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Discussion 1 - Category Theory Review

Definition 1 (Category). A (locally small) category C consists of the following info:

(I) A class of objects Obj(C)

(II) For each X, Y ∈ Obj(C), a set Hom(X, Y ) of all morphisms ”arrows from X to Y ”

(III) A composition map ◦ : Hom(X, Y ) × Hom(Y, Z) → Hom(X,Z) satisfying the
following:

(a) (Associativity) For all f, g, h, (h ◦ g) ◦ f = h ◦ (g ◦ f)
(b) (Identity) For every X ∈ Obj(C), there exist idX ∈ Hom(X,X) such that for

all f, g, f ◦ idX = f and idX ◦ g = g. It’s a quick exercise that such element
idX is in fact, unique for all X.

Definition 2 (Functor). Let C → D be categories. A functor F : C → D consists of a
following data:

(I) F : Obj(C) → Obj(D) a function class

(II) For each objects X, Y ∈ C, a function F : HomC(X, Y ) → HomD(F (X), F (Y ))
satisfying

(a) For all f, g, F (g ◦ f) = F (g) ◦ F (f)
(b) F (idX) = idF (X)

Definition 3 (Natural Transformations). Given two functors F,G : C → D, a natural
transformation η : F ⇒ G is a data of morphisms ηX : F (X) → G(X) such that the

following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

ηX

F (f) G(f)

ηY

Fall 2020, Problem 10: Let C and D be categories, and suppose that every pair of
morphisms in C admits a coequalizer. Let F : C → D be a functor that preserves
coequalizers: i.e., if f, g : A → B are morphisms in C and π : B → coeq(f, g) is
the coequalizer morphism, then F (π) is the coequalizer morphisms for F (f) and F (g).
Suppose also that if h is a morphism in C such that F (h) is an isomorphism, then h is
an isomorphism. Show that F is faithful.
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Proof. Let f, g : X → Y be such that F (f) = F (g). We will show f = g. Consider the
commutative diagram below:

X Y coeq(f, g)
f

g

π =⇒ F (X) F (Y ) coeq(F (f), F (g))
F (f)

F (g)

F (π)

We know F (f) = F (g). There’s a lemma that can help us.

Lemma 1. Let X Y coeq(f, g)
f

g

π be a commutative diagram with coeq(f, g)

the coequalizer of f and g. Then, π is an isomorphism if and only if f = g.

Proof of the lemma. (⇐ Part:) Since π ◦ f = π ◦ g and π is an isomorphism, we can
compose with π−1 to get f = π−1 ◦ π ◦ f = π−1 ◦ π ◦ g = g.
(⇒ Part:) Suppose f = g. Then every k : B → C satisfies k◦f = k◦g. We can apply the
universal property to idY : Y → Y and get that there exists a unique h : coeq(f, g) → Y

commuting with the following diagram:

X Y coeq(f, g)

Y

f π

idY
∃!h

In particular,

h ◦π = idY , so π has a left inverse. To see that π ◦h = id, first, compose it with π on the

left. π ◦ h ◦ π = π. We rewrite it as: (π ◦ h) ◦ π = id ◦ π.
X Y coeq(f, g)

coeq(f, g)

f π

π π◦hid

Then, by the uniqueness in the universal property, we get π ◦ h = id.

Since F (f) = F (g), we get that F (π) is an isomorphism. But by assumption, π must
also be an isomorphism. Applying the lemma again, we see that f = g.

Definition 4 (Adjoints). Let F : C → D and G : D → C be two functors. We say that
F and G are (left-right) adjoints if HomD(F (X), Y ) ≃ HomC(X,G(Y )) and the isomor-

phisms are natural. Adjoint functors are often written
C

D
F G and F is denoted ”left-

adjoint” and G denoted ”right-adjoint”. Also, naturality means the following: we have
two functors Cop × D → Set (X, Y ) 7→ HomD(F (X), Y ) and (X, Y ) 7→ HomC(X,G(Y )).
Naturality means that the isomorphims between the two functors are natural transfor-
mations.

Theorem 1 (Yoneda Lemma). Let C be a small category, and consider the functor
yC : C → Fun(Cop, Set) X 7→ Hom(−, X). We call this the Yoneda embedding. For any
functor F : Cop → Set, we have a natural isomorphism given by Nat(Hom(−, X), F ) ≃
F (X) α 7→ αX(idX). Moreover, if F = Hom(−, Y ), then the isomorphism is the inverse of
the Yoneda embedding yC. It follows that the Yoneda embedding is in fact, fully faithful.

Fall 2018 Problem 7: Let F : C → D be a functor with a right adjoint G. Show that F
is fully faithful if and only if the unit of the adjunction η : IdC → GF is an isomorphism.
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Proof. Note we have the diagram

HomC(X, Y ) HomD(F (X), F (Y )) HomC(X,GF (Y ))F ≃

Lemma 2. f 7→ ηY ◦ f for all f ∈ HomC(X, Y )

Proof of Lemma. Set αX,Z the canonical isomorphism HomD(F (X), Z) → HomD(X,G(Z))
so that the above isomorphism is in fact, αX,F (Y ). Consider the three functors Y 7→
HomC(−, Y ), Y 7→ HomD(F (−), F (Y )), Y 7→ HomC(−, GF (Y )). We label the natural
transformations between them as follows:

HomC(−, Y ) HomD(F (−), F (Y )) HomC(−, GF (Y ))F α−,F (Y )

By Yoneda lemma, the natrual transformation α−,F (Y ) ◦ F corresponds to (α−,F (Y ) ◦
F )Y (idY ) = αY,F (Y ) ◦ F (idY ) = αY,F (Y ) ◦ idF (Y ), which, by definition, is ηY . Hence, the
map HomC(X, Y ) → HomC(X,GF (Y )) is given by f 7→ ηY ◦ f .

Proof of Lemma (Without Yoneda). Fix an f and consider the following diagram:

HomC(Y, Y ) HomC(F (Y ), F (Y )) HomC(Y,GF (Y ))

HomC(X, Y ) HomC(F (X), F (Y )) HomC(X,GF (Y ))

F

−◦f

≃

−◦F (f) −◦f

F ≃

Let’s follow what happens to idY . Going down and right, it’s sent to f first, and then, to
something. On the other hand, if we move to the right and then, down idY 7→ idF (Y ) 7→ ηY
by definition of ηY , and then, is sent to ηY ◦ f . So f in HomC(X, Y ) must be sent to
ηY ◦ f in HomC(X,GF (Y )).

(⇒ Part:) Suppose F is fully faithful. Then, on the above diagram, F (from hom-sets
to hom-sets) is bijective. So the map HomC(X, Y ) → HomC(X,GF (Y )) f 7→ ηY ◦ f
is bijective for all X ∈ Obj(C). The conclusion follows immediately from the following
lemma:

Lemma 3. Let g : Y → Z be such that for allX, the map Hom(X, Y ) Hom(X,Z)
g◦−

is bijective. Then, g is an isomorphism.

Proof of the Lemma. The Yoneda functor Y 7→ HomC(−, Y ) is fully faithful, so an iso-
morphism f 7→ g ◦ f pulls back to an isomorphism g.

Proof of the Lemma (Without Yoneda). SetX = Z, and we get that Hom(Z, Y ) Hom(Z,Z)
g◦−

is surjective, in particular, there exists h ∈ Hom(Z, Y ) such that h 7→ g ◦h = idZ . So g is
right-invertible. Now, we claim that h◦g = idY . Once again, we have g◦h◦g = g = g◦idY .
But then, since f 7→ g ◦ f is injective, we have that h ◦ g = idY .

(⇐ Part:) Suppose ηY is invertible. Then the composition by ηY is bijective again (inverse
given by composition with η−1

Y ) so we have the following diagram:

HomC(X, Y ) HomD(F (X), F (Y ))

HomC(X,GF (Y ))

F

≃ ≃

Hence, the inverse of F can be found by inverting the right isomorphisms.
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Discussion 2 - More Category Theory, Localizations

of Rings

Fall 2017 Problem 10: Let C be a category with finite products, and let C2 be the
category of pairs of objects of C together with morphisms (A,A′) → (B,B′) of pairs
consisting of pairs (A → B,A′ → B′) of morphisms in C. Let F : C2 → C be the direct
product functor (that takes pairs of objects and morphisms to their products).

(a) Find a left adjoint of F

(b) For C a category of abelian groups, determine whether or not F has a right adjoint.

Proof of Part a). We want:

HomC2(L(X), (Y, Z))) ≃ HomC(X, Y × Z)

But observe that we have an isomorphism HomC(X, Y × Z) HomC(X, Y )× HomC(X,Z)
≃

given by g 7→ (pY ◦ g, pZ ◦ g) where pY : Y × Z → Y and pZ : Y × Z → Z are projection
maps. The fact that it is an isomorphism is equivalent to the universal property of the

product.

Y

X Y × Z

Z

g

pY ◦g

pZ◦g

pY

pZ

But note now that by definition, HomC(X, Y )×HomC(X,Z) = HomC2((X,X), (Y, Z)).
So, if we take L : C → C2 to be L(X) = (X,X) (and with the morphisms sent to the
obvious ones), we have that HomC(X, Y ×Z) ≃ HomC2(L(X), (Y, Z)) naturally (we leave
the naturality of the isomorphism as an exercise).

Part b) solution. The answer is a YES. It follows from the fact that in Ab, finite coprod-
ucts and products coincide. As before, if we set R(G) = (G,G), then

HomAb(G×H,K) HomAb(G⊕H,K)

HomAb(G,K)× HomAb(H,K) HomAb2((G,H), (K,K))

=

≃

=

So R is a right adjoint of F .

Fall 2016 Problem 8: Prove that if a functor F : C → Sets has a left adjoint functor,
then F is representable.

Proof. Once again, we use the fact that F has a left adjoint functor
C

Sets

FL so

HomC(L(X), Y ) ≃ HomSets(X,F (Y ))

Conveniently, this is true for when X = {p} for some element p. So then,
HomC(L({p}), Y ) ≃ HomSets({p}, F (Y )) ≃ F (Y ) (the last bijection can be given by

g 7→ g(p) and a 7→ (p 7→ a)). So F (Y ) is represented by L({p}).
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Definition 5. Let R be a commutative ring and S ⊂ R a multiplicatively closed subset
(i.e 1 ∈ S and ∀x, y ∈ S, xy ∈ S). Then, we can define an equivalence relation ∼ on
R× S via (r1, s1) ∼ (r2, s2) iff ∃t ∈ S such that t(r1s2 − r2s1) = 0 (the fact that ∼ is an
equivalence relation is HW). We denote r

s
= [(r, s)]∼ and S−1R = (R× S)/ ∼ and define

addition and multiplication as follows:

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2

r1
s1

· r2
s2

It’s again a HW that 1) these operations are well-defined (that it does not depend on the
choice of the representatives) and 2) (S−1R,+, ·)) is a commutative ring.

Theorem 2. The map f : R → S−1Rr 7→ r
1
is a homomorphism. Moreover, if g : R → T

is a homomorphism to a commutative ring T such that ∀s ∈ S, g(s) ∈ T×, there exists
a unique h : S−1R → T such that g = h ◦ f . In other words, the following diagram
commutes:

R S−1T

T

f

r 7→ r
1

g
∃!h

Proof. HW!

Example 1 (Examples of Multiplicative Subsets and Localizations with them).

(I) S = {1, r, . . . , rn, . . . }. We denote S−1R = R[r−1]. As a special case, if R = F [X]
for some field F , and r = X, then S−1R = F [X,X−1], the set of all Laurent
polynomials in F (finite sum of aXn as n ∈ Z).

(II) S = 1 + I for an ideal I.

(III) For a prime ideal P , S = R− P . Then, we denote S−1R = RP . As a special case,
we can take R an integral domain, and P = (0), and we get R(0) = Q(R), the field
of fractions of R.

Remark 1. In the example (III) from above, r1
s1

= r2
s2

if and only if r1s2 − r2s1 = 0.

In general, f : R → S−1R is injective iff S does not contain any non-zero divisors iff
r1
s1

= r2
s2

⇔ r1s2 − r2s1 = 0.

Lemma 4. Fix an ideal I ⊂ R s.t. I ∩ S = ∅, denote I · S−1R the ideal of S−1R
generated by f(I) ⊂ S−1R.

(a) I · S−1R = S−1I = { r
s
| r ∈ I, s ∈ S}, and it’s a proper ideal of S−1R.

(b) f−1(S−1I) = {a ∈ R | S · a ∩ I ̸= ∅}(⊃ I)

(c) For any proper ideal J ⊂ S−1R, f−1(J) ∩ S = ∅ and S−1f−1(J) = J

In other words, we can view I 7→ S−1I and J 7→ f−1(J) as mappings from
{I ⊂ R | I ∩ S = ∅, I is an ideal} to {J ⊂ S−1R | J is a proper ideal} and I 7→ S−1I 7→
f−1S−1(I) ⊃ I and J 7→ f−1(J) 7→ J .
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Proof. (Part a): Clearly, S−1(I) ⊂ I · S−1 as if r
s
is such that r ∈ I, then r

s
= r

1
· 1
s
∈

I · S−1R. For the other inclusion, suppose we have
∑n

k=1
ak
1
· rk
sk

with ak ∈ I. Then, each
ak
rk
sk ∈ S−1)(I) so their sum must also remain in S−1(I) (it’s not hard to check that S−1I

is additively closed).
(Part b): If a is in the latter set, then there exists s ∈ S such that sa ∈ I. So then,
a
1
= sa

s
∈ S−1(I). So a ∈ f−1S−1(I). For the reverse inclusion, take a ∈ f−1S−1(I). Then,

a
1
∈ S−1(I), so a

1
= r

s
for some r ∈ I. Then, there exists t ∈ S such that t(sa − r) = 0,

so (ts)a = tr ∈ I. Since ts ∈ S (this is where we use that S is multiplicatively closed),
tr ∈ Sa ∩ I.
(Part c): Let r

s
∈ J . Then, r

1
= r

s
· s
1
∈ J . So r ∈ f−1(J). So r

s
= r

1
· 1
s
∈ f(f−1(J))·S−1R =

S−1(f−1(J)). Now, suppose r
s
∈ S−1f−1(J). Then, r

s
= a

t
for some a ∈ f−1(J) and t ∈ S.

Then, a
t
= a

1
· 1
t
∈ J since by definition, f(a) = a

1
∈ J .

Discussion 3 - More Ring Localizations

Theorem 3 (Given as Qual Spring 2017 Problem 5). Suppose in addition, that P∩S = ∅
is a prime ideal. Then, S−1P is prime, and the map P 7→ S−1P and Q 7→ f−1(Q) are
inverse bijections between

{P ⊂ R | P prime and P ∩ S = ∅} and {Q ⊂ S−1R | Q prime}

Proof. Suppose r
s
· a

t
∈ S−1P . Then, ra

st
= b

u
for some u ∈ S. So there exists w ∈ S s.t.

w(ra · u− b · st) = 0, or equivalently, rauw = bstw. The right hand side belongs to P as
b ∈ P , so rauw ∈ P . But since uw ∈ S, uw /∈ P , so ra ∈ P . So r ∈ P or a ∈ P , hence
r
s
∈ S−1P or a

t
∈ S−1P .

Now, it remains to show that {a ∈ P | Sa ∩ P ̸= ∅} = P . The ⊇ part is already
done, so we do the other inclusion. Let a be such that there exists s ∈ S s.t. sa ∈ P .
Then, since s ∈ S, s /∈ P , so a ∈ P (this is where we use P is prime!).

Remark 2. It’s clear that the above maps I 7→ S−1I and J 7→ f−1(J) are inclusion-
preserving. This leads to the following corollaries.

Corollary 1. For any P prime, RP is a local ring with max ideal P · RP = PP , hence
the name ”localization.”

Proof. An ideal is maximal if and only if it is maximal among prime ideals (since every
maximal ideal is prime). Every prime ideal of RP is of the form Q ·RP for some Q ⊂ P .
So P ·RP is the maximal prime ideal.

Corollary 2. If R is a commutative noetherian (resp. artinian) ring, then so is S−1R.

Proof. Take any X a non-empty set of ideals of S−1R. Take Y = {f−1(J) | J ∈ X},
which, since R is noetherian (resp. artinian), has a maximal (resp. minimal) element
f−1(J). Then, J = S−1(f−1(J)) must be maximal (resp. minimal) among ideals in X as
well.

Lemma 5. Let S ⊂ R be a multiplicative subset, and let I be an ideal. Denote S ⊂ R/I
the image of S in R/I (i.e. S = π(S) where π : R ↠ R/I). Then, as rings,

S−1R/S−1I ∼= S
−1
(R/I)

.
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Proof. Of course, we want r
s
+ S−1I := r

s
matched with r+I

s+I
= r

s
. The problem is with

well-definedness of the maps, etc. Here’s how to proceed: take a commutative diagram
(black arrows) below.

R

S−1R R/I

S−1R/S−1I S
−1
(R/I)

f

π

πS

∃! h

fI

∃! g

∃! h

∃! gS

Observe that for all s ∈ S, fI ◦ π(s) = fI(s) = s
1
which is invertible (with inverse

given by 1
s
). So by the universal property, there exists unique h : S−1R → S

−1
(R/I) s.t.

h◦f = fI ◦π. For any r
s
∈ S−1I (with r ∈ I), h : r

s
7→ r

1
· s
1

−1
= 0 · 1

s
. So S−1(I) ⊂ Ker(h),

so h descends to the quotient h : S−1R/S−1I → S
−1
(R/I). As desired, h : r

s
7→ r

s
.

Similarly, if r ∈ I, πS ◦ f(r) = πS(
r
1
) = 0 since r

1
∈ S−1I. So πS ◦ f descends to the

quotient, say g : R/I → S−1R/S−1I. Take any s ∈ S (with s ∈ S mapping to s). Then,

g(s) = s
1
which has an inverse 1

s
in S−1R/S−1I. So once again, by the universal property,

there exists unique gS : S
−1
(R/I) → S−1R/S−1I such that gS ◦ fI = g. We see that

gS : r
s
7→ r

s
.

Clearly, h and gS are inverses to one another.

Corollary 3. For any prime P , F (R/P ) ∼= RP/PP where F (T ) denotes a field of fractions
of a given integral domain T .

Proof. Set S = R− P and I = P . Then, S = R/P − {0}.

Remark 3. The above field is called the ”residue field” at P .

Fall 2020 Problem 8: Consider R = C[X, Y ]/(X2, XY ) := C[x, y]. Determine the
prime ideals of R. Which of the localizations RP are integral domains?

Proof. (Prime ideals of R Part:) Let π : C[X, Y ] ↠ C[X, Y ]/(X2, XY ) be the quotient
map. Then, P ⊂ R corresponds one-to-one to π−1(P ) a prime ideal of C[X, Y ] ⊃
(X2, XY ). Given a prime Q ⊂ C[X, Y ], X2 ∈ Q⇒ X ∈ Q so (X2, XY ) ⊂ Q if and only
if X ∈ Q. Hence, prime ideals of P ⊂ R corresponds to prime ideals π−1(P ) of C[X, Y ]
containing X, which, by taking the surjection q : C[X, Y ] ↠ C[Y ] sending X 7→ 0, corre-
sponds to the prime ideals of C[Y ] (since C[X, Y ]/(X) ≃ C[Y ] via the map induced by
q). The prime ideals of C[Y ] are (0) and (Y − z) (as the only irreducible g ∈ C[Y ] are

of the form Y − z). So P ⊂ R are either (x) ⊂ C[x, y] or (x, y − z) ⊂ C[x, y] for some

irreducible z ∈ C.
(Which Localization RP are integral domains Part:) Answer: P = (x) or (x, y − z) for

z ∈ C− {0}
Note first that RP = C[X, Y ]P/(X

2, XY )P (by abuse of notation, π−1(P ) will also be
denoted P ). So RP is an integral domain iff (X2, XY )P is a prime ideal in C[X, Y ]. If
P = (X) or (X, Y − z) for some z ∈ C − 0, then Y /∈ P (exercise!), so in C[X, Y ]P , Y
becomes invertible. Hence, X

1
= XY

Y
∈ (X2, XY )P , so (X2, XY )P = (X)P . Since (X)
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is already a prime ideal, so is (X)P . On the other hand, if P = (X, Y ), then we claim

that X
1
/∈ (X2, XY )P . Suppose otherwise; then X

1
= fX2

g
+ kXY

h
for some f, k ∈ C[X, Y ]

and h, g /∈ (X, Y ). Clearing out the denominator, we have ghX = fhX2 + kgXY so
gh = fhX+kgY after canceling X. But gh /∈ P = (X, Y ) whereas, fhX+kgY ∈ (X, Y ),
a contradiction.

But then, we have (X
1
)2 = X2

1
∈ (X2, XY )P even though X

1
/∈ (X2, XY )P , so

(X2, XY )P is not prime.

Discussion 4 - Localization of Modules, Nakayama’s

Lemma

Fall 2018 Problem 5: Let R be a commutative ring. Show the following:

(a) Let S be a non-empty saturated multiplicative set in R, i.e. if a, b ∈ R, then ab ∈ S
if and only if a, b ∈ S. Show that R− S is a union of prime ideals.

(b) (Kaplansky’s Theorem for UFDs): If R is a domain, show that R is a UFD if and
only if every nonzero prime ideal in R contains a non-zero principal prime ideal.

Proof. (Part a): Clearly,

R− S ⊇
⋃

P∩S=∅

P

where the union is taken over all P prime not meeting S. So, it suffices to prove the other
inclusion. Let x /∈ S. We want x to be in the union - i.e. we want to find a P prime ideal
not meeting S such that x ∈ P .

Now, consider A = {I | x ∈ I and I ∩ S = ∅}, with the partial order ⊆.

Lemma 6. (x) ∈ A.

Proof. The only thing to check is (x) ∩ S = ∅. Suppose not; let rx ∈ (x) be such that
rx ∈ S. Then, since S is saturated, x ∈ S, which contradicts that x /∈ S.

So A ≠ ∅. Now, we apply Zorn’s lemma to A to find a maximal element. Let {Iα}α∈Λ
be a chain of ideals in A. Then, I := ∪α∈ΛIα is an ideal which contains all Iα’s, x ∈ I,
and I ∩ S = ∪α∈Λ(Iα ∩ S) = ∅. Hence, I is an upper bound of Iα’s in A.

Thus, by Zorn’s lemma, A has a maximal element M ∈ A. The conclusion follows by
the following lemma:

Lemma 7. M is a prime ideal.

Proof. Let a, b /∈ M . Then, M ⊊ M + (a),M + (b), so M + (a),M + (b) ∩ S ̸= ∅. So
choose s ∈M +(a)∩S and t ∈M +(b)∩S. Then, st ∈ (M +(a))(M +(b)) ⊂M +(ab).
If ab ∈ M , then st ∈ M + (ab) = M and st ∈ S, contradicting that S ∩M = ∅. So
ab /∈M .

(Part b): If R is a UFD and P is a prime containing a nonzero r = pe11 p
e2
2 · · · pekk , then at

least one pi belongs to P . So we prove the reverse implication, which is much harder.
Let S = R× ∪ {p1p2 · · · pk | pi are primes}. This is also the multiplicative subset

generated by primes and units (Exercise!).
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Lemma 8. S is a saturated multiplicative subset.

Proof. Let st ∈ S. If st ∈ R×, then take u = (st)−1, then stu = s(tu) = 1 and t(su) = 1,
so both s and t are invertible. So we assume st is of the form p1p2 · · · pk for some primes
pi’s.

We know p1 | s or t. Define s1 = s
p
if p | s1 and t1 = t; otherwise, s1 = s and p | t

so t1 =
t
p
. So we have s1t1 = p2p3 · · · pk. Continuing in this way, we can define sjtj such

that sjtj = pj+1 · · · pk. Then, sktk = 1, so sk and tk are units. But note s is sk times a
product of some pi’s, and t is tk times a product of primes. Hence, s, t ∈ S.

Now, clearly, R− S ⊇ (0). Now, suppose R− S contains an r ̸= 0. Then, by part a),
there exists a prime P ⊂ R− S such that r ∈ P . But then, P contains a principal prime
(p) ⊆ P . But by definition, p ∈ S, contradicting the fact that (p) ∩ S ⊆ P ∩ S = ∅.

Since every non-zero element has a prime factorization, R is in fact, a UFD (since
factorization by primes must be unique and primes are always irreducible).

Definition 6 (Localization of Modules). Let R be a commutative ring, and M be an
R-module. We can construct S−1M , the localization of M at S, as follows: take S ×M
and define a relation ∼ by (s,m) ∼ (t, n) ⇔ ∃u ∈ S such that u(sn − tm) = 0. Set
m
s
= [(s,m)]∼, and S

−1M = S ×M/ ∼.
Furthermore, we can define addition + on S−1M by:

m

s
+
n

t
=
tm+ sn

st

which is 1) well-defined, and 2) turns S−1M with + into an abelian group. Then, we can
define scalar multiplication by r

s
· m

t
= r·m

st
, which again, is well-defined and turns S−1M

into an S−1R-module (exercise!).

Proposition 1 (Restriction of Scalars). Let ϕ : A → B a ring homomorphism between
two commutative rings, andM a B-module. We can turnM into an A-module by setting
r ·Am = ϕ(r)·Bm. Furthermore, if f :M → N is a B-module homomorphism, f is also an
A-module homomorphism. So this act of taking a B-module and assigning an A-module
structure as in above is functorial (from B-Mod to A-Mod), and is called Restriction of
Scalars along ϕ : A→ B. It’s clear restriction of scalars is in fact, exact.

Proposition 2. Via restriction of scalars along f : R → S−1R, r 7→ r
1
, we can view S−1M

as an R-module as well. Moreover, every R-module M such that ∀s ∈ S, s · − :M →M
(m 7→ s·m) is invertible, can be turned into an S−1R-module via r

s
·m = (s·−)−1(r·m). In

particular, suchM ’s form precisely the image of restriction of scalars along f : R → S−1R.

Proposition 3 (Universal Property of Localization). Let R be a commutative ring and
g :M → N be a R-module homomorphism. If N is such that ∀s ∈ S, (s · −) : N → N is
invertible, there exists unique ĝ : S−1M → N such that g = ĝ ◦ etaM (where ηM : M →
S−1M, m 7→ m

1
). That is, ĝ(m

s
) is given by (s · −)−1g(m).

M

S−1M N

ηM
g

∃!ĝ

9



Remark 4. Given f : M → N , we can apply the universal property to the R-module
homomorphism ηN ◦ f :M → S−1N (where ηN and S−1N are now viewed as R-modules
and homomorphisms under restriction of scalars). Then, we obtain a unique map, labeled
S−1f : S−1M → S−1N , such that S−1f ◦ ηM = ηN ◦ f . That is, the following diagram
commutes:

M N

S−1M S−1N

f

ηM ηN

S−1f

Moreover, (S−1f)(m
s
) = (s · −)−1ηN ◦ f(m) = (s · −)−1 f(m)

1
= f(m)

s
.

So, the localization M 7→ S−1M and f 7→ S−1f is functorial (exercise!). It’s a
homework problem that this is actually an exact functor.

Remark 5. Wemay similarly denote S−1M asM [r−1],MP when S = {1, r, . . . , rn, . . . }, S =
R− P , respectively.

Proposition 4. Let R be a commutative ring. For an R-module, the following are
equivalent:

(I) M = 0.

(II) ∀P prime, MP = 0.

(III) ∀P maximal, MP = 0.

Proof. (I) =⇒ (II) =⇒ (III) are trivial, so we prove (III) =⇒ (I). Suppose M ̸= 0.
Then, choose m ̸= 0 in M . Then, consider I = Ann(M) := {r ∈ R | r ·m = 0}, which is
an ideal (exercise!) not containing 1 (otherwise, 1 ·m = m = 0). So I is a proper ideal,
so there exists a maximal ideal P containing I. Now, consider MP .

Claim. MP ̸= 0

Proof of the Claim. Consider m
1
, and suppose it is 0. Then, there exists s /∈ P such that

s · m = 0. So then, s ∈ I = Ann(m) ⊂ P , contradicting that s /∈ P . So m
1

̸= 0, so
MP ̸= 0.

So we found a prime ideal P such that MP ̸= 0.

Proposition 5. Let R be a commutative ring and f : M → N an R-module homomor-
phism. The following are equivalent.

(I) f is injective.

(II) ∀P prime, fP :MP → NP is injective.

(III) ∀P maximal, fP :MP → NP is injective.

Proof. ((I) =⇒ (II) Part:) We have an exact sequence 0 M N
f

. Localiz-

ing at P , we obtain an exact sequence 0 MP NP
fP

, so fP remains injective.

((II) =⇒ (III) Part:) Trivial

10



((III) =⇒ (I) Part:) Given any f , we get an exact sequence 0 ker(f) M N
f

.

Localizing at P , we get:

0 (ker(f))P MP NP
fP

So (ker(f))P ∼= ker(fP ) by exactness. So in

particular, (ker(f))P = 0 at every P maximal. By the previous proposition, ker(f) = 0,
hence, f is injective.

Remark 6. We can replace the word ”injective” with surjective and obtain the same
equivalence in the proposition. The proof would involve analyzing the cokernel of f
instead of f , but otherwise, is exactly the same.

Theorem 4 (Nakayam’s Lemma, Most General Version). Let R be a commutative ring
andM a finitely generated R-module, and let f :M →M is an R-module homomorphism
such that f(M) = I ·M for an ideal I. Then, there exists

p = a0 + a1x+ · · ·+ an−1x
n−1 + xn ∈ R[x]

with ai ∈ I (for i = 0, 1, . . . , n− 1) such that

p(f) = a0id + a1f + · · ·+ an−1f
n−1 + fn = 0 in EndR(M)

Proof. Choose x1, x2, . . . , xn ∈M a generator. Then,

f(x1) =
n∑

i=1

a1ixi =
n∑

i=1

(a1iid)(xi)

f(x2) =
n∑

i=1

a2ixi =
n∑

i=1

(a2iid)(xi)

...

f(xn) =
n∑

i=1

anixi =
n∑

i=1

(aniid)(xi)

Now, consider F : Mn → Mn defined by


f − a11id −a12id · · · −a1nid
−a21id f − a22id · · · −a2nid

...
...

...
−an1id −an2id · · · f − annid

 Now,

the equations above can be rephrased as

F


x1
x2
...
xn

 =


0
0
...
0


Observe that F ∈Mn(R[f ]) ⊂Mn(EndR(M)) as the coefficients are all in terms of the R-
multiplications and f . More importantly, R[f ] is a commutative ring, so we can multiply
by the adjoint to obtain:

11



F adjointF


x1
x2
...
xn

 = (detF )In


x1
x2
...
xn

 =


0
0
...
0


Setting ϕ = detF , we see that ϕ(x1) = ϕ(x2) = . . . ϕ(xn) = 0. So ϕ = 0. But ϕ = p(f) =
a0+a1f+ · · ·+an−1f

n−1+fn, for some a0, a1, . . . , an−1 ∈ I, so the conclusion follows.

Discussion 5 - More Nakayama, Exact Sequences and

Functors, and Tensor-Hom Adjunctions

Remark 7. WhenM = Rn and f : Rn → Rn is represented by the matrix A = (aij), the
above determinant is precisely PA(f), the characteristic polynomial of A evaluated at f .
By the arguments from the theorem above, PA(f) = 0, which is precisely the statement
of the Cayley-Hamilton Theorem. This is one of the nicest proofs of the Cayley-Hamilton
Theorem.

Corollary 4. Let R be a commutative ring, and M be a finitely generated R-module. If
for a given ideal I ⊆ R, M = I ·M , then there exists r ≡ 1 mod I such that r ·M = 0.

Proof. Take f = id, then a0+a1f + · · ·+an−1f
n−1+fn = (a0+a1+ · · ·+an−1+1)id = 0

in EndR(M).

Theorem 5 (Nakayama’s Lemma Local Version). Let R be a commutative ring, M a
finitely generated R-module, and I an ideal contained in J(R), the Jacobson radical of
R (e.g. this happens when R is local and I is the unique maximal ideal). If M = I ·M ,
then M = 0.

Proof. By the corollary, there exists r ≡ 1 mod I such that r ·M = 0. But then, since
r − 1 ∈ J(R), r is actually a unit. So M = r−1 · (r ·M) = r−1 · 0 = 0.

Second proof. Suppose M ̸= 0 and x1, x2, . . . , xn be the minimum number of generators.
Then, xn ∈M = I ·M , so xn =

∑n
j=1 aj ·xj =

∑n−1
j=1 aj ·xj+anxn for some a1, a2, . . . , an ∈

I. So (1 − an)xn =
∑n

j=1 aj · xj. But since an ∈ J(R), 1 − an is a unit, so xn =∑n−1
j=1 (1 − an)

−1ajxj ∈
∑n−1

j=1 Rxj. This contradicts the assumption that x1, x2, . . . , xn
was a minimal generator.

Remark 8. The second proof goes through for even when R is non-commutative.

Definition 7 (Exactness). Recall we say L M N
f g

is exact if Im(f) =
ker(g). In general, given a sequence of modules and maps

. . . Mi−1 Mi Mi+1 Mi+2 . . .
fi−1 fi fi+1

We say such a sequence

is exact if Im(fi) = ker(fi+1) whenever it makes sense.

Remark 9. In the definition, exactly where i ranges is made purposefully vague as to
include a wide range of possible sequences.

12



Definition 8 (Short Exact Sequence). An exact sequence of the form

0 L M N 0
f g

is called a short exact sequence.

Definition 9 (Long Exact Sequence). An exact sequence where i ranges over an un-
bounded set (of integers) in either directions is called a long exact sequence.

Remark 10. Any exact sequence M1 M2 . . . Mn
f1 f2 fn−1

can be extended

to a long exact sequence as follows:

· · · 0 ker(f1) M1 · · · Mn coker(fn) 0 · · ·fn−1

Lemma 9 (Epi-Mono Factorization). Let R be a ring and f : M → N an R-linear

map. Then, we have the following commutative diagram

M N

Im(f)

f

pf jf

Moreover, if K is any other such decomposition, that is, if we had another K fitting as in

the diagram,

M N

Im(f)

K

f

pf

p′

jf

∃!ϕ
j′

there exists unique isomorphism ϕ : K → Im(f)

such that the above diagram commutes.

Remark 11. The factorization of f : M → N as in the lemma
M N

K

f

is called the Epi-mono factorization of f .

Proof of the lemma. The first part of the lemma (that M → Im(f) is surjective and
Im(f) → N is injective) is trivial. So suppose we had another factorization of f : i.e.
p′ : M → K surjective and j′ : K → N injective such that j′ ◦ p′ = f . Then, for
each y ∈ K, define y = p′(x) for some x ∈ M . Then, define ϕ(y) := j′(y). Then,
j′(y) = j′ ◦ p′(x) = f(x) ∈ Im(f) so ϕ : M → Im(f). Since ϕ is (as a function) same as
j′, ϕ is clearly R-linear.

Now, by definition, jf ◦ ϕ(y) = j′(y) so ϕ commutes with the j’s. For p’s, let x ∈M ,
and note that ϕ ◦ p′(x) = j′ ◦ p′(x) = f(x) = pf (x). So ϕ commutes with the p’s as well.
As for checking ϕ is an iso, note that ϕ is injective since j′ is, and ϕ is surjective since pf
is.

Finally, suppose ψ : K → Im(f) was another map that commuted with the p’s and
the j’s. Then, ψ ◦ p′ = ϕ ◦ p′ and p′ is surjective, so ψ = ϕ (or similarly, we could use
that jf ◦ ψ = jf ◦ ϕ and that jf is injective). So uniqueness follows.

Lemma 10. Given long sequence together with epi-mono factorizations Ki of fi,

· · · Mi−1 Mi Mi+1 · · ·

Ki−1 Ki

pi−1

fi−1 fi

piji−1 ji

13



The following are equivalent:

(I) The above sequence is exact

(II) For each i, 0 Ki−1 Mi Ki 0
ji−1 pi

is short exact

Proof. (I) ⇒ (II) Part: Each Ki is Im(fi) = ker(fi+1). So the short sequence is

0 ker(fi) Mi Im(fi) 0

which is exact.
(II) ⇒ (I) Part: Note ker(fi) = ker(ji ◦ pi), but since ji is injective, ker(fi) = ker(pi).
Similarly, Im(fi−1) = Im(ji−1 ◦ pi−1), but again, since pi−1 is surjective, so Im(fi−1) =
Im(ji−1). By short-exactness, we have ker(pi) = Im(ji−1), which clearly implies ker(fi) =
Im(ji−1).

Definition 10. Given two abelian categories (e.g. R-Mod, Mod-R, R-Mod-S, etc.) A
and B, a functor F : A → B is additive if it preserves finite (co)-products. Equivalently,
F (f + g) = F (f) + F (g) for all f, g homomorphisms.

Lemma 11. Let F : A → B be an additive functor between two abelian categories. The
following are equivalent:

(I) F sends an exact sequence L M N
f g

to an exact sequence

FL FM FN
Ff Fg

(II) F sends a long exact sequence to a long exact sequence

(III) F sends a short exact sequence 0 L M N 0
f g

to a short
exact sequence

0 FL FM FN 0
Ff Fg

Proof. (I) ⇔ (II) Part: (I) ⇒ (II) is trivial, and (II) ⇒ (I) follows immediately from the
fact that every exact sequence can be extended to a long exact seqence.
(I) ⇒ (III) Part: Trivial
(III) ⇒ (II) Part: Given a long exact sequence

· · · Mi−1 Mi Mi+1 · · ·

Ki−1 Ki

For each i, 0 Ki−1 Mi Ki 0 is short exact. Now, under

the image of the functor F , 0 FKi−1 FMi FKi 0 remains

short exact. But that shows the image of the long exact sequence is exact.

Definition 11. We say that an additive functor F : A → B is exact if it satisfies any of
the three conditions above.
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Definition 12. Let F : A → B be an additive functor between additive categories. We

say F is left exact if it sends a short exact sequence 0 L M N 0
f g

to an exact sequence 0 FL FM FN
Ff Fg

Similarly, we say F is right ex-

act if it sends a short exact sequence to an exact sequence FL FM FN 0
Ff Fg

Lemma 12. Let F be a left-exact functor. Then, F sends every exact sequence of the

form 0 L M N
f g

to an exact sequence

0 FL FM FN
Ff Fg

Similarly, if F is a right-exact functor, then

F sends every exact sequence of the form L M N 0
f g

to an exact

sequence FL FM FN 0
Ff Fg

Proof. Take an epi-mono factorization of g of the exact sequence:

0 L M N

Im(g)

f g

pg
j

Now, the sequence 0 L M Im(g) 0 is exact. So by left-

exactness of F , 0 FL FM F Im(g)
Ff Fpg

is exact. So we have a sequence

0 FL FM FN

F Im(g)

Ff Fg

Fpg
Fj

Notice Fpg is no longer surjective, but it doesn’t matter (though Fj still remains injective
by left-exactness of F ). First, on the far left, the map Ff still remains injective. And
in them middle, ker(Fg) = ker(Fj ◦ Fpg) = ker(Fpg) since Fj is injective. So then,
ker(Fg) = ker(Fpg) = Im(Ff), as desired.

For the right exactness part of the lemma, take the epi-mono factorization of f instead
of g:

L M N 0

ker(g)

pf

f g

j

The rest of the details are left as an exercise.

Exercise 1. An additive functor F is left exact if and only if F sends kernels to kernels.
That is, if for f : M → N , j : ker(f) → M is the inclusion map, then Fj : F ker(f) →
ker(Ff) is an isomorphism. Similarly, F is right exact if and only if F sends cokernels to
cokernels.

Remark 12 (Tensor product as a bimodule). Let A be a ring. Given A-mod (left A-
module) N and mod-A (right A-module) M , we have an abelian group M ⊗A N . If in
addition, M is a B-mod or N a mod-C for some rings B and C, then M ⊗A N has the
structure of B-mod or mod-C via:

b ·B (m⊗A n) = (bm)⊗A n
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and
(m⊗A n) ·C c = m⊗A nc

Moreover, if M is a B-mod and N is a mod-C, then M ⊗AN has the structure of B−C
bimodule (denoted B-mod-C).

Moreover, in that case, we have, for M a B-mod-A, and N a A-mod-C, tensor pro-
ducting with M or N are additive functors:

M ⊗A (−) : A−Mod− C → B −Mod− C

and
(−)⊗A N : B −Mod− A→ B −Mod− C

Remark 13 (Hom-set as a bimodule). Similarly, given twoA-modsM andN , HomA(M,N)
is an abelian group. If in addition, M has a structure of mod-B and N a mod-C, then
HomA(M,N) is B-C bimodule via:

(b ·B f) : x 7→ f(xb)

and
(f ·C c) : x 7→ f(x)c

Note that the side flips when B acts on the input! (the hom set is now a left B-module).
Moreover, once again, we have additive functors

HomA(M, (−)) : A−Mod− C → B −Mod− C

and
HomA((−), N) : (A−Mod−B)op → B −Mod− C

We’re now ready to state Tensor-Hom adjunctions in full-generality:

Theorem 6. Given a B − A bimodule X, the following functors are adjunctions:

B −Mod− C

A−Mod− C

HomB(X,(−))X⊗A(−)

Proof. HomB−C(X ⊗A M,N) ∼= Bil(X ×M,N) where here, the set Bil denotes the set
of all B-C bilinear AND A-balanced maps from X × N to N . Now, Bil(X ×M,N) ∼=
HomA−C(M,HomB(X,N)), so the conclusion follows.

Exercise 2. Formulate and prove the Tensor-Hom adjunctions for the right-A modules
(i.e. find adjunctions of (−)⊗A X).

Theorem 7 (Hom-Hom adjunctions). Given a A-mod-C X, the following are adjunc-
tions:

(A−Mod−B)op

B −Mod− C

HomA((−),X)HomMod−C((−),X)op

where HomMod−C((−), X) indicates the right C-module hom set.
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Proof. Exercise!

Remark 14. It follows that Hom((−), X),Hom(X, (−)) are left exact (as right-adjoints)
and X ⊗A (−) is right exact (as a left-adjoint).

Corollary 5. Recall that given two rings A and B, and a homomorphism ϕ : A→ B, we
have the restriction of scalars from B-Mod to A-Mod via taking M and setting a ·Am =
ϕ(a) ·B m. The two functors B ⊗A (−) and HomA(B, (−)) are left and right adjoints to
the restriction of scalar functors.

Proof. Apply Tensor-Hom adjunctions to B: B ⊗A (−) is left adjoint to HomB(B, (−))
when B is viewed as a B-Mod-A and B ⊗B (−) is left adjoint to HomA(B, (−)) when B
is viewed as A-Mod-B. Note HomB(B, (−)) and B ⊗B (−) are precisely the restriction
of scalars (why?).

Proposition 6. Given a commutative ring R, S−1R ⊗R M is naturally isomorphic to
S−1M (as S−1R-modules). And given a ring R (not necessarily commutative) and a
(two-sided) ideal I, R/I ⊗R M is naturally isomorphic to M/I ·M (as R/I-modules).

Proof. We define an R-bilinear map S−1R×M → S−1M via ( r
s
,m) 7→ rm

s
, which induces

an R-linear map S−1 ⊗R M → S−1M , with r
s
⊗R m 7→ rm

s
. Now, we define a map

M → S−1R⊗R M via m→ 1
1
⊗m, which is clearly R-linear. Then, since S−1R⊗R M is

an S−1R-module (every element of S acts as an automorphism), this descends to a map
S−1M → S−1R ⊗R M with m

s
7→ (s · −)−1(1

1
⊗R m) = 1

s
⊗R m. It’s not hard to check

that the two maps are inverses.
Similarly, for R/I, we have a bilinear map R/I×M →M/I ·M via (r,m) 7→ rm+IM .

We can check that this does not depend on the representative of r = r + I. So we have
an induced R-linear map R/I ⊗R M →M/I ·M via r ⊗R m 7→ rm+ IM . Now, we also
define a map M → R/I ⊗R M via m 7→ 1⊗R m, whose kernel contains IM (check!). So
this descends to the R-linear map M/I ·M → R/I ⊗R M via m + IM 7→ 1 ⊗R m. It’s
not hard to check again, that the two maps are inverses of one another.

Corollary 6. S−1R is flat, and the functor M →M/I ·M is right-exact.

Discussion 6 - Rings and Modules Qual Problems

Spring 2020 Problem 10: Let R be a commutative ring and M a left R-module. Let
f :M →M be a surjective R-linear endomorphism. [Hint: Let R[X] act on M via f .]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f−1

can be described as a polynomial in f .

(b) Show that this fails if M is not finitely generated.

Proof. (b): Take M = R(N) and f : M → M(r1, r2, . . . , rn, . . . ) 7→ (r2, r3, . . . , rn, . . . ).
This is clearly surjective (and R-linear) but not injective.
(a): As given in the hints, turn M into an R[X]-module via X · m = f(m). More
formally, we have R → EndR(M) via r 7→ (m 7→ rm) and X 7→ f ∈ EndR(M). By the
universal property, we have the map R[X] → EndR(M). Now, M still remains finitely
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generated, and by surjectivity of f , M = (X)M . So by Nakayama’s lemma, there exists
q ∼= 1 mod (X) such that q(X)M = 0. Set q(X) = 1 + p(X)X.

Let’s look at ker(f). Let m be such that f(m) = X ·m = 0. Then, p(X)X ·m = 0.
So 0 = q(X)m = m+p(X)Xm = m. Hence, it follows ker(f) = 0, and f is injective. For
the inverse of f , consider m = Xn. Then, p(X)m = p(X)Xn = −n. So n = −p(X)m,
so f−1 = −p(f).

Spring 2021 Problem 6: Let A be a commutative ring, and P a flat A-module and let
I be an injective A-module. Show that HomA(P, I) is an injective A-module.

Proof. Let 0 L M N 0 be a short exact sequence. We want
HomA((−),HomA(P, I)) to be an exact functor. First, since P is flat, we have a short

exact sequence 0 P ⊗A L P ⊗A M P ⊗A N 0

Next, we use that I is an injective to an exact sequence:

0 HomA(P ⊗A N, I) HomA(P ⊗A M, I) HomA(P ⊗A L, I) 0

But by Tensor-Hom adjunction, this is precisely naturally isomorphic to an exact
sequence:

0 HomA(N,HomA(P, I)) HomA(M,HomA(P, I)) HomA(L,HomA(P, I))

0
So we have that HomA((−),HomA(P, I)) is exact, as desired.

Spring 2020 Problem 9: Let R be a commutative ring and S ⊂ R a multiplicative
subset. Construct a natural transformation (in either direction) between the functors
HomS−1R(S

−1M,S−1N) and S−1HomR(M,N), considered as functors of R-modules M
and N , and prove that it is an isomorphism if M is finitely presented.

Proof. Observe that we have aR-linear map from HomR(M,N) → HomS−1R(S
−1M,S−1N)

given by f 7→ S−1f (the localization functor map). Since the latter is an S−1R-module
(where S acts invertibly), this descends to an S−1R-linear map S−1HomR(M,N) →
HomS−1R(S

−1M,S−1N) via f
s
7→ S−1f

s
: m

t
7→ (s·(−))−1S−1f(m

t
) = (s·(−))−1 f(m)

t
= f(m)

st
.

We live it as an exercise to check that this is natural in both M and N .
Now, recall M is finitely presented if there exists an exact sequence

Rm Rn M 0

For a fixed M , denote the map S−1HomR(M,N) → HomS−1R(S
−1M,S−1N) via f

s
7→

S−1f
s

as ηM . We show that ηM is an isomorphism in stages:

M = R case: we have the following commutative diagram:

S−1HomR(R,N) HomS−1R(S
−1R, S−1N)

S−1N S−1N

ηR

id

To check that this is commutative, the top map (ηR) takes
f
s
to S−1f

s
. The right map

takes S−1f
s

to S−1f
s

(1
1
) = f(1)

s
. The left map takes f

s
to f(1)

s
, which gets sent to itself by

the identity map on the bottom. So the above diagram is commutative. Since all three
other maps are isomorphisms, so is ηR.
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M = Rn case: We have that ηRn : S−1HomR(M,N) → HomS−1R(S
−1M,S−1N) is given

by 1
s

(
f1 f2 · · · fn

)
7→

(
S−1f1

s
S−1f2

s
· · · S−1fn

s

)
. Injectivity is clear from injectivity

in each entry. For surjectivity, suppose we had
(
h1 h2 · · · hn

)
given by hi =

S−1fi
ti

for

some fi and ti ∈ S. Then, set t̂i = t1t2 · · · ti−1ti+1 · · · tn and t = t1t2 · · · tn. Then, the
above map is the image of the map 1

t

(
t̂1f1 t̂2f2 · · · t̂nfn

)
General case: We have an exact sequence Rm Rn M 0 . By left
exactness of the functors

S−1HomR((−), N)(= S−1(−) ◦ HomR((−), N))

and
HomS−1R(S

−1(−), S−1N)(= HomS−1R((−), S−1N) ◦ S−1(−))

we have a natural transformation between the exact sequences:

0 0 S−1HomR(M,N) S−1HomR(R
n, N) S−1HomR(R

m, N)

0 0 HomS−1R(S
−1M,S−1N) HomS−1R(S

−1Rn, N) HomS−1R(S
−1Rm, N)

≃ ≃ ηM ηRn≃ ηRm≃

We know from the M = Rn case that the last two columns are isomorphisms, and the
first two columns are clearly isomorphisms. By the five lemma, the middle column map
ηM is also an isomorphism.

Fall 2018 Problem 9: Let f :M → N and g : N →M be two R-linear homomorphisms
of R-modules such that idM − gf is invertible. Show that idN − fg is invertible as well
and give a formula for its inverse. [Hint: You may use Analysis to make a guess.]

Proof. As given in the hints, we use analysis to make a guess: if we had an operator
A : L→ L from a R-vector space with ||A|| < 1, then (I −A)−1 = I +A+A2 + · · · . So
this is how we make a guess:

(idN − fg)−1 = id + fg + fgfg + fgfgfgfg + · · ·+ (fg)m+1 + · · ·
= id + f [idM + gf + gfgf + · · ·+ (gf)m + · · · ]g
= id + f(idM − gf)−1g

Now that we made a guess, it remains to check that the guess is in fact the desired
inverse.

(idN − fg)(idN + f(idM − gf)−1g) = idN − fg + f(idM − gf)−1g − fgf(idM − gf)−1g

= idN − fg + f������
[idM − gf ](((((((

(idM − gf)−1g

= idN − fg + f idMg

= idN
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And

(idN + f(idM − gf)−1g)(idN − fg) = idN − fg + f(idM − gf)−1g − f(idM − gf)−1gfg

= idN − fg + f(((((((
(idM − gf)−1

������
[idM − gf ]g

= idN − fg + f idMg

= idN

Discussion 7 - Rings and Modules Qual Problems Part

2

Spring 2019 Problem 4: Let R be a commutative local ring and P a finitely generated
projective R-module. Prove that P is R-free.

Proof. Let m be the unique maximal module m = R−R×, and K = R/m. Then, consider
K ⊗R P ≃ P/mP . It is a finitely generated R/m = K-module (vector space!), so it has
a finite basis: x1, x2, . . . , xn. Then, consider the elements x1, x2, . . . , xn ∈ P mapping to
the basis.

We can now define a map f : Rn → P by ei 7→ xi (which, by the universal property
of the coproduct, extends to the unique R-linear homomorphism). This f will be our
desired isomorphism. The conclusion follows immediately from the next two claims:

Claim. f is surjective

Proof of the Claim. We have an exact sequence Rn P coker(f) 0
f

Tensoring (K ⊗R (−)) is right-exact, so we have a new exact sequence:

K ⊗R R
n K ⊗R P K ⊗R coker(f) 0

Kn P/mP coker(f)/mcoker(f) 0

≃

id⊗Rf

≃ ≃ ≃

But note that id⊗Rf sends 1K⊗Rei to 1K⊗Rxi, so in the corresponding bottom exact
sequence, the new map sends ei ∈ Kn to xi, so this is in fact, an isomorphism. Hence, the
map from P/mP to coker(f)/mcoker(f) is in fact, the zero map, so coker(f)/mcoker(f) =
0. But that implies coker(f) = mcoker(f). Since coker(f) is finitely generated (as a
quotient of a finitely generated module), by Nakayama’s lemma, coker(f) = 0. So f is in
fact, surjective.

Claim. f is injective.

Proof of the Claim. This time, we have a short exact sequence:

0 ker(f) Rn P 0
f

Since P is projective, the sequence is split, so we have Rn ≃ ker(f)⊕P , so by tensoring, we
getK⊗RR

n ≃ Kn ≃ (K⊗Rker(f))⊕(K⊗RP ) ≃ ker(f)/m ker(f)⊕P/mP . Note, by con-
struction, dimK(P/mP ) = n = dimK(K

n). So in particular, dimK(ker(f)/m ker(f)) = 0,
so ker(f)/m ker(f) = 0, i.e. ker(f) = m ker(f).

Once again, ker(f) is finitely generated as a direct summand (hence a quotient) of
Rn. So by Nakayama’s lemma, ker(f) = 0.
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Fall 2020 Problem 4: Let R be a ring and M be a left R-module. Show that M is a
projective R-module if and only if there is an index set I and mi ∈ M and fi : M → R
R-linear satisfying:

(a) For all m ∈M , fi(m) = 0 for all but finitely many i ∈ I.

(b) For all m ∈M , m =
∑

i∈I fi(m)mi

Proof. (⇒ Part:) Let M be a projective R-module. Then, M ⊕N = R(I) for some index
set I (i.e. M is a direct summand of a free-module R(I)). Define π : R(I) → M the
projection onto M . For each i ∈ I, define gi : R

(I) → R by gi(ej) = 1 if j = i and 0
else. Take mi = π(ei) and fi = gi ↾ M which is really gi ◦ k where k : M → R(I) is the
embedding.

Now, we check these mi’s and fi’s satisfy (a) and (b). For (a), note for all m ∈ M ,
m =

∑
j∈I ajej for aj ∈ R where aj = 0 for all but finitely many j ∈ J . Then, fi(m) =∑

j∈I ajfi(ej) = ai. So ai = fi(m) = 0 for all but finitely many i ∈ I. For (b), we now
have:

m = π(m) = π(
∑
i∈I

aiei)

=
∑
i∈I

aiπ(ei)

=
∑
i∈I

fi(m)mi

as desired.
(⇐ Part): Suppose we’re given such mi ∈M and fi :M → R. Now, define f :M → RI

via f(m) = (fi(m))i∈I (this f is the unique R-linear map satisfying the universal property
of the product). Note by condition (a), f(m) ∈ R(I).

Now, define π : R(I) → M via ei 7→ mi ∈ M (so that (ri)i∈I 7→
∑

i∈I rimi). Now, we
check π ◦ f = idM :

π ◦ f(m) = π((fi(m))i∈I) =
∑
i∈I

fi(m)mi =︸︷︷︸
by (b)

m

Hence, f : M → R(I) is an embedding of M into a free module which splits: so M is a
direct summand of a free-module, hence projective.

Spring 2018 Problem 7: Let B be a commutative noetherian ring, and let A be a
noetherian subring of B. Let I be the nilradical of B. If B/I is finitely generated as an
A-module, show that B is finitely generated as an A-module.

Proof. Observe that since B is noetherian, I is finitely generated: I = (b1, b2, . . . , bk) for
some k. Choose n1, n2, . . . , nk such that bni

i = 0. Then, if we set N = n1+n2+· · ·+nk+1,
IN ⊆ (bn1

1 , b
n2
2 , . . . , b

nk
k ) = 0, so IN = 0.

Consider the ring B/I2. Since I ⊃ I2, I/I2 is an ideal of B/I2. Moreover, the quotient
B/I2

/
I/I2 ≃ B/I. So we have a short exact sequence:

0 I/I2 B/I2 B/I 0
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Note I · (I/I2) = I2/I2 = 0 (take any r, s ∈ I, and r · s ∈ I2, so r · s = 0). So both
B/I and I/I2 are B-modules that vanish when multiplied by I, hence B/I-modules.
Moreover, since I/I2 is finitely generated B-module, it remains finitely generated as a
B/I-module. But since B/I is finitely generated as an A-module, I/I2 and B/I remain
finitely generated as an A-module. This is an exercise!

Exercise 3. Show that if f : R → S a ring homomorphism between commutative
rings and M is a finitely generated S-module, and S a finitely generated R module via
restriction of scalars, then M is finitely generated as an R-module as well.

Now, we I/I2 and B/I finitely generated as A-modules, so the middle term in the
exact sequence B/I2 (which is an A-module) is also finitely generated A-module. Again,
this is an exercise!

Exercise 4. Show if 0 L M N 0 is a short exact sequence
of A-modules and L and N are finitely generated, then M is finitely generated as well.

Now, by induction on m, we’ll show that B/Im is A-finitely generated. We already did
m = 1 and illustrated the idea for m→ m+ 1 inductive step for m = 1.

Take the exact sequence 0 Im/Im+1 B/Im+1 B/Im 0

Once again, Im/Im+1 is a finitely generated B/I-module, hence is finitely generated as
an A-module. By the inductive hypothesis, B/Im is A-finitely generated. So B/Im+1 is
a finitely generated A-module as well.

Taking m = N , we get B/IN = B is a finitely generated A-module, as desired.

Discussion 8 - Field Theory Basics

Proposition 7. Let f : A→ B and g : A→ C be homomorphisms between commutative
rings. Then, B ⊗A C is an A-module. But we can turn B ⊗A C into a ring as well as by
defining multiplication as follows:

(b⊗A c) · (r ⊗A s) = br ⊗A cs

and extending linearly. It’s not hard to check that B ⊗A C is a commutative ring with
homomorphisms B → B ⊗A C, b 7→ b ⊗A 1 and C → B ⊗A C, c 7→ 1 ⊗A c. In fact, we
have a pushout diagram in Commutative Rings:

A C

B B ⊗A C

f

g

In particular, if A = Z, then B⊗AC is a coproduct in the category

of commutative rings (which is related to a homework problem).

Remark 15. There is a problem with the above definition of multiplication and ”ex-
tending linearly.” It’s not clear that the multiplication is well-defined: if

∑n
i=1 bi ⊗A ci =∑m

j=1 b
′
j ⊗A c

′
j and

∑u
k=1 rk ⊗A sk =

∑v
l=1 r

′
l ⊗A s

′
k in B ⊗A C, it’s not clear that the

corresponding products
∑

i,k birk ⊗A cisk and
∑

j,l b
′
jr

′
l ⊗A c

′
js

′
l are equal in B ⊗A C. In

fact, checking this manually (using Tensor product construction) is very tedious.
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Here is how we get around to this issue: given b ∈ B and c ∈ C, we have b·(−) : B → B
and c · (−) : C → C multiplication by the corresponding elements, which are also A-
module homomorphisms when B and C are viewed as such. The maps b · (−) and c · (−)
lie in EndA(B) and EndA(C), and the assignment b 7→ b · (−) and c 7→ c · (−) are A-linear
from B → EndA(B) and C → EndA(C). Moreover, we know that given any ϕ : B → B
and ψ : C → C A-linear, we can define ϕ ⊗A ψ : B ⊗A C → B ⊗A C,A-linear, and the
assignment EndA(B)× EndA(C) → EndA(B ⊗A C) is A-bilinear.

Hence, the composition B×C → EndA(B)×EndA(C) → EndA(B⊗AC) is A-bilinear.
So in particular, this induces the unique A-linear B ⊗A C → EndA(B ⊗ C). We want
the image of x in EndA(B ⊗ C) to define a multiplication by x: define x · y = to be the
evaluation of image of x in EndA(B ⊗A C) at y. It’s not hard to check that this turns
B ⊗A C into a commutative ring. Moreover, (b⊗A c) · (r ⊗A s) = br ⊗A cs so this agrees
with our desired definition from the proposition.

Spring 2018 Problem 8: Let F be a field that contains the real numbers R as a subfield.
Show that the tensor product F ⊗R C is either a field or isomorphic to the product of
two copies of F , F × F .

Proof. Observe that C ≃ R[X]/(X2+1), so F ⊗R C ≃ F ⊗R R[X]/(X2+1). It’d be nice
if F ⊗R R[X]/(X2 + 1) is isomorphic to F [X]/(X2 + 1). And it is indeed true:

Claim. In general, given two commutative rings A and B and f : A→ B, A[X]⊗AB =
B[X].

Proof of the Claim. Define the A-linear map from A[X]⊗A B → B[X] by p(X)⊗A b 7→
bf(p)(X) (here, given p(X) = a0 + a1X + · · · + anX

n ∈ A[X], f(p)(X) = f(a0) +
f(a1)X + · · · + f(an)X

n). This is the A-linear map induced from the bilinear map
A[X] × B → B[X], (p(X), b) 7→ bf(p)(X). It’s not hard to check that this map is also
a ring homomorphism (or, as we’ll see now, it is the inverse of the map we’ll construct
which we know is a ring homomorphism).

Next, define the ring homomorphism by B[X] → A[X] ⊗A B, b 7→ 1 ⊗A b and X 7→
X ⊗A 1 (the universal property guarantees there is exactly one such ring homomorphism
with this property). It’s not hard to check that these two maps are inverses of one
another.

Claim. L ⊂ F be a field extension, and p ∈ L[X]. Then, F ⊗L L[X]/(p) ≃ F [X]/(p).

Proof of the Claim. We have an exact sequence

0 pL[X] L[X] L[X]/pL[X] 0

Then, tensoring with F , the L-free vector space, gives you the exact sequence:

0 F ⊗L pL[X] F ⊗L L[X] F ⊗L L[X]/pL[X] 0

By the claim, F ⊗L L[X] ≃ F [X] as rings. Now, F ⊗L pL[X] gets sent to pF [X] in
F [X] (exercise!). So it follows that F ⊗L L[X]/pL[X] ≃ F [X]/pF [X].

Now, it follows that F ⊗R C ≃ F ⊗R R[X]/(X2 + 1) ≃ F [X]/(X2 + 1). We can divide
into cases when F contains the root of X2 + 1 or not.

Case i): F does not contain an element i such that i2+1 = 0. Then, X2+1 is a quadratic

polynomial with no roots, so it is irreducible. Hence, F [X]/(X2 + 1) is a field.
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Case ii: F contains an element i such that i2+1 = 0. Then, X2+1 = (X−i)(X+i), so by
the Chinese Remainder Theorem, F [X]/(X−i)(X+i) ≃ F [X]/(X−i)×F [X]/(X+i) ≃
F × F .

Spring 2018 Problem 1: Let α ∈ C. Suppose that [Q(α) : Q] is finite and prime to n!
for an integer n > 1. Show that Q(αn) = Q(α).

Proof. Call [Q(α) : Q] = m. Then, the assumption is that gcd(m,n!) = 1. Now, we have
Q(αn) ⊂ Q so [Q(α) : Q] = [Q(α) : Q(αn)]︸ ︷︷ ︸

k

·[Q(αn) : Q] = k[Q(αn) : Q]. So k divides m.

Moreover, we know that Xn−αn ∈ Q(αn)[X] is a polynomial with root α. So m ≤ n,
so m divides n!. Since gcd(m,n!) = 1, k must be 1.

Fall 2021 Problem 1: Let a ∈ Q and b, d ∈ Q×, and suppose that d is not a cube in
Q×. Find the minimal polynomial of a+ b 3

√
d over Q.

Proof. Let α = a+ b 3
√
d. Then, α−a = b 3

√
d, so cubing both sides, we get (α−a)3 = b3d.

So clearly, (X − a)3 − b3d ∈ Q[X] is a polynomial with α as a root. We claim that it is
actually the minimal polynomial.

First, observe that in Y 3 − b3d ∈ Q[Y ] has no root since b3d is not a cube (otherwise,
d would be a cube!). Since it is a polynomial of degree ≤ 3, it is actually irreducible.
So now, the ring homomorphism Q[Y ] → Q[X] given by Y 7→ X − a is an isomorphism
with inverse X 7→ Y + a. Then, (X − a)3 − b3d is an image of the irreducible Y 3 − b3d,
so (X − a)3 − b3d is monic irreducible as well. It follows that this must be the minimal
polynomial.

Spring 2019 Problem 6: Let F be a field of characteristic p > 0 and a ∈ F×. Prove
that if the polynomial f = Xp − a has no root in F , then f is irreducible over F .

Proof. Choose any root α and an extension F (α) ⊃ F . Then, in F (α)[X], f = Xp − a =
Xp − αp = (X − α)p.
Suppose g | f in F [X] with deg(g) > 0 (i.e. g is a polynomial IN F [X] dividing f).
In, F (α)[X], g = (X − a)k for some k = 1, 2, . . . , p. If k < p, then g has the form
Xk − kαXk−1 + Junk. −kα ∈ F and −k ∈ F× since k < p. So α ∈ F contradicting that
Xp − a did not have a root in F . So it follows k = p and g = (X − α)p = f .

Discussion 9 - Galois Theory

Fall 2019 Problem 2: Let L be a Galois extension of field K inside an algebraic closure
K of K. Let M be a finite extension K in K. Show that the following are equivalent:

(i) L ∩M = K,

(ii) [LM : K] = [L : K][M : K],

(iii) Every K-linearly independent subset of L is M -linearly independent.
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Proof. (I) ⇔ (II) Part: Note, since L/K is Galois, LM/M is Galois, and we have an
isomorphism Gal(LM/M) → Gal(L/L∩M) given by σ 7→ σ |L. So [LM :M ] = [L : L∩
M ]. Since [LM : K] = [LM :M ][L : K] = [L : L∩M ][L : K]. Now, the second condition
is clearly equivalent to [L : L∩M ] = [L : K] but since [L : K] = [L : L∩M ][L∩M : K],
this is equivalent to [L ∩M : K] = 1, the first condition.
(III) ⇒ (I) Part: Choose a K-basis x1, x2, . . . , xn ∈ L. Then, by assumption, this is
M -linearly independent in LM . So [LM : M ] ≥ n = [L : K]. But again, by the
isomorphism, [L : L ∩M ] ≥ [L : K], and the only way this can happen is if L ∩M = K.
(I) ⇒ (III) Part: Since L/K is separable, there exists an α ∈ L such that L = K[α].
Then, LM = M [α]. Now, let p ∈ K[X] be the minimal polynomial of α. Since [K[α] :
K] = [L : K] = [LM : M ] = [M [α] : M ], it follows that p must remain irreducible
in M [X] as well (otherwise, we’d have a minimal polynomial of small degree, making
[M [α] :M ] smaller.

We now, have the following commutative diagram:

M [α] M [X]/(p)

K[α] K[X]/(p)

≃

≃

But note M [X]/(p) ≃ M ⊗K K[X]/(p). If f1, f2, . . . , fn ∈ K[X]/(p) is K-linearly

independent, we have an exact sequence 0 Kn K[X]/(p) where ei ∈ Kn

is sent to fi. SinceM is a flat (and in fact, free) K-vector space, so tensoring withM , we

get: 0 Mn M [X]/(p) where ei ∈Mn is still send to fi. So the fi’s remain

M -linearly independent.

Fall 2020 Problem 5: Let F be a field and f(X) = x6 + 3. Determine the splitting
field K of f(X) over F and determine [K : F ] and Gal(K/F ) for each of the following
fields: F = Q,F5,F7.

Soln: The Q case is left as a homework!
F5 case: Let a be a root (in a large enough finite extension) of X6+3. Then, a6 = −3 = 2,
so (a6)4 = a24 = 24 = 1 by Fermat’s little theorem. But then, we know that a25 = a.
Hence, it follows that every root a is contained in F52 . Now, note no root a is contained
in F52 : since for every k ∈ F5, k

4 = 1, k2 = ±1, so 2 is not a square. So K = F52 and the
Gal(K/F ) = Z/2Z.
F7 case: Once again, for every root a of X6 + 3, we have a6 = −3 = 4 = 22. So
(a6)3 = a18 = 26 = 1 by Fermat’s little theorem. So we look for n such that 18 | 7n − 1,
so that a7

n−1 = 1. We can try n = 1, 2, 3, . . . and see that n = 3 is the smallest such n.
So K ⊂ F73 . Since F73 has degree 3 (prime), over F7, either K = F7 or K = F73 . Once
again, we know that since b6 = 1 for every b ∈ F7, b

3 = ±1, which 4 is not equal to. So
no root of x6 + 3 can be in F7, so K = F73 .

Spring 2021 Problem 4: Prove that the field extension Q(
√
−3+ 6

√
2) over Q is Galois

and determine its Galois group.

Proof. Observe first that given a field extension Q ⊂ F ,
√
−3 ∈ F if and only if ζ6 ∈ F

where ζ6 is the principal 6th root of unity. To see this, we can see that X6 − 1 =
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(X3 − 1)(X3 + 1) = (X − 1)(X + 1)(X2 + X + 1)(X2 − X + 1), and ζ6 is the root of
X2 −X + 1.

So then, Q(
√
−3) = Q(ζ6). Hence, Q(

√
−3+ 6

√
2) ⊆ Q(

√
−3, 6

√
2). Set F = Q(

√
−3+

6
√
2) and K = Q( 6

√
2, ζ6), and set G = Gal(K/Q) and N = Gal(K/F ) so that F = KN .

Note clearly, K/Q is Galois since it is the splitting field of X6 − 2 ∈ Q[X], so it suffices
to find G and N , and show that N ⊴ G so that F/Q is normal (and hence Galois), and
that Gal(Q(

√
−3 + 6

√
2/Q) ∼= G/N .

First, consider any element σ ∈ G. Then, it is determined uniquely by the values of
σ(ζ6) and σ(

6
√
2), since K is generated as a field by Q and ζ6,

6
√
2. Now, σ( 6

√
2) = 6

√
2ζa6

for some (unique) a ∈ Z/6Z and σ(ζ6) = ζb6 for some b ∈ (Z/6Z)×. So this gives us
the embedding G → Z/6Z ⋊ (Z/6Z)× for some appropriate semidirect product. Let us
analyze it: suppose τ 7→ (a1, b1) and σ 7→ (a2, b2). Then, τ ◦ σ(ζ6) = τ(ζb26 ) = (ζb1)b26 =
ζb1b26 , and τ ◦ σ( 6

√
2) = τ( 6

√
2ζa26 ) = τ( 6

√
2)τ(ζa26 ) = 6

√
2ζa16 ζ

b1a2
6 = 6

√
2ζa1+b1a2

6 . So, a
semidirect product structure where the mapping σ 7→ (a, b) is a homomorphism is given
by (a1, b1) · (a2, b2) = (a1 + b1a2, b1b2), which is the semidirect product structure induced
by (Z/6Z)× → Aut(Z/6Z), k 7→ (k · (−)).

We will next show that this embedding is actually surjective, so thatG ∼= Z/6Z⋊(Z/6Z)×.
To do this, we need some tools:

Claim. The fields Q(ζ6) and Q( 6
√
2) are linearly disjoint, i.e. Q(ζ6) ∩Q( 6

√
2) = Q.

Proof of the Claim. Note Q(ζ6 ∩ Q( 6
√
2) is a subfield of Q(ζ6), so since [Q(ζ6) : Q] = 2,

it is either Q or Q(ζ6). But that field is contained in Q( 6
√
2) ⊂ R, so since Q(ζ6) ̸⊂ R, it

has to be Q.

Since Q(ζ6)/Q is Galois, so is the extension Q(ζ6,
6
√
2)/Q( 6

√
2, and they have the same

degree, 2. In particular, [Q(ζ6,
6
√
2) : Q] = [Q(ζ6,

6
√
2) : Q( 6

√
2)][Q( 6

√
2) : Q] = 2× 6 = 12,

so |G| = 6. But the semidirect product also has order 6×2 = 12, so in fact, the embedding
G→ Z/6Z ⋊ (Z/6Z)× must also be surjective.

Now, let’s look at N . Suppose σ ∈ N so that σ fixes all of F . It suffices to fix the
elements

√
−3 = 2ζ6 + 1 and 6

√
2. So σ(2ζ6 + 1) = 2ζ i6 + 1 = 2ζ6 + 1 and σ( 6

√
2) =

6
√
2ζj6 = 6

√
2. Note, ζ i6 = ζ6 so i = 1, and ζj6 = 1, so j = 0. But then, that gives us that

σ = id, so N = {id}. Hence, F = K ⊃ Q is Galois and Gal(F/Q) = Gal(K/Q) = G ∼=
Z/6Z ⋊ (Z/6Z)×.

Discussion 10 - Galois Theory Part 2

Spring 2018 Problem 2: Let ζ9 = 1 and ζ3 ̸= 1 with ζ /∈ C.

(a) Show that 3
√
3 /∈ Q(ζ),

(b) If α3 = 3, show that α is not a cube in Q(ζ, α).

Proof for Part (a). Suppose 3
√
3 ∈ Q(ζ). Then, note Gal(Q(ζ)/Q) = (Z/9Z)×, which

is abelian. In particular, every subgroup is normal. So it follows that the subgroup
N = Gal(Q(ζ)/Q( 3

√
3) must be normal as well. But then, the extension Q ⊂ Q( 3

√
3)

must be normal, but it’s not (for instance, take the polynomial X3 − 3 ∈ Q[X], which
does not split in Q( 3

√
3)[X]).
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Proof for Part (b). Once again, suppose α is a cube in Q(ζ, α). Then, after multiplying
by an appropriate power of ζ, it follows that 9

√
3 ∈ Q(ζ, α). Also, by similar reasoning,

Q(ζ, α) = Q(ζ, 3
√
3).

Note, by part (a), Q( 3
√
3) ∩ Q(ζ) = Q since it is a subfield of Q( 3

√
3) not equal

to Q( 3
√
3) and [Q( 3

√
3) : Q] = 3 is prime. So since Q ⊂ Q( 3

√
3) is Galois, so is

Q( 3
√
3) ⊂ Q( 3

√
3, ζ), and Gal(Q( 3

√
3, ζ)/Q( 3

√
3)) ∼= Gal(Q(ζ)/Q) ∼= (Z/9Z)×. In particu-

lar, Gal(Q( 3
√
3, ζ)/Q( 3

√
3)) is abelian, so every subgroup is normal. But then, Q( 3

√
3) ⊂

Q( 9
√
3) is a normal extension, but it is not (as before, we can take X3 − 3

√
3 ∈ Q( 3

√
3)[X]

which does not split in Q( 9
√
3)[X]).

Fall 2016 Problem 5: Let f ∈ F [X] be an irreducible separable polynomial of prime
degree over a field F , and let K/F be a splitting field of f . Prove that there is an element
in the Galois group of K/F permuting cyclically all roots of f in K.

Proof. Let p = deg(f) and α1, α2, . . . , αp be the p distinct roots of f in K, so that
K = F (α1, α2, . . . , αp). Now, set G = Gal(K/F ) and we have an embedding G → Sp

σ 7→ σ |{α1,α2,...,αp}. Moreover, since K/F is Galois, and f has degree p, p | [K : F ] = [K :
F (α1)][F (α1) : F ] = [K : F (α1)]p. So p | |G|.

By Cauchy’s theorem, there exists an element σ of order p. But an element of order
p in Sp must be a p-cycle, permuting all roots α1, α2, . . . , αp cyclically.

Fall 2018 Problem 4: Let K be a subfield of real numbers and f an irreducible degree
4 polynomial over K. Suppose that f has exactly two real roots. Show that the Galois
group of f is either S4 or of order 8.

Proof. Let r1, r2 be the two distinct real roots of f , and z1, z2(= z1) be the two dis-
tinct non-real complex roots. Now, consider the extensions K ⊂ K(r1) ⊆ K(r1, r2) ⊆
K(r1, r2, z1, z1).

Clearly, [K(r1) : K] = 4 as f is irreducible in K[X]. Now, note f = (X − r1)(X −
r2)(X − z1)(X − z1) ∈ K(r1)[X] and (X − r2)(X − z1)(X − z1) ∈ K(r1)[X]. And
similarly, (X − z1)(X − z1) ∈ K(r1, r2)[X] and it is irreducible in K(r1, r2)[X] as it
is irreducible in R[X]. Hence, clearly, [K(r1, r2, z1, z1) : K(r1, r2)] = 2. So it remains
to check [K(r1, r2) : K(r1)]. But (X − r2)(X − z1)(X − z1) ∈ K(r1)[X] is a degree 3
polynomial with r2 as a root. So if r2 ∈ K(r1) already, then K(r1, r2) : K(r1)] = 1
and otherwise, the degree 3 polynomial won’t have a linear factor, so is irreducible, so
[K(r1, r2) : K(r1)] = 3. Hence, either |G| = 8 or |G| = 24, the latter case, being
embedded to S4, must actually be S4.
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