Show that the map fn : Mn Ñ Mn defined by fnpm1, . . . ,mnq “ pfpm1q, . . . , fpmnqq commutes with all
elements of EndApM

nq.

Note that EndApM
nq “ HomA

´

Àn
i“1M,

Àn
j“1M

¯

»
Àn

i,j“1 HomApM,Mq. Let g P EndApM
nq so we can

identify g with the matrix pgijq for 1 ď i, j ď n and gij P HomApM,Mq. Then

gpfnpm1, . . . ,mnqq “ gpfpm1q, . . . , fpmnqq

“

˜

ÿ

i“1

gi1pfpm1qq, . . . ,
n
ÿ

i“1

ginpfpmnqq

¸

“

˜

ÿ

i“1

fpgi1pm1qq, . . . ,
n
ÿ

i“1

fpginpmnqq

¸

“ fn

˜

ÿ

i“1

gi1pm1q, . . . ,
n
ÿ

i“1

ginpmnq

¸

“ fnpgpm1, . . . ,mnqq.

Therefore, f commutes with all elements of EndApM
nq.

(b) Deduce that given any family pm1, . . . ,mnq P Mn, there exists a P A such that pfpm1q, . . . , fpmnqq “

pam1, . . . , amnq.

DEFINITELY DOESN’T FEEL RIGHT

Let M “
Àk

i“1 Li for Li the distinct simple A-modules. Let te1, . . . , enu be the corresponding central idempo-
tents for ei PM . Then

EndApMq “ HomA

˜

k
à

i“1

Li,
k
à

i“1

Li

¸

»

k
à

i,j“1

HomApLi, Ljq »
k
à

i“1

HomApLi, Liq

since each Li is a simple A-module. Each Li is cyclic, generated by ei, so f P
Àn

i“1 HomApLi, Liq is defined
by the image of the ei. We have fpeiq “ aiei for some ai P A since ei must map to an element of Aei. Define
a :“

řn
i“1 aiei, then fpxq “ ax “

řn
i“1 aieix. We conclude that fnpm1, . . . ,mnq “ pam1, . . . , amnq.

Problem 6. Let R be an integral domain, and let M be an R-module. Prove that M is R-torsion-free if and
only if the localization Mp is Rp-torsion-free for all prime ideals p of R.

We will show that m “ 0 if and only if m
1 “ 0 in Mp for all prime ideals p Ă R. If m “ 0, the result is clear.

Assume m ‰ 0 and we will show that there is some prime p Ă R for which m
1 ‰ 0. Since m ‰ 0, the ideal

Annpmq Ă R is proper. By a Zorn’s Lemma argument, Annpmq is contained in some maximal and, thus, prime
ideal p Ă R. We have m

1 “ 0 in Mp only when there is some s P S such that sm “ 0. But s R Annpmq for all
s P Rzp so m

1 ‰ 0 PMp.
(ñ) We will prove the contrapositive. Assume r

s
m
t “ 0 in Mp for some r P R, s, t P S, and non-zero m P M .

Then there is some k P S such that pkrqm “ 0 for kr P R which implies that M is not torsion-free.
(ð) Let f : M Ñ N be a left R-module homomorphism. If f is not injective, there is some non-zero x P kerpfq.

Then x
1 is non-zero in Mp for some p by above. Thus kerpfq “ 0 if and only if pRzpq´1 kerpfq Ă Mp for all prime

ideals p Ă R. Assume Mp is Rp-torsion-free for all prime ideals p Ă R. Define the left R-module homomorphism
`r : Mp Ñ Mp as left multiplication by r

1 . Since Mp is torsion-free, `r is injective for each prime ideal p Ă R.
Therefore, `r : M Ñ M given by left multiplication by r P R is injective for any r P R. We conclude that M is
torsion-free.
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Problem 7.

(a) Show that there is at most one extension F pαq of a field F such that α4 P F , α2 R F , and F pαq “ F pα2q.

We have that α is a root of f :“ x4 ´ α4 P F rxs. Similarly, α2 is a root of x2 ´ α4 so rF rα2s : F s “ 2. Assume
first that char “ 2. Then x4 ´ α4 “ x4 ` α4 “ px ` αq4. Since rF rαs : F s “ rF rα2s : F s “ 2, the minimal
polynomial of α must be px` αq2, which implies α2 P F , a contradiction.

Assume charpF q ‰ 2. Then f 1 “ 4x3 ‰ 0, which is relatively prime to f . Then f is separable and the roots
are t˘α,˘αγu for γ2 “ ´1. We have two cases for the minimal polynomial of α, denoted mα P F rxs. If
mα “ px ´ αqpx ` αq, then α2 P F , a contradiction. If mα “ px ˘ αqpx ˘ αγq, then α2γ P F . Note γ P F
would imply α2 P F so γ R F . But α2pα2γq “ α4γ P F rα2s “ F rαs so γ P F rαs. We have the tower of fields
F rαs{F rγs{F with rF rαs : F s “ 2. Since γ R F , we conclude F rαs “ F rγs. Therefore, there is at most one field
extension like F rαs since it would equal F rγs.

(b) Find the isomorphism class of the Galois group of the splitting field of x4 ´ a for a P Q with a R ˘Q2.

FINISH THIS

By Fall 2014 Problem 3 Case 4, we have G » D4 for a ą 0. Additionally by Fall 2014 Problem 3 Case 5, we
have G » D4 for a ă 0 and a ‰ ´2y2 for y P Q. Finally, we need to check the case when a “ ´2y2 for y P Q.
The roots of X4 ´ a are t

?
2yξi8u for i P t1, 3, 5, 7u.

Problem 8. Let F be a field, and let f, g P F rxszt0u be relatively prime and not both constant. Show that F pxq

has finite degree d “ maxpdegpfq,degpgqq over its subfield F
´

f
g

¯

. (Hint: If the degree were less than d, show that

there exists a nonzero polynomial with coefficients in F rxs of degree less than d having f
g as a root.)

Note that f
g is a root of the irreducible polynomial p “ gy ´ f for p P pF rxsqrys. Since f and g are relatively

prime, p is primitive. The polynomial q “ f
g gpT q ´ fpT q P pF rxsqrT s is degree d and has x as a root. Thus

”

F pxq : F
´

f
g

¯ı

ď d and F pxq is a finite extension of F
´

f
g

¯

. Let m “ akT
k ` ak´1T

k´1 ` ¨ ¨ ¨ ` a0 P F
´

f
g

¯

rT s

be the minimal polynomial of x over F
´

f
g

¯

. By clearing denominators, we may assume that each ai P F
”

f
g

ı

.

Then m “ bn

´

f
g

¯n

` bn´1

´

f
g

¯n´1

` ¨ ¨ ¨ ` b0 for bi P F rT s. After writing each bi as an element of F rxs, M :“

bny
n ` bn´1y

n´1 ¨ ¨ ¨ ` b0 is a polynomial in pF rxsqrys with f
g as a root. Thus p divides M in pF rxsqrys. Since p is

primitve, g divides bn and f divides b0. We have degpbnq ě degpgq and degpb0q ě degpfq so degpmq ě d. Therefore,
”

F pxq : F
´

f
g

¯ı

“ d.

Problem 9. Let R be a commutative ring, and let A, B, and C be R-modules. Suppose that A is finitely
presented over R and C is flat over R. Show that

HomRpA,B bR Cq » HomRpA,Bq bR C.

Since A is finitely presented, there is an exact sequence Rm Ñ Rn Ñ AÑ 0 with g : Rn Ñ A and h : Rm Ñ A.
Apply the left exact functor HomRp´, Bq to obtain the exact sequence 0 Ñ HomRpA,Bq Ñ HomRpR

n, Bq Ñ
HomRpR

m, Bq with morphisms ´ ˝ g : HomRpA,Bq Ñ HomRpR
n, Bq and ´ ˝ h : HomRpR

n, Bq Ñ HomRpR
m, Bq.

We assume C is flat so 0 Ñ HomRpA,Bq bR C Ñ HomRpR
n, Bq bR C Ñ HomApR

m, Bq bR C is exact. Similarly,
apply the functor HomRp´, BbRCq to the original exact sequence. Define the morphism φA : HomRpA,BqbRC Ñ
HomRpA,B bR Cq by φpf b cq “ pa ÞÑ fpaq b cq. Then φA is an R-module homomorphism via φApr ¨ f b cq “
φApf b prcqq “ pa ÞÑ fpaq b prcqq “ rpa ÞÑ fpaq b cq. Let f P HomRpA,Bq bR C. Then

φRnppf ˝ gq b 1Cq “ pa ÞÑ pfgqpaq b cq “ pφApfqq ˝ g

and a similar argument for the other square give the commutative diagram below. As R-modules, HomRpR
n, Bq »

śn
i“1 HomRpR,Bq » Bn so HomRpR

n, Bq bR C » Bn bR C » HomRpR
n, B bR Cq with φRn the isomorphism for
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all n ě 1. By the Five Lemma, φA is an isomorphism.

0 0 HomRpA,Bq bR C HomRpR
n, Bq bR C HomApR

m, Bq bR C

0 0 HomRpA,B bR Cq HomRpR
n, B bR Cq HomRpR

m, B bR Cq

´˝gb1C

φA

´˝hb1C

φRn φRm

´˝g ´˝h

Problem 10. Let C be a category with finite products, and let C2 be the category of pairs of objects of C
together with morphisms pA,A1q Ñ pB,B1q of pairs consisting of pairs pAÑ B,A1 Ñ B1q of morphisms in C. Let
F : C2 Ñ C be the direct product functor (that takes pairs of objects and morphisms to their products).

(a) Find a left adjoint to F .

Let C,D P ObpCq and f P HomCpC,Dq. Define L : C Ñ C2 as LpCq :“ pC,Cq and Lpfq : LpCq Ñ LpDq
as pf, fq. Then Lp1Cq “ p1C , 1Cq “ 1LpCq. Additionally, Lpgfq “ pgf, gfq “ pg, gq ˝ pf, fq “ LpgqLpfq for a
morphism g P HomCpD,Eq and E P ObpCq. Thus L is a functor.

By the universal property of the direct product, there is a unique morphism h : C Ñ A
ś

B for each pair of
morphisms pf, gq : pC,Cq Ñ pA,Bq such that prA ˝ h “ f and prB ˝ h “ g. Define a natural transformation
Φ : HomC2pLp´q,´q Ñ HomC2p´, F p´qq so that ΦC,pA,Bq : HomCpLpCq, pA,Bqq Ñ HomC2pC,F pA,Bqq gives
ΦC,pA,Bqpf, gq :“ h. Let k P HomCpC

1, Cq for C 1 P ObpCq. We want to show the diagram below commutes.
Let pf, gq P HomCpLpCq, pA,Bqq “ HomCppC,Cq, pA,Bqq. We have ΦC,pA,Bqpf, gq ˝ k is a morphism from
C 1 to A

ś

B for which prA ˝ pΦC,pA,Bqpf, gq ˝ kq “ f ˝ k and prB ˝ pΦC,pA,Bqpf, gq ˝ kq “ g ˝ k. We have
ΦC1,pA,Bqpf ˝k, g ˝kq is the unique morphism C 1 Ñ A

ś

B that commutes with f ˝k and g ˝k under projection
morphisms. Thus the universal property of the direct product implies ΦC,pA,Bqpf, gq ˝ k “ ΦC,pA,Bqpf, gq ˝ k
and the diagram commutes. By a similar argument, we obtain naturality in pA,Bq. We conclude that L is a
left adjoint to F .

HomCpLpCq, pA,Bqq HomC2pC,F pA,Bqq

HomCpLpC
1q, pA,Bqq HomC2pC 1, F pA,Bqq

ΦC,pA,Bq

p´˝k,´˝kq ´˝k

ΦC1,pA,Bq

(b) For C the category of abelian groups, determine whether or not F has a right adjoint.

Since abelian groups is an abelian category, finite products and coproducts are isomorphic. Define R : C Ñ C2

as RpCq :“ pC,Cq and Rpfq :“ pf, fq for f P HomCpC,Dq. Then Rp1Cq “ p1C , 1Cq “ 1RpCq. Additionally,
Rpgfq “ pgf, gfq “ pg, gq ˝ pf, fq “ RpgqRpfq for a morphism g P HomCpD,Eq and E P ObpCq. Thus R is a
functor.

By the universal property of the coproduct, there is a unique morphism h : A
š

B Ñ C for each pair pf, gq :
pA,Bq Ñ pC,Cq such that h˝ iA “ f and h˝ iB “ g. Define the natural transformation Φ : HomC2p´, Rp´qq Ñ
HomCpF p´q,´q as ΦpA,Bq,Cpf, gq :“ h. As in (a), the universal property of the coproduct implies naturality in
pA,Bq and C. We conclude that R is a right adjoint to F .

Spring 2018

Problem 1. Let α P C. Suppose that rQpαq : Qs is finite and prime to n! for an integer n ą 1. Show that
Qpαnq “ Qpαq.

The field Qpαnq is a subfield of Qpαq. In fact, α is a root of f “ xn ´ αn over Qpαnq. Thus the minimal
polynomial of α over Qpαnq, mα P Qpαnqrxs, must divide f . As a result, degpmαq ď n and degpmαq|pn!q. Since
rQpαq : Qs “ rQpαq : QpαnqsrQpαnq : Qs “ degpmαqrQpαnq : Qs is relatively prime to n!, we conclude that
degpmαq “ 1. Therefore, Qpαnq “ Qpαq.
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Problem 2. Let ζ9 “ 1 and ζ3 ‰ 1 with ζ P C.

(a) Show that 3
?

3 R Qpζq.
For the sake of contradiction, assume that 3

?
3 P Qpζq. Note that ζ is a primitive ninth root of unity. Then

Qpζq{Q is a Galois extension with GalpQpζq{Qq » pZ{9Zqˆ. In particular, GalpQpζq{Qq is abelian. The
polynomial f “ x3 ´ 3 is irreducible over Q by Eisenstein’s criterion with roots t 3

?
3ζ3iu2i“0 for 3

?
3 P R. Thus

Qp 3
?

3q Ă R is not the splitting field of f , the minimal polynomial of 3
?

3. Since Qpζq{Q is abelian, Qp 3
?

3q{Q
is a normal extension, a contradiction. We conclude that 3

?
3 R Qpζq.

(b) If α3 “ 3, show that α is not a cube in Qpζ, αq.
Assume that β3 “ α and β P Qpζ, αq for the sake of contradiction. Then Qpζ, αq is the splitting field of
mβ “ x9 ´ 3 over Q. By Eisenstein’s Criterion, mβ is irreducible in Qrxs so rQpβq : Qs “ 9. Since Q is
perfect, Qpζ, αq{Q is a Galois extension. We have the tower of fields shown below. We know that Qpαq XQpζq
is a subfield of a degree 3 extension Qpαq{Q. Thus Qpαq X Qpζq “ Qpαq or Qpαq X Qpζq “ Q. By (a),
Qpαq X Qpζq “ Q and Qpζq{Q Galois implies Qpαq and Qpζq are linearly disjoint. Thus the degree of their
compositum over Q is rQpα, ζq : Qs “ rQpαq : QsrQpζq : Qs “ 18.

Since Qpαq and Qpζq are linearly disjoint and Qpζq{Q is Galois, we know that Qpα, ζq{Qpαq is Galois. Addition-
ally, the restriction map from GalpQpα, ζq{Qpαqq to GalpQpζq{Qq is an isomorphism. As before, GalpQpζq{Qq
is abelian so Qpβq{Qpαq must be a Galois extension. The polynomial g “ x3´α has no roots in Qpαq and, as a
degree 3 polynomial, is irreducible over Qpαq. With g the minimal polynomial of β over Qpαq and Qpβq{Qpαq
Galois, g must split in Qpβq. Thus the roots tβζ3iu2i“0 of g are elements of Qpβq. Proceeding, β2pβζ3q P Qpβq
so Qpζ3q is a subfield of Qpβq. However, rQpβq : Qs “ 9 and rQpζ3q : Qs “ ϕp3q “ 2 for ϕ Euler’s totient
function, a contradiction. Therefore, α does not have a third root in Qpζ, αq.

Qpζ, αq

Qpβq

Qpζq

Qpαq

Qpζ3q

Q

3

3

2

6

Problem 3. Let Zn (n ą 1) be made of column vectors with integer coefficients. Prove that for every non-zero
left ideal I of MnpZq, IZn (the subgroup generated by products αv with α P I and v P Zn) has finite index in Zn.

We will classify the non-zero left ideals I ĂMnpZq. Since I is non-zero, there is an element A P I with a non-zero
column. Without loss of generality, assume the first column is non-trivial. By left multiplication with elementary
matrices, we can perform row operations on I. Since Z is a PID, Bezout’s identity allows us to obtain the greatest
common divisor of the entries in the first column of A. By row switches, put the greatest common divisor in the
first row. Repeat this process for each matrix B P I with at least one non-zero entry in the first column. Then
Bezout’s identity allows us to obtain a matrix in I with the greatest common divisor d1 P Z of all non-zero entries
of the first column of elements of I. There cannot be a matrix in I whose first column entries are not divisible
by d1 by construction. Thus the first columns of elements of I are of the form d1Zn for some d1 P Z. Once we
have the matrix with di in the first column, we can produce any matrix with multiples of di in the first column.
Repeat this process for each column. As a result, the left ideals of MnpZq are all matrices where elements of the
ith column are multiples of some di P Z.

Let D1 P I be the matrix with di in the first row and zero in each other row for the columns 1 ď i ď n. By
choosing v P Zn based on Bezout’s identity, we have D1v is the vector with d :“ gcdpd1, . . . , dnq in the first row
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and zeros in rows 2 ď j ď n. The same argument allows us to produce any multiple of d in each row. In fact,
every element of αv for α P I must be divisible by d since the entries of α are all divisible by d. We conclude that
IZn “ pdZqn which has finite index in Zn.

Problem 4. Let p be a prime number, and let D be a central simple division algebra of dimension p2 over a field
k. Pick α P D not in the center and write K for the subfield of D generated by α. Prove that D bk K » MppKq
(the pˆ p matrix algebra with entries in K).

We will first show that K bk K has zero divisors. Let mα P krxs be the minimal polynomial of α over k. Then
K bk K “ krxs{pmαq bk K “ Krxs{pmαq. Since K contains a root of mα, mα “

śm
i“1 gi for some irreducible

polynomials gi P Krxs. Therefore, Krxs{pmαq “ Krxs{p
śm
i“1 giq »

śm
i“1Krxs{pgiq by the Chinese Remainder

Theorem. It is clear that
śm
i“1Krxs{pgiq has zero divisors for m ě 2.

Now KbkK is a subring of DbkK. Since KbkK has zero divisors, we conclude that DbkK is not a division
ring. Note that ZpDbkKq “ ZpDqbk ZpKq “ kbkK “ K. The tensor product of a central simple algebra and a
simple algebra is simple. Therefore, D bk K is a central simple K-algebra. By Artin-Wedderburn, D bk K is the
product of matrix algebras over division rings. However, dimKpD bk Kq “ dimkpDq “ p2 so either D bk K is a
division algebra or D bk K »MppKq. By above, we have D bk K »MppKq.

Problem 5. Let C be a category. A morphism f : AÑ B in C is called an epimorphism if for any two morphisms
g, h : B Ñ X in C, g ˝ f “ h ˝ f implies g “ h. Let ALG be the category of Z-algebras, and let MOD be the
category of Z-modules.

(a) Prove that in MOD, f : M Ñ N is an epimorphism if and only if f is a surjection.

(ñ) We will prove the contrapositive. Assume that f : M Ñ N is not surjective. Then impfq Ă N is a proper
Z-submodule. We define π : N Ñ N{impfq the canonical projection and g : N Ñ N{impfq the zero Z-module
homomorphism. Then gf and πf are zero maps so gf “ πf . Let n P N such that n R impfq. Then g ‰ π since
gpnq “ 0` impfq while gpnq “ n` impfq ‰ 0` impfq. We conclude that f is not an epimorphism

(ð) Let f : M Ñ N be surjective. Let g, h : N Ñ P be Z-module homomorphisms such that gf “ hf . Let
n P N , then n “ fpmq for some m PM . As a result, gpnq “ gpfpmqq “ hpfpmqq “ hpnq so g “ h. We conclude
that f is right-cancellative and f is an epimorphism.

(b) In ALG, does the equivalence of epimorphism and surjection hold? If yes, prove the equivalence, and if no,
give a counterexample (as simple as possible).

Let i : ZÑ Q be the canonical inclusion morphism of Z-algebras. By Fall 2015 Problem 1, this morphism is a
non-surjective epimorphism.

Problem 6. Let G be a group with a normal subgroup N “ xy, zy isomorphic to pZ{2Zq2. Suppose that G
has a subgroup Q “ xxy isomorphic to the cyclic group Z{3Z such that the composition Q Ă G Ñ G{N is an
isomorphism. Finally, suppose that xyx´1 “ z and xzx´1 “ yz. Compute the character table of G.

We will find the conjugacy classes of G. Since xy “ zx and xz “ yzx, we can write every element of G as
yizjxk for 0 ď i, j ď 1 and 0 ď i ď 2. The relations allow reduction to the form yizjxk without changing the x
exponent. As a result, conjugation by any element will preserve the x exponent of any element. We will show that
the conjugacy classes are based on the exponent of x. The relations of G produce the conjugacy class ty, z, yzu. In
the equations below, we start with x.

yxy´1 “ yxy “ zx

ypzxqy´1 “ yz2x “ yx

zpzxqz´1 “ xz “ yzx

A similar argument starting with x2 gives the conjugacy class breakdown below.

teu, ty, z, yzu, tx, yx, zx, yzxu, tx2, yx2, zx2, yzx2u

Note that |G| “ 12. Thus the sum of 1 and three squares needs to be |G| “ 12. We cannot have an irreducible
representations of dimension higher than three. The only option is 12 “ 12 ` 12 ` 12 ` 32 so there should be three
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isomorphism classes of one-dimensional representations and one isomorphism class of 3-dimensional irreducible
representations.

We will first classify the characters of the one-dimensional irreducible representations. Let ρi : G Ñ Cˆ for
1 ď i ď 3 be the one-dimensional representations. Since y and z are order 2 elements of G, they must map to
˘1 in Cˆ. Similarly, x will be sent to a third root of unity. The group Cˆ is abelian so ρpzq “ ρpxyx´1q “

ρpxqρpyqρpxq´1 “ ρpyq and ρpyzq “ ρpxzx´1q “ ρpxqρpzqρpxq´1 “ ρpzq. Let ξ be a primitive third root of unity.

We find the final row of the character table by column orthogonality and the identity
ř3
i“1 ξ

i “ 0.

1 y x x2

χtrivial 1 1 1 1
χρ1 1 1 ξ ξ2

χρ2 1 1 ξ2 ξ
χµ 3 ´1 0 0

Problem 7. Let B be a commutative Noetherian ring, and let A be a Noetherian subring of B. Let I be the
nilradical of B. If B{I is finitely generated as an A-module, show that B is finitely generated as an A-module.

WE NEVER FIGURED THIS ONE OUT

Problem 8. Let F be a field that contains the real numbers R as a subfield. Show that the tensor product
F bR C is either a field or isomorphic to the product of two copies of F , F ˆ F .

We note that C » Rrxs{px2`1q so F bRC » F bRRrxs{px2`1q » F rxs{px2`1q. If x2`1 is irreducible in F rxs,
then F rxs{px2` 1q is a field. If x2` 1 has a root in F , then F rxs{px2` 1q » F rxs{px´αq ˆF rxs{px´ βq » F ˆF
by the Chinese Remainder Theorem. Therefore, F bR C is either a field or isomorphic to F ˆ F .

Problem 9. Show that there is no simple group of order 616.

As in Spring 2015 Problem 8, conjugation of a Sylow p-subgroup by an element g P G is another Sylow p-subgroup.
If there is only one Sylow p-subgroup, then the Sylow p-subgroup is normal in G.

Let G be a group with order 616 “ 23 ¨7 ¨11. By Sylow’s Third Theorem, the number of Sylow 11-subgroups m11
divides 56 and is congruent to 1 modulo 11. Thus we could have m11 “ 1 or m11 “ 56. As we will show, m11 “ 1
implies the Sylow 11-subgroup is normal in G. Thus, assume m11 “ 56. Next, the number of Sylow 7-subgroups
m7 divides 88 and is congruent to 1 modulo 7. We could have m7 “ 1, 8, 22, 88. The argument will work for larger
choices for m7 so assume m7 “ 8. The intersection of a Sylow 7-subgroup and Sylow 11-subgroup must be trivial
by an order consideration. Thus the Sylow subgroups chosen account for p11 ` 55p10qq ` p8p6qq “ 609 elements.
A Sylow 2-subgroup of G will have order 8. As a result, there can be at most one Sylow 2-subgroup. Sylow’s
Theorems imply the existence of a Sylow 2-subgroup so mj “ 1 for some j P t2, 7, 11u. By the above argument, we
conclude that G has a normal subgroup and G is not simple.

Problem 10. By one definition, a Dedekind domain is a commutative Noetherian integral domain R, integrally
closed in its fraction field, such that R is not a field and every nonzero prime ideal in R is maximal. Let R be a
Dedekind domain, and let S be a multiplicatively closed subset of R. Show that the localization RrS´1s is either
the zero ring, a field, or a Dedekind domain.

If 0 P S, then RrS´1s is the zero ring. If S “ Rzt0u, then RrS´1s is a field. Assume 0 R S and S ‰ Szt0u. It is
clear that RrS´1s is a commutative integral domain. By Fall 2015 Problem 2(a), there is a bijective correspondence
between the ideals of p Ă R that intersect trivially with S and the ideals of S´1p Ă RrS´1s. Let

S´1I1 Ă S´1I2 Ă . . .

be an increasing chain of ideals in RrS´1s. Then I1 Ă I2 Ă . . . is an increasing chain of ideals in R for Ij :“ tr P
R : r1 P S

´1Iu. Since R is Noetherian, the chain terminates so Ik “ Ik`i for all i P N. As a result S´1Ik “ S´1Ik`i
for all i P N and the chain in RrS´1s terminates. We conclude that RrS´1s is Noetherian.
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By Spring 2016 Problem 4(b), we have a correspondence between prime ideals p Ă R that do not intersect S
and prime ideals S´1p Ă RrS´1s. Take a chain of prime ideals

0 Ă S´1p1 Ă S´1p2 Ă . . .

which corresponds to a chain of prime ideals 0 Ă p1 Ă p2 Ă . . . of R. Each non-zero prime ideal of R is maximal
so pi “ p1 for all i P N. Thus S´1pi “ S´1p1 for all i P N. We conclude that each non-zero prime ideal of RrS´1s

is maximal.
We will show that RrS´1s is integrally closed in its fraction field. Let K be the fraction field of R and RrS´1s

is a subring of K. Let r
s P K be integral over RrS´1s. If r

s P R, then r
s P RrS

´1s so assume r
s R R. There is a

monic polynomial f “ xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0 P RrS

´1srxs such that fp rs q “ 0. Each ai “
ri
si

for ri P R and

si P S. Define t :“
śn´1
i“1 si P S so

0 “
´r

s

¯n

`
rn´1

sn´1

´r

s

¯n´1

` ¨ ¨ ¨ `
r0

s0

“ tn
´r

s

¯n

` tn
rn´1

sn´1

´r

s

¯n´1

` ¨ ¨ ¨ ` tn
r0

s0

“

ˆ

tr

s

˙n

`
trn´1

sn´1

ˆ

tr

s

˙n´1

` ¨ ¨ ¨ `
tnr0

s0
.

Note that tirn´i
sn´i

P R by the choice of t P S. Thus tr
s is a root of a monic polynomial in Rrxs. Since R is integrally

closed, tr
s P R. Then r

s “
r1

t P RrS
´1s for some r1 P R. We conclude that RrS´1s is integrally closed in K. As a

result, RrS´1s is a Dedekind domain.

Fall 2018

Problem 1. Let Q8 “ t˘1,˘i,˘j,˘ku be the quaternion group of order 8.

(a) Show that every non-trivial subgroup of Q8 contains ´1.

Let H Ă Q8 be a non-trivial subgroup. If ´1 P H, then we are done. Otherwise, one of t˘i,˘j,˘ku is in H.
But p˘iq2 “ p˘jq2 “ p˘kq2 “ ´1 P H. Therefore, each non-trivial subgroup of Q8 contains ´1.

(b) Show that Q8 does not embed in the symmetric group S7 (as a subgroup).

Let φ : Q8 Ñ S7 be an injective group homomorphism. This defines a group action of Q8 on the set X “

tx1, . . . , x7u via g ¨ xi “ xφpgqpiq for g P Q8. The orbits of the action partition X so |X| “
ř

xPX |Orbpxq|. By
Orbit-Stabilizer, |Orbpxq| “ rQ8 : Stabpxqs “ |Q8|{|Stabpxq| by |Q8| finite. Note |Stabpxq| ‰ 1 for all x P X
since |Q8|{|Stabpxq| “ 8 ą 7, a contradiction. Thus Stabpxq is a non-trivial subgroup of Q8 for all x P X. By
(a), ´1 P Stabpxq for all x P X so φp´1q “ e. This contradicts the injectivity of φ. Therefore, there is no
embedding of Q8 into S7.

Problem 2. Let G be a finitely generated group having a subgroup of finite index n ą 1. Show that G has
finitely many subgroups of index n and has a proper characteristic subgroup (i.e. preserved by all automorphisms)
of finite index.

There are finite groups for which the statement does not hold. Conjugation by an element of a group is an
automorphism of the group (called an inner automorphism). Thus every characteristic subgroup of a group is
normal. The finite group A5 is simple and thus contains no non-trivial characteristic subgroups. Assume G is
infinite.

Let H Ă G be a subgroup of index n. Then G acts on the set of left cosets G{H “ tg1H, g2H, . . . , gnHu via left
multiplication. This defines a group homomorphism φ : GÑ Sn such that g ¨giH “ gφpgqpiqH. Note that g ¨H “ H
if and only if g P H. Thus StabpHq “ H implying a one-to-one correspondence between the index n subgroups of
G and homomorphisms φ : G Ñ Sn. Let G be finitely generated by tx1, . . . , xku, say. Then the image of each xi
in Sn determine uniquely each homomorphism φ : GÑ Sn. There are n! choices for the image of each xi so there
are finitely many homomorphisms φ : GÑ Sn. We conclude there are finitely many index n subgroups of G.
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Let σ P AutpGq and H Ă G be the index n subgroup in the problem statement. Now σpHq is a subgroup of
G since σ is an automorphism. Note that the cosets are σpGq{σpHq “ G{σpHq “ tσpg1qσpHq, . . . , σpgnqσpHqu so
σpHq is an index n subgroup of G. Define N :“

Ş

σPAutpGq σpHq. There are finitely many index n subgroups of G so

N “
Şm
i“1Hi for some index n subgroups Hi Ă G. We want to show that N is a proper characteristic subgroup of

finite index in G. It is clear that N is a subgroup that is fixed under all automorphisms of G. We can define a group
action of G on

śm
i“1G{Hi by component-wise left multiplication. Then StabpH1, H2, . . . ,Hmq “

Şm
i“1Hi “ N

since gHi “ Hi if and only if g P Hi. By Orbit-Stabilizer,

rG : N s “ rG : StabpH1, H2, . . . ,Hmqs “ |OrbpH1, H2, . . . ,Hmq| ď |OrbpH1q| ¨ ¨ ¨ |OrbpHnq| “ rG : H1s ¨ ¨ ¨ rG : Hms.

Since each Hi is of finite index, rG : N s is finite. Therefore, N is a characteristic subgroup of G of finite index.
Note that N cannot be all of G since it is a subgroup of a H and N is not trivial since it is a finite index subgroup
of an infinite group.

Problem 3. Let K{F be a finite extension of fields. Suppose that there exist finitely many intermediate fields
K{E{F . Show that K “ F pxq for some x P K.

If F is a finite field, then K is also a finite field of the same characteristic. We know Kˆ is cyclic so K “ F pxq
for some x P K.

Assume F is not finite. Let α, β P K. By assumption, there are only a finite number of distinct fields F pα` cβq
for all c P F . Since F is infinite, there are c1, c2 P F with c1 ‰ c2 such that E :“ F pα` c1βq “ F pα` c2βq. Thus
pc1 ´ c2qβ P E and β P E. Further, α P E and the field F pα, βq can be generated by one element. By an inductive
argument, for E “ F pα1, . . . , αnq there are corresponding c1, . . . , cn such that E “ F pα1 ` c2α2 ` ¨ ¨ ¨ ` cnαnq.
Since K{F is a finite field extension, K “ F pα1, . . . , αnq so K “ F pxq for some x P K.

This proof is based on that of the Primitive Element Theorem found in Lang Section 5.4.

Problem 4. Let K be a subfield of the real numbers and f an irreducible degree 4 polynomial over K. Suppose
that f has exactly two real roots. Show that the Galois group of f is either S4 or of order 8.

Note that charpKq “ 0 so each finite field extension is separable. Let r, s P R be the two distinct real roots of f .
Let α P C be a complex root of f so α is the final root of f . Since f is irreducible, rKrrs : Ks “ 4. Case 1: Assume
s P Krrs. Then f “ px ´ rqpx ´ sqh for h P pF rrsqrxs and degphq “ 2. Note that Krrs Ă R but α R R. Thus the
quadratic h is irreducible over Krrs. We conclude rKrr, αs : Ks “ rKrr, αs : KrrssrKrrs : Ks “ 8 where Krr, αs is
the splitting field of f over K. Then Krr, αs{K is Galois and |Galpfq| “ 8.

Case 2: Assume s R Krrs. Then f “ px´ rqg with g P pKrrsqrxs and degpgq “ 3. Since Krrs Ă R and s R Krrs,
the cubic g is irreducible over Krrs. Then rKrr, ss : Ks “ 12 and f “ px ´ rqpx ´ sqh for h P pKrr, ssqrxs and
degphq “ 2. Since Krr, ss Ă R, the quadratic h will be irreducible over Krr, ss. We have Krr, s, αs is the splitting
field of f over K so Krr, s, αs{K is Galois. Additionally, rKrr, s, αs : Ks “ |GalpKrr, s, αs{Kq| “ 24. The Galois
group defines a group action on the set of four roots of f . Therefore, we have an injective group homomorphism
φ : GalpKrr, s, αs{Kq Ñ S4. By an order argument, φ is surjective and GalpKrr, s, αs{Kq » S4.

Problem 5. Let R be a commutative ring. Show the following:

(a) Let S be a non-empty saturated multiplicative set in R, i.e. if a, b P R, then ab P S if and only if a, b P S. Show
that RzS is a union of prime ideals.

Let a P R be a non-unit. Define the set Ω of all prime ideals p Ă R such that a P p. Note that Ω is non-empty
since a is contained in some maximal ideal of R. Take a totally ordered subset, tpiuiPI , of decreasing elements
of Ω. We want to show that q :“

Ş

iPI pi is an element of Ω. Since a P pi for all i P I, a P q so q is non-empty.
Let bc P q for b, c P R. Then bc P pi for all i P I. If b, c P pi for all i P I, then we are done. Thus assume c R pj
for some j P I. Then c R pi for all pi Ă pj . Thus b P pi for all pi Ă pj . Since the subset is totally ordered, b P pi
for all i P I and b P q. By Zorn’s Lemma, there exists a minimal element p P Ω by inclusion.

Note that Rˆ Ă S since 1 P S. Let a P RzS, and let pa be a minimal prime ideal containing a. Assume
pa X S ‰ H. Then S´1pa Ă S´1R is not a prime ideal of S´1R. By the prime ideal correspondence and the
minimality of pa, a

1 is not contained in a prime ideal of S´1R so a
1 is a unit of S´1R. Then there is some

r
s P S

´1R such that r
s
a
1 “

1
1 . For k P S, kpraq “ pkrqa “ s P S. Since S is saturated, a P S, a contradiction.

Therefore, paXS “ H and RzS Ă
Ť

aPRzS pa. By construction, RzS Ą
Ť

aPRzS pa and RzS is a union of prime
ideals.
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(b) If R is a domain, show that R is a UFD if and only if every non-zero prime ideal in R contains a non-zero
principal prime ideal.

(ñ) Let p Ă R be a prime ideal in a UFD R. Then for a P p, we have a factorization of a into irreducible and,
thus, prime elements, a “

śn
i“1 p

ki
i . Since

śn
i“1 P p and p is prime, pi P p for some 1 ď i ď n. Thus ppiq Ă p.

(ð) Suppose that every non-zero prime ideal in R contains a non-zero principal prime ideal. Let S be the set
of all finite products of prime elements in R. It is clear that S is mulitplicatively closed and 0 R S. Further,
units in R are empty products of primes so Rˆ Ă S. We will show that S is saturated. If a, b P S, then ab P S
by mulitplying the two factorizations. Let a, b P R such that ab P S. If both a and b are units, we are done so
let a be a non-unit. Then ab “

śn
i“1 pi for prime elements pi P R. If n “ 1, we have ab “ p1 so either a or b

is a unit by the irreducibility of primes. By assumption b is a unit and a, b P S. Assume the statement is true
for all n ă m. Take ab “

śm
i“1 pi. Each pi divides either a or b. First, assume some pi divides b. Then there

is some c P R such that b “ pic. By renumbering the primes, ac “
śm´1
i“1 pi. The inductive hypothesis implies

a, c P S and b “ pic P S. Next, if no pi divides b, we have p
śm
i“1 piqx “ a for some x P R. Then xb “ 1 and

b P Rˆ Ă S. Similarly, x is a unit so a P S. We conclude that S is saturated.

Let a P R be a non-zero non-unit. Either paqXS ‰ H or paqXS “ H. If paqXS ‰ H, then there is some b P R
such that ab P S. By above, a P S so a is a product of prime elements of R. If paq X S “ H, then paq Ă RzS
so paq Ă p for some prime ideal p Ă R by part (a). There is a principal prime ideal ppq Ă p, but ppq Ă RzS
contradicts our choice of S. Therefore, every non-zero non-unit a P R has a factorization into a finite product
of prime and, thus, irreducible elements. Since an irreducible element will be a product of prime elements, it
must be a product of one prime element. Irreducible elements of R are prime so R is a UFD.

Problem 6. Let A be an integrally closed Noetherian domain with quotient field F and K{F be a finite separable
field extension.

(a) If tx1, . . . , xnu is a basis for K as an F -vector space, show that there exists ty1, . . . , ynu in K such that
TrK{F pxiyjq “ δi,j for all i, j.

Since K{F is a separable field extension, trace defines a non-degenerate bilinear form on K. Thus there exists
a basis ty1, . . . , ynu for K as an F -vector space such that TrK{F pxiyjq “ δij for all i, j.

(b) If B is the integral closure of A in K, show that B is a finitely generated A-module.

Each xi P L is algebraic over K. Thus xi satisfies an equation arx
r
i ` ar´1x

r´1
i ` ¨ ¨ ¨ ` a0 “ 0 for ai P A.

Multiply by ar´1
r so that arxi is a root of a monic polynomial with coefficients in A. Since B is the integral

closure of A in K, we have arxi P B. Let tu1, . . . , unu be a basis for K as an F -vector space with ui P B for
1 ď i ď n.

By (a), there is a dual basis tv1, . . . , vnu for K as an F -vector space such that TrK{F pxiyjq “ δij . Let x P B,
then x “

řn
j“1 xjvj for xj P K. Since ui P B, we have xui P B. Now TrK{F pxuiq appears as a multiple of a

coefficient in the minimal polynomial of xui so TrK{F pxuiq P A. Thus

TrK{F pxuiq “
n
ÿ

j“1

TrK{F pxjuivjq “
n
ÿ

j“1

xjTrK{F puivjq “
n
ÿ

j“1

xjδij “ xi P A.

We conclude that B Ă
řn
j“1Avj . WHY DOES THIS GIVE FINITELY GENERATED AS AN

A-MODULE. THE Vj MIGHT NOT BE IN B

This is the proof of Proposition 5.17 in Atiyah-MacDonald.

Problem 7. Let F : C Ñ D be a functor with a right adjoint G. Show that F is fully faithful if and only if the
unit of the adjunction η : IdC Ñ GF is an isomorphism.

Let ε : GF Ñ 1D be the counit of the adjunction. (ñ) Assume F is fully faithful. We will show that ηY : Y Ñ
GF pY q is an isomorphism. Let f, g : X Ñ Y be morphisms in C such that ηY ˝ f “ ηY ˝ g. By the adjunction,
HomCpX,GF pY qq » HomDpF pXq, F pY qq so ηY ˝ f and ηY ˝ g map to the same morphism h : F pXq Ñ F pY q.
Since F is fully faithful, FX,Y : HomCpX,Y q Ñ HomDpF pXq, F pY qq. Thus f “ g and ηY is left cancellative. Since
F is full, we have h : GF pXq Ñ X such that F phq “ εF pXq for each X P ObpCq. Then εF pXq ˝ F pηX ˝ hq “
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pηF pXq ˝F pηXqq ˝F phq “ F phq “ εF pXq “ εF pXq ˝F p1Xq for all X P ObpCq. Note that F is faithful so ηX ˝ h “ 1X
and ηX is right cancellative. We conclude η is an isomorphism.

(ð) Assume η is an isomorphism. Let f P HomCpX,Y q. Since ηY is an isomorphism, ηY ˝ ´ is a natural
isomorphism HomCpX,Y q » HomCpX,GF pY qq. Via the adjunction, εF pY q˝F pηY ˝fq “ εF pY q˝F pηY q˝F pfq “ F pfq.
As a result, HomCpX,Y q » HomCpX,GF pY qq » HomDpF pXq, F pY qq via FX,Y and F is fully faithful.

X F pXq

Y GF pY q F pY q FGF pY q F pY q

f
ηY ˝f

F pηY ˝fq

F pfq

ηY F pηY q εF pY q

Problem 8. Give an example of a diagram of commutative rings whose colimit in the category of commutative
rings is different from its colimit in the larger category of rings (and ring homomorphisms).

We will show that the coproduct of two commutative rings is the tensor product over Z. Let A,B,C be
commutative rings with ring homomorphisms f : AÑ C and g : B Ñ C. We need hpiApaqq “ hpab 1q “ fpaq and
hpiBpbqq “ hp1b bq “ gpbq for a P A and b P B. Extend h to a commutative ring morphism so hpab bq “ fpaqgpbq
for ab b P AbZ B. Thus h is the unique commutative ring morphism that causes the diagram to commute.

B

A AbZ B

C

iB g
iA

f

h

We will now show that the tensor product over Z is not the coproduct in the category of rings. Let A “ B “
C “ M2pQq and take f “ g “ idM2pQq. Then h : M2pQq bZ M2pQq Ñ M2pQq can be defined as hpa b bq “ ab or
hpab bq “ ba. These two ring morphisms are not equal since M2pQq is not commutative. Thus M2pQq bZ M2pQq
does not satisfy the universal property of the coproduct.

Problem 9. Let f : M Ñ N and g : N ÑM be two R-linear homomorphisms of R-modules such that idM ´ gf
is invertible. Show that idN´fg is invertible as well and give a formula for its inverse. [Hint: You may use Analysis
to make a guess.]

Since idM´gf : M ÑM is invertible, there is someR-module homomorphism c : M ÑM such that cpidM´gfq “
idM “ pidM ´ gfqc. Note that cgf “ c ´ idM and gfc “ c ´ idM . We claim the R-module homomorphism
idN ` fcg : N Ñ N is the inverse of idN ´ fg : N Ñ N .

pidN ` fcgqpidN ´ fgq “ idN ´ fg ` fcg ´ fpcgfqg

“ idN ´ fg ` fcg ´ fpc´ idM qg

“ idN ´ fg ` fcg ´ fcg ` fg

“ idN

pidN ´ fgqpidN ` fcgq “ idN ` fcg ´ fg ´ fpgfcqg

“ idN ` fcg ´ fg ´ fpc´ idM qg

“ idN ` fcg ´ fg ´ fcg ` g

“ idN .

Problem 10. Consider the real algebra A “ Rrx, ys “ RrX,Y s{pX2 ` Y 2 ´ 1q where x and y are the classes of
X and Y respectively. Let M “ Ap1` xq `Ay be the ideal generated by 1` x and y. (This is the Mobius band.)

(a) Show that there is an A-linear isomorphism A2 Ñ M ‘ M mapping the canonical basis to p1 ` x, yq and
p´y, 1` xq.
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Let f : A2 ÑM ‘M be the A-linear homomorphism defined by fp1, 0q “ p1` x, yq and fp0, 1q “ p´y, 1` xq.
We will show that f is injective. The ideal pX2 ` Y 2 ´ 1q Ă RrX,Y s is a prime ideal since X2 ` Y 2 ´ 1 is
irreducible and RrX,Y s is a UFD. Thus A is an integral domain, and we can embed A into its quotient field
F . Let pa, bq P kerpfq for a, b P A. Then ap1 ` xq ´ by “ 0 and ay ` bp1 ` xq “ 0 as elements of A. We need

a “ by
1`x P F from the first equation and, substituting into the second equation, by2

1`x ` bp1 ` xq “ 0. Note

by2 ` bp1` xq2 “ by2 ` bx2 ` 2bx` b “ 2bpx` 1q via the relation of A so b “ 0. Next, a “ 0 and f is injective.

We will show that f is surjective. Note

fp1´ x, 0q “ pp1` xqp1´ xq, yp1´ xqq “ p1´ x2, yp1´ xqq “ py2, yp1´ xqq

fp0, yq “ p´y2, yp1` xqq

implies fp1´x, 0q`fp0, yq “ p0, 2yq. Then p0, yq is contained in the image of f . Similarly, fp0, 1´xq`fp´y, 0q “
p´2y, 0q so py, 0q is contained in the image of f . Continuing,

fp1` x, 0q “ p1` 2x` x2, yp1` xqq

fp0,´yq “ py2,´yp1` xqq “ p1´ x2,´yp1` xqq

and fp1` x, 0q ` fp0,´yq “ p2` 2x, 0q. Similarly, fp0, 1` xq ` fpy, 0q “ p0, 2` 2xq so p1` x, 0q and p0, 1` xq
are contained in the image of f . Since M is generated by t1` x, yu as an A-module, f is surjective.

(b) Show that there is an A-linear isomorphism AÑM bAM mapping 1 to pp1` xq b p1` xqq ` py b yq.

FIGURE OUT Injectivity

Let f : AÑM bAM be the A-linear homomorphism defined by fp1q “ pp1`xqb p1`xqq` pyb yq. A general
element of M bAM is of the form pp1p1` xq ` q1yq b pp2p1` xq ` q2yq “ pp1p1` xqq b pp2p1` xqq ` pp1pqq.
Thus p1` xq b p1` xq, y b y, p1` xq b y, and y b p1` xq generate M bAM as an A-module. Note that

fpyq “ yppp1` xq b p1` xqq ` py b yqq “ pyp1` xqq b p1` xq ` y b y2 “ y b p1` xq2 ` y b p1´ x2q

“ y b p1` 2x` x2q ` y b p1´ x2q “ y b p2` 2xq

fpyq “ yppp1` xq b p1` xqq ` py b yqq “ p1` xq b pyp1` xqq ` y2 b y “ p1` xq2 b y ` p1´ x2q b y

“ p1` 2x` x2q b y ` p1´ x2q b y “ p2` 2xq b y

so y b p1` xq and p1` xq b y are in the image of f . Similarly,

fp1´ xq “ pp1´ xqp1` xqq b p1` xq ` y b p1´ xqy “ y2 b p1` xq ` y b p1´ xqy

“ y b py ` xyq ` y b py ´ xyq “ y b p2yq

implies yb y and, consequently, fp1q´ yb y “ p1`xqb p1`xq are contained in image of f . We conclude that
f is surjective.

Problem 11. Let G be a finite group, ω be a primitive 3rd root of 1 in C and suppose that the complex character
table of G contains the row

1 ω ω2 1.

Determine the whole complex character table of G, the order of the group and the order of its conjugacy classes.

Note that the number of columns, four, determines the number of conjugacy classes of G and the number of
isomorphism classes of irreducible representations. The first row of the character table corresponds to the trivial
representation. Let ρ : G Ñ C be the one-dimensional representation described in the row given. Then we can
construct a one-dimensional representation ρ b ρ : G ˆ G Ñ C bC C » C. By including G in G ˆ G via the
diagonal homomorphism, we find ρ b ρ describes a one-dimensional representation with χρbρpgq “ χρpgq

2. Since
the characters χρbρ differ from the current rows, ρ b ρ describes a distinct isomorphism class of one-dimensional
representations.

By orthogonality of the second/third column and the first column, we find the zeros in the fourth row. Let
a :“ χµpeq and b :“ χµpgq for g P C4. Then ab “ ´3 by the orthogonality of columns one and four. Since a
represents the dimension of the irreducible representation µ : G Ñ MapCq, a ą 0 is an integer so b P Q. With |G|
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finite, the trace of µpgq is the sum of eigenvalues that are all roots of unity. Thus b P Q is an algebraic integer so
b P Z. We conclude that a “ 1 and b “ ´3 or a “ 3 and b “ ´1. If a “ 1, then |G| “ 4. The order of some g P C2

must be divisible by 3 since ρpg3q “ ρpgq3 “ 1. This contradicts the order of G so a ‰ 1. Thus a “ 3 and b “ ´1.
As a result, |G| “ 12 ` 12 ` 12 ` 32 “ 12. The rows are orthonormal under the inner product xv, wy “

1
|G|

ř4
i“1 |Ci|viwi. Row three implies 1 “ 9`|C4|

12 and |C4| “ 3. The inner product of rows two and one gives

0 “ 1`|C2|ω`|C3|ω
2
`3

12 . Similarly, the inner product of rows three and one gives 0 “ 1`|C2|ω
2
`|C3|ω`3

12 . Thus
|C2| “ |C3| with 8 elements between the two conjugacy classes. We conclude |C2| “ |C3| “ 4.

C1 “ teu C2 C3 C4

χtrivial 1 1 1 1
χρ 1 ω ω2 1
χρbρ 1 ω2 ω 1
χµ 3 0 0 -1

Problem 12. Let F be a finite field and K Ă F the subfield of an algebraic closure generated by all roots of
unity. Find all simple finite dimensional K-algebras.

Let L{F be an algebraic extension. Then for each α P L, we have a finite extension F rαs{F . Then F rαs is the
finite field of order q for q some power of a prime. Then pF rαsqˆ is cyclic of order q´ 1. Thus Krαs is a subfield of
K for each α P L so L is a subfield of K. We conclude that K is the algebraic closure of F . By Artin-Wedderburn,
a simple finite dimensional K-algebra A is a matrix algebras with coefficients in division rings over K. However, if
dimKpDq is finite, we must have D Ă K by K algebraically closed. Thus A »MnpKq for some integer n ě 1.

Spring 2019

Problem 1. Let G be a finite solvable group and 1 ‰ N Ă G be a minimal normal subgroup. Prove that there
exists a prime p such that N is either cyclic of order p or a direct product of cyclic groups of order p.

https://math.stackexchange.com/questions/4051604/
given-a-finite-solvable-group-g-prove-that-a-minimal-normal-subgroup-h-is-a
Since G is solvable, N is solvable as well. The derived series of N will eventually reach the trivial subgroup

which implies that rN,N s is not all of N . Every characteristic subgroup of a normal subgroup of G is normal in G
(PROVE THIS). Thus rN,N s is normal in G. By assumption, N is minimal normal in G so rN,N s is the trivial
subgroup of G. We find that N is abelian.

For a prime p dividing the order of N , Cauchy’s Theorem implies that N has an element of order p. Since N is
abelian, the subgroup tn P N : np “ 1u is a non-trivial characteristic subgroup of N . Every characteristic subgroup
of a normal subgroup of G is normal in G so N “ tn P N : np “ 1u. The classification of finite abelian groups
proves that N is cyclic of order p or a direct sum of cyclic order p groups.

Problem 2. An additive group (abelian group written additively) Q is called divisible if any equation nx “ y
with 0 ‰ n P Z, y P Q has a solution x P Q. Let Q be a divisible group and A is a subgroup of an abelian
group B. Give a complete proof of the following: every group homomorphism AÑ Q can be extended to a group
homomorphism B Ñ Q.

https://planetmath.org/ExampleOfInjectiveModule

Problem 3. Let d ą 2 be a square-free integer. Show that the integer 2 in Zr
?
´ds is irreducible but the ideal

(2) in Zr
?
´ds is not a prime ideal.

Define the norm N : Zr
?
´ds Ñ Zě0 as Npa ` b

?
´dq “ pa ` b

?
´dqpa ´ b

?
´dq “ a2 ` b2d. We can show

algebraically that the norm is multiplicative. Further, we will show Npa` b
?
´dq “ 1 if and only if a` b

?
´d is a

unit in Zr
?
´1s. (ñ) Assume Npa` b

?
´dq “ 1. Then pa` b

?
´dqpa´ b

?
´dq “ 1 and a` b

?
´d is a unit. (ð)

Assume a ` b
?
´d is a unit. Then there is some element a1 ` b1

?
´d for which pa ` b

?
´dqpa1 ` b1

?
´dq “ 1. By

multiplicativity of the norm, Npa` b
?
´dq divides Np1q “ 1. We conclude that Npa` b

?
´dq “ 1.
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We will first show that 2 is irreducible in Zr
?
´ds. Let a`b

?
´d be a non-unit factor of 2. Then Npa`b

?
´dq “

a2 ` b2d divides Np2q “ 4. If Npa` b
?
´dq “ 1 or Npa` b

?
´dq “ 4, the factorization of 2 includes a unit. Thus

Npa ` b
?
´dq “ 2 or a2 ` b2d “ 2. Since d ą 2, we must have b “ 0. Then a2 “ 2 for integer a, which is not

possible. No such non-trivial factor of 2 exists.
We will now show that p2q is not prime in Zr

?
´ds. If d is even, 2 divides ´d but 2 does not divide either factor

in ´d “
?
´d
?
´d. If d is odd, 2 divides 1` d but 2 does not divide either factor of 1` d “ p1`

?
´dqp1´

?
´dq.

Thus (2) is not a prime ideal. Note that this argument proves that Zr
?
´ds is not a UFD since irreducible and

prime are equivalent notions in a UFD.

Problem 4. Let R be a commutative local ring and P a finitely generated projective R-module. Prove that P
is R-free.

DO THIS ONE

Problem 5. Let Φn denote the nth cyclotomic polynomial in ZrXs and let a be a positive integer and p a
(positive) prime not dividing n. Prove that if p|Φnpaq in Z,then p ” 1 mod n.

Problem 6. Let F be a field of characteristic p ą 0 and a P Fˆ. Prove that if the polynomial f “ Xp ´ a has
no root in F , then f is irreducible over F .

Problem 7. Let F be a field and let R be the ring of 3ˆ 3 matrices over F with (3,1) and (3,2) entry equal to
0. Thus,

R “

¨

˝

F F F
F F F
0 0 F

˛

‚.

(a) Determine the Jacobson radical J of R.

(b) Is J a minimal left (respectively right) minimal ideal?

Problem 8. Prove that every finite group of order n is isomorphic to a subgroup of GLn´1pCq.

By Cayley’s Theorem, there is an injective homomorphism from G to Sn. There is an injective homomorphism Sn
to GLnpCq given by permuting the elements of Cn once a basis has been chosen. Let v P Cn be the vector of all 1s,
which is an eigenvector for each permutation matrix. Each permutation matrix in the basis β “ tv, e2, . . . , enu for
Cn will be a block matrix of p1q and a permutation matrix in GLn´1pCq. Thus there is an injective homomorphism
of Sn to GLn´1pCq. Compose this with the injection from Cayley’s Theorem to prove the claim.

Problem 9(a) Find a domain R and two nonzero elements a, b P R such that R is equal to the intersection of
the localizations Rr1{as and Rr1{bs (in the quotient field of R) and aR` bR ‰ R.

DO THIS ONE

Problem 10. Let C be an abelian category. Prove TFAE:

(1) Every object of C is projective.

(2) Every object of C is injective.
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p1q ñ p2q: Assume that every object is projective. Let m : X Ñ Y be a monomorphism for which there is a
morphism g : X Ñ Q. We can build the short exact sequence

0 X Y C 0
f q

where C “ cokerpmq. By assumption, C is projective so the short exact sequence splits. In an abelian category
left and right split are equivalent so there is a morphism s : Y Ñ X such that s ˝m “ 1X . Define h “ g ˝ s and
h ˝m “ pg ˝ sq ˝m “ g ˝ ps ˝mq “ g. Thus Q is injective.
p1q ð p2q: Similar argument.

Fall 2019

Problem 1. Show that every group of order 315 is the direct product of a group of order 5 with a semidirect
product of a normal subgroup of order 7 and a subgroup of order 9. How many such isomorphism classes are there?

How do we show that there is only one Sylow 5-subgroup?
Assume that there is a normal Sylow 5-subgroup denoted P5. Let H be the product of a Sylow 3-subgroup and

Sylow 7-subgroup of G. By order considerations, the intersection of any Sylow 3-subgroup and Sylow 7-subgroup
is trivial so |H| “ 63. Similarly, |P5XH| “ 1 and G “ P5H. With P5 normal in G, we have G » P5¸ψH. Since 5
is prime, P5 is cyclic and AutpP5q » Z{4Z. The image of any h P H via ψ : H Ñ AutpP5q is trivial since its order
must divide 63 and 4. We conclude that G » P5 ˆH.

We would like to classify all groups H of order 63. By Sylow’s Third Theorem, the number of distinct Sylow
7-subgroups in H satisfies n7 ” 1 (mod 7) and n7|9. Thus n7 “ 1 and there is a unique normal Sylow 7-subgroup
denoted P7. Let P3 be some Sylow 3-subgroup of H. By order considerations, |P3 X P7| “ 1 so |H| “ |P3P7| and
H “ P3P7. Since P7 is normal in H, H » P7 ¸ϕ P3. Again by Sylow’s Third Theorem, the number of distinct
Sylow 3-subgroups in H satisfies n3 ” 1 (mod 3) and n3|7 so n3 “ 1 or n3 “ 7.

Case 1: If n3 “ 1, then H » P7ˆP3. Note that 7 is prime so P7 » Z{7Z is cyclic of order 7. Further, P3 » Z{9Z
or P3 » Z{3Zˆ Z{3Z. There are 2 isomorphism classes.

Case 2: If n3 “ 7, then ϕ : P3 Ñ AutpP7q is non-trivial. Since P7 is cyclic of order 7, AutpP7q » Z{6Z. Then
the image of ϕ is the unique order 3 subgroup of AutpP7q. There are 2 isomorphism classes.

We conclude that G » P5 ˆ pP7 ¸ P3q. There are 4 isomorphism classes.

Problem 2. Let L be a finite Galois extension of a field K inside an algebraic closure K of K. Let M be a
finite extension of K in K. Show that the following are equivalent:

(a) LXM “ K,

(b) rLM : Ks “ rL : KsrM : Ks,

(c) every K-linearly independent subset of L is M -linearly independent.

Problem 3. Let I be the ideal px2 ´ y2 ` z2, pxy ` 1q2 ´ z, z3q of R “ Crx, y, zs. Find the maximal ideals of
R{I, as well as all of the points on the variety

V pIq “ tpa, b, cq P C3 : fpa, b, cq “ 0 for all f P Iu.

By ideal correspondence, the maximal ideals of R{I are in bijection with the ideals of R containing I. Hilbert
Nullstellensatz reveals that the maximal ideals of R are of the form px´ a, y ´ b, z ´ cq for a, b, c P C. Let m be a
maximal ideal. Since m contains z3, it must contain z. We reduce the other relations to x2 ´ y2 and pxy ` 1q2. If
m contains x2 ´ y2, then it contains either x´ y or x` y. If m contains pxy` 1q2, then it contains xy` 1. Case 1:
Assume m contains x´ y. Multiply by ´y to obtain ´xy ` y2 in m. Then y2 ` 1 is in m so either y ` i or y ´ i is
in m. Case 2: Assume m contains x` y. Then ´xy ´ y2 is in m and so is 1´ y2. Thus either y ` 1 or y ´ 1 is in
m. The maximal ideals of R containing I are px´ 1, y ` 1, zq, px` 1, y ´ 1, zq, px´ i, y ´ i, zq, and px` i, y ` i, zq
which correspond to the points p1,´1, 0q, p´1, 1, 0q, pi, i, 0q, and p´i,´i, 0q in the variety.

Problem 4. Find all isomorphism classes of simple (i.e., irreducible) left modules over the ring MnpZq of n by
n matrices with Z-entries with n ě 1.
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DO THIS ONE

Problem 6. Classify all finite subgroups of GLp2,Rq up to conjugacy.

See Spring 2017 Problem 1.

Problem 7. Let G be the group of order 12 with presentation

G “ xg, h : g4 “ 1, h3 “ 1, ghg´1 “ h2y.

Find the conjugacy classes of G and the values of the characters of the irreducible complex representations of G of
dimension greater than 1 on representatives of these classes.

The final relation of G implies that gh “ h2g and gh2 “ hg. We can use these relations to write every element
of G as gihj for 0 ď i ď 3 and 0 ď j ď 2. Further, we have the relations h2g3 “ g3h and hg3 “ g3h2 by inverting
the above relations. Clearly, C1 “ teu is a conjugacy class. The relations

ghg´1 “ ghg3 “ h2

gh2g´1 “ gh2g3 “ h

show that C2 “ th, h
2u is a conjugacy class. We find

hgh´1 “ hgh2 “ gh

hpghqh´1 “ gh2

gpghqg´1 “ g2hg3 “ gh2

hpgh2qh´1 “ hgh “ g

gpgh2qg´1 “ g2h2g3 “ gh

so C3 “ tg, gh, gh
2u is a conjugacy class. By similar computation, we have conjugacy class C4 “ tg

3, g3h, g3h2u.
The equations

hg2h´1 “ hg2h2 “ gh2gh2 “ g2

hpg2hqh´1 “ hg2 “ gh2g “ g2h

gpg2hqg´1 “ g3hg3 “ g2h2

hpg2h2qh´1 “ hg2h “ gh2gh “ g2h2

gpg2h2qg´1 “ g3h2g3 “ g2h

prove that C5 “ tg
2u and C6 “ tg

2h, g2h2u are conjugacy classes. All elements of G have been placed in conjugacy
classes.

The commutator rG,Gs has elements of the form ghg´1h´1 “ ghg3h2 “ h. Thus xhy Ă rG,Gs. We see that
G{xhy is cyclic of order 4 and, thus, abelian. We conclude rG,Gs “ xhy and there are |G{rG,Gs| “ 4 one-dimensional
non-isomorphic irreducible representations of G. Each one-dimensional ρi : G Ñ Cˆ sends h to 1. The image of
g must be a fourth root of unity. Further, 12 “ 4 ` a2 ` b2 for a and b the dimensions of the other irreducible
representations of G. We see that a ă 3 and b ă 3 so a “ b “ 2 so we obtain the following character table.

e h g g2 g3 g2h
χ1 1 1 1 1 1 1
χ2 1 1 i ´1 ´i ´1
χ3 1 1 ´1 1 ´1 1
χ4 1 1 ´i ´1 i ´1
χ5 2
χ6 2

42



We will construct a two-dimensional irreducible representation of G over C. Define a set map µ on the generators

µpgq “

ˆ

0 1
´1 0

˙

µphq “

ˆ

e
2πi
3 0

0 e
4πi
3 .

˙

Then the image of g has order 4 in GL2pCq and the image of h has order 3 in GL2pCq. Further,

µpghg´1q “ µpgqµphqµpgq´1

“

ˆ

0 1
´1 0

˙ˆ

e
2πi
3 0

0 e
4πi
3

˙ˆ

0 ´1
1 0

˙

“

ˆ

e
4πi
3 0

0 e
2πi
3

˙

“ µphq´1

so µ : G Ñ GL2pGq is a group homomorphism as desired. There is no non-trivial, proper G-invariant subspace of
C2 which proves µ is irreducible. Compute the characters χ5 by taking the traces of the relevant matrices. We can
complete the final row of the character table by column orthogonality of column j with column 1.

e h g g2 g3 g2h
χ1 1 1 1 1 1 1
χ2 1 1 i ´1 ´i ´1
χ3 1 1 ´1 1 ´1 1
χ4 1 1 ´i ´1 i ´1
χ5 2 ´1 0 ´2 0 1
χ6 2 ´1 0 2 0 ´1

Problem 8. Let M be a finitely generated module over an integral domain R. Show that there is a nonzero
element u P R such that the localization M r1{us is a free module over Rr1{us.

DO THIS ONE

Problem 9. Let A be a unique factorization domain which is a Q-algebra. Let K be the fraction field of A.
Let L be a quadratic extension field of K. Show that the integral closure of A in L is a finitely generated free
A-module.

Problem 10. Compute the Galois groups of the Galois closures of the following field extensions:

(a) Cpxq{Cpx4 ` 1q,

(b) Cpxq{Cpx4 ` x2 ` 1q,

where Cpyq denotes the field of rational functions over C in a variable y.

Spring 2020

Problem 1. Let G be a group defined by G “ xa, b : a2 “ b2 “ 1y. Determine the order of all non-trivial finite
quotient groups.
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Problem 2. Let G be a finite group of order n ą 1 and consider its group algebra ZrGs embedded in QrGs. Let
A “ ZrGs{a for the ideal a generated by g ´ 1 for all g P G.

(a) Prove that the algebra QrGs is the product of Q and Q ¨ a, where Q ¨ a is the Q-span of a in QrGs. [Hint: First
identify the unit 1Q¨a.]

(b) Let B be the projected image of ZrGs in Q ¨ a. Prove that AbZrGs B » G as groups if and only if G is a cyclic
group.

Problem 3. Prove that a noetherian commutative ring A is a finite ring if the following two conditions are
satisfied:

(a) the nilradical of A vanishes,

(b) localization at every maximal ideal is a finite ring.

DO THIS ONE

Problem 4. Compute the dimension of the tensor products of two algebras Qr
?

2s bZ Qr
?

2s over Q and
Qr
?

2s bZ R over R. Is RbZ R finite dimensional over R?

DO THIS ONE

Problem 5. If K ‰ Q appears as a subfield (sharing the identity) of some central simple algebra over Q of
Q-dimension 9, determine (isomorphism classes of) the groups appearing as the Galois group of the Galois closure
of K over Q.

Problem 7. Let G be a p-group and 1 ‰ N Ă G be a non-trivial normal subgroup.

(a) Show that N contains a non-trivial element of the center ZpGq of G.

Let G be a nontrivial p-group, and P the set of order-p elements of N . We have seen that P is non-empty, and
indeed that |P | is congruent to ´1 mod p. Now consider the action of G on P by conjugation. The stabilizer
under this action of any x in P is the centralizer Cpxq of x, which is the subgroup of G consisting of all elements
that commute with x. The orbit of x then has size rG : Cpxqs. But G is a p-group, so rG : Cpxqs is a power of
p. Hence rG : Cpxqs is either 1 or a multiple of p. Since |P | is not a multiple of p, it follows that at least one of
the orbits is a singleton. Then Cpxq “ G, which is to say that x commutes with every element of G. We have
thus found a nontrivial element x of the center of G.

(b) Give an example where ZpNq Ć ZpGq.

Take G “ D4, the dihedral group of order 8. Let N “ xry be the cyclic subgroup of G generated by rotation
by π

2 counter-clockwise. Then ZpNq “ N but ZpGq “ xr2y.

Problem 8. Let R be a ring.

(a) Show that an R-module X is indecomposable if EndRpXq is local. (Recall that a ring is local if the sum of
non-invertible elements remains non-invertible).

DO THIS ONE

(b) Suppose that every finitely generated R-module M is isomorphic to X1 ‘ ¨ ¨ ¨ ‘Xm with all EndRpXiq local.
Show that such a decomposition is unique: If X1‘¨ ¨ ¨‘Xm » Y1‘¨ ¨ ¨‘Yn then m “ n and there is a bijection
σ P Sn and isomorphisms Xi » Yσpiq.

DO THIS ONE

(c) Give an example of an isomorphism X1 ‘X2 » Y1 ‘ Y2 with EndpXiq and EndpYiq local that is not the direct
sum of any isomorphisms Xi » Yi, even up to renumbering the Yi.

DO THIS ONE
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Problem 10. Let R be a commutative ring and M a left R-module. Let f : M Ñ M be a surjective R-linear
endomorphism. [Hint: Let RrXs act on M via f .]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f´1 can be described as a
polynomial in f .

DO THIS ONE

(b) Show that this fails if M is not finitely generated.

DO THIS ONE

Fall 2020

Problem 1. Let p ă q ă r be primes and G a group of order pqr. Prove that G is not simple and, in fact, has a
normal Sylow r-group.

We will first prove that G is not simple. Let np be the number of distinct Sylow p-subgroups, nq be the number
of distinct Sylow q-subgroups, and nr be the number of distinct Sylow r-subgroups. By Sylow’s Third Theorem,
we know the following

np ” 1 (mod pq, np|qr

nq ” 1 (mod qq, nq|pr

nr ” 1 (mod rq, nr|pq.

We conclude that nr “ 1, p, q, pq. Since r ą p and r ą q, p and q can’t be congruent to 1 modulo r. Thus nr “ 1
or nr “ pq. If nr “ 1, we’re done so assume nr “ pq. Every Sylow r-subgroup contains the identity and r´ 1 order
r elements of G. Thus there are pqpr´ 1q “ pqr´ pq order r elements of G. Similarly, nq “ 1, p, r, pr. Since q ą p,
p can’t be congruent to 1 modulo q. If nq “ 1, we’re done so assume that nq “ r, the smallest other possibility. As
above, there are rpq ´ 1q “ rq ´ r elements of order q in G. We have np “ 1, q, r, qr so assume that np “ q. Then
there are qpp´ 1q “ pq ´ q elements of order p in G. In total this accounts for

ppqr ´ pqq ` prq ´ rq ` ppq ´ qq ` 1 “ pqr ` rq ´ r ´ q ` 1

elements of G. Since r and q are greater than 1, rq ě r ` q and this exceeds the order of G. Thus there is some
normal Sylow subgroup and G is not simple.

Let N be a normal Sylow subgroup of G. If |N | “ r, we are done so assume |N | “ q without loss of generality.
Then G{N is a group of order pr, which implies that G{N has a normal subgroup of order r. By the subgroup
correspondence, there is a normal subgroup H of G containing N for which H{N is order r. Thus |H| “ qr and
H contains a normal subgroup of order r denoted Pr. We want to prove that Pr is normal in G. Let g P G. Then
|gPrg

´1| “ r and gPrg
´1 Ă H since H is normal in G. Since Pr is a normal Sylow r-subgroup of H, Pr is the

unique Sylow r-subgroup of H. We conclude that gPrg
´1 “ Pr and Pr is normal in G.

Problem 2. Show that groups of order 231 “ p3qp7qp11q are semi-direct products and show that there are
exactly two such groups up to isomorphism.

Let G be a group of order 231 with P3 a Sylow 3-subgroup, P7 a Sylow 7-subgroup, and P11 a Sylow 11-subgroup.
Since |Pi X Pj | “ 1 for distinct i and j in t3, 7, 11u, we conclude that |G| “ |P3P7P11| and G “ P3P7P11. By Fall
2020 Problem 1, P11 is normal in G. Let n7 be the number of distinct Sylow 7-subgroups in G. Sylow’s Third
Theorem proves that n7 ” 1 (mod 7) and n7|33. The only option is n7 “ 1 and P7 is normal in G. Thus the cyclic
subgroup P7P11 of order 77 is normal in G and G » P7P11 ¸ϕ P3. We have AutpP7P11q » Z{6Z ˆ Z{10Z and P3

cyclic of order 3. Therefore, ϕ : P3 Ñ AutpP7P11q is either trivial or sends a generator of P3 to an order 3 element
of Z{6Z. The cases of the latter produce isomorphic semidirect products so there are only two groups of order 231
up to isomorphism.

Problem 3. A ring R (commutative or non-commutative) is called a domain if ab “ 0 in R implies a “ 0 or
b “ 0. Suppose that R is a domain such that MnpRq, the ring of nˆn matrices over R, is a semisimple ring. Prove
that R is a division ring.
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Problem 4. Let M be a left R-module. Show that M is a projective R-module if and only if there exist mi PM
and R-homomorphisms fi : M Ñ R for each i P I such that the sets tmi : i P Iu and tfi : i P Iu satisfy:

(a) If m PM , then fipmq “ 0 for all but finitely many i P I.

(b) If m PM , then m “
ř

iPI fipmqmi.

DO THIS ONE

Problem 5. Let F be a field and fpXq “ X6 ` 3 P F rXs. Determine a splitting field K of fpXq over F and
determine rK : F s and GalpK{F q for each of the following three fields: F “ Q,F5,F7.

Problem 6. Let K1 Ă K2 Ă K3 be fields with K3{K2 and K2{K1 both Galois. Let L be a minimal Galois
extension of K1 containing K3. Show if the Galois groups GalpK3{K2q and GalpK2{K1q are both p-groups so is
the Galois group GalpL{K1q.

Problem 7. Let R be a Dedekind domain with quotient field K and I a nonzero ideal in R. Show both of the
following:

(a) Every ideal in R{I is a principal ideal.

DO THIS ONE

(b) If J is a fractional ideal of R, i.e., 0 ‰ J Ă K is an R-module such that there exists a d P R with dJ Ă R, then
there exists a 0 ‰ x in K such that I ` xJ “ R.

DO THIS ONE

Problem 8. Consider R “ CrX,Y s{pX2, XY q. Determine the prime ideals P of R. Which of the localizations
RP are integral domains?

DO THIS ONE

Problem 9. Let G be a finite group, F a field, and V a finite dimensional F -vector space with G Ñ GLpV q a
faithful irreducible representation. Show that the center ZpGq of G is cyclic.
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