210B Discussion Notes

Jung Joo Suh

Winter 2023

Discussion 1 - Category Theory Review

Definition 1 (Category). A (locally small) category \mathcal{C} consists of the following info:

- (I) A class of objects $Obj(\mathcal{C})$
- (II) For each $X, Y \in \text{Obj}(\mathcal{C})$, a set Hom(X, Y) of all morphisms "arrows from X to Y"
- (III) A composition map \circ : Hom $(X, Y) \times$ Hom $(Y, Z) \rightarrow$ Hom(X, Z) satisfying the following:
 - (a) (Associativity) For all $f, g, h, (h \circ g) \circ f = h \circ (g \circ f)$
 - (b) (Identity) For every $X \in \text{Obj}(\mathcal{C})$, there exist $\text{id}_X \in \text{Hom}(X, X)$ such that for all $f, g, f \circ \text{id}_X = f$ and $\text{id}_X \circ g = g$. It's a quick exercise that such element id_X is in fact, unique for all X.

Definition 2 (Functor). Let $\mathcal{C} \to \mathcal{D}$ be categories. A functor $F : \mathcal{C} \to \mathcal{D}$ consists of a following data:

- (I) $F : \operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{D})$ a function class
- (II) For each objects $X, Y \in \mathcal{C}$, a function $F : \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ satisfying
 - (a) For all $f, g, F(g \circ f) = F(g) \circ F(f)$
 - (b) $F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$

Definition 3 (Natural Transformations). Given two functors $F, G : \mathcal{C} \to \mathcal{D}$, a natural transformation $\eta : F \Rightarrow G$ is a data of morphisms $\eta_X : F(X) \to G(X)$ such that the

following diagram commutes:

$$\begin{array}{c}
F(X) \longrightarrow G(X) \\
\downarrow F(f) & \downarrow G(f) \\
F(Y) \longrightarrow G(Y)
\end{array}$$

Fall 2020, Problem 10: Let \mathcal{C} and \mathcal{D} be categories, and suppose that every pair of morphisms in \mathcal{C} admits a coequalizer. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor that preserves coequalizers: i.e., if $f, g : A \to B$ are morphisms in \mathcal{C} and $\pi : B \to \text{coeq}(f, g)$ is the coequalizer morphism, then $F(\pi)$ is the coequalizer morphisms for F(f) and F(g). Suppose also that if h is a morphism in \mathcal{C} such that F(h) is an isomorphism, then h is an isomorphism. Show that F is faithful.

Proof. Let $f, g: X \to Y$ be such that F(f) = F(g). We will show f = g. Consider the commutative diagram below:

$$X \xrightarrow[g]{f} Y \xrightarrow{\pi} \operatorname{coeq}(f,g) \implies F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(\pi)} \operatorname{coeq}(F(f),F(g))$$

We know F(f) = F(g). There's a lemma that can help us.

Lemma 1. Let $X \xrightarrow{f} Y \xrightarrow{\pi} \operatorname{coeq}(f,g)$ be a commutative diagram with $\operatorname{coeq}(f,g)$ the coequalizer of f and g. Then, π is an isomorphism if and only if f = g.

Proof of the lemma. (\Leftarrow Part:) Since $\pi \circ f = \pi \circ g$ and π is an isomorphism, we can compose with π^{-1} to get $f = \pi^{-1} \circ \pi \circ f = \pi^{-1} \circ \pi \circ g = g$.

 $(\Rightarrow \text{Part:})$ Suppose f = g. Then every $k : B \to C$ satisfies $k \circ f = k \circ g$. We can apply the universal property to $\operatorname{id}_Y : Y \to Y$ and get that there exists a unique $h : \operatorname{coeq}(f,g) \to Y$ $X \xrightarrow{f} Y \xrightarrow{\pi} \operatorname{coeq}(f,g)$

commuting with the following diagram:

$$\xrightarrow{J} Y \xrightarrow{\pi} \operatorname{coeq}(f,g)$$

$$\downarrow_{\operatorname{id}_{Y}} \xrightarrow{\exists h}$$
In particular,

 $h \circ \pi = \mathrm{id}_Y$, so π has a left inverse. To see that $\pi \circ h = \mathrm{id}$, first, compose it with π on the

left.
$$\pi \circ h \circ \pi = \pi$$
. We rewrite it as: $(\pi \circ h) \circ \pi = \operatorname{id} \circ \pi$.
$$\begin{array}{c} X \longrightarrow Y \longrightarrow \operatorname{coeq}(J,g) \\ \pi & \operatorname{id} \downarrow \pi \circ h \\ \operatorname{coeq}(f,g) \end{array}$$

Then, by the uniqueness in the universal property, we get $\pi \circ h = id$.

Since F(f) = F(g), we get that $F(\pi)$ is an isomorphism. But by assumption, π must also be an isomorphism. Applying the lemma again, we see that f = g.

Definition 4 (Adjoints). Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be two functors. We say that F and G are (left-right) adjoints if $\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$ and the isomor-

phisms are natural. Adjoint functors are often written $F \downarrow \uparrow G$ and F is denoted "left-

adjoint" and G denoted "right-adjoint". Also, naturality means the following: we have two functors $\mathcal{C}^{\mathrm{op}} \times \mathcal{D} \to \operatorname{Set} (X, Y) \mapsto \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$ and $(X, Y) \mapsto \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$. Naturality means that the isomorphims between the two functors are natural transformations.

Theorem 1 (Yoneda Lemma). Let \mathcal{C} be a small category, and consider the functor $y_{\mathcal{C}}: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set}) X \mapsto \operatorname{Hom}(-, X)$. We call this the Yoneda embedding. For any functor $F: \mathcal{C}^{\operatorname{op}} \to \operatorname{Set}$, we have a natural isomorphism given by $\operatorname{Nat}(\operatorname{Hom}(-, X), F) \simeq F(X) \alpha \mapsto \alpha_X(\operatorname{id}_X)$. Moreover, if $F = \operatorname{Hom}(-, Y)$, then the isomorphism is the inverse of the Yoneda embedding $y_{\mathcal{C}}$. It follows that the Yoneda embedding is in fact, fully faithful.

Fall 2018 Problem 7: Let $F : \mathcal{C} \to \mathcal{D}$ be a functor with a right adjoint G. Show that F is fully faithful if and only if the unit of the adjunction $\eta : \mathrm{Id}_{\mathcal{C}} \to GF$ is an isomorphism.

Proof. Note we have the diagram

 $\operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{F} \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y)) \xrightarrow{\simeq} \operatorname{Hom}_{\mathcal{C}}(X,GF(Y))$

Lemma 2. $f \mapsto \eta_Y \circ f$ for all $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$

Proof of Lemma. Set $\alpha_{X,Z}$ the canonical isomorphism $\operatorname{Hom}_{\mathcal{D}}(F(X), Z) \to \operatorname{Hom}_{\mathcal{D}}(X, G(Z))$ so that the above isomorphism is in fact, $\alpha_{X,F(Y)}$. Consider the three functors $Y \mapsto \operatorname{Hom}_{\mathcal{C}}(-,Y), Y \mapsto \operatorname{Hom}_{\mathcal{D}}(F(-),F(Y)), Y \mapsto \operatorname{Hom}_{\mathcal{C}}(-,GF(Y))$. We label the natural transformations between them as follows:

 $\operatorname{Hom}_{\mathcal{C}}(-,Y) \xrightarrow{F} \operatorname{Hom}_{\mathcal{D}}(F(-),F(Y)) \xrightarrow{\alpha_{-,F(Y)}} \operatorname{Hom}_{\mathcal{C}}(-,GF(Y))$

By Yoneda lemma, the natrual transformation $\alpha_{-,F(Y)} \circ F$ corresponds to $(\alpha_{-,F(Y)} \circ F)_Y(\operatorname{id}_Y) = \alpha_{Y,F(Y)} \circ F(\operatorname{id}_Y) = \alpha_{Y,F(Y)} \circ \operatorname{id}_{F(Y)}$, which, by definition, is η_Y . Hence, the map $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,GF(Y))$ is given by $f \mapsto \eta_Y \circ f$.

Proof of Lemma (Without Yoneda). Fix an f and consider the following diagram:

Let's follow what happens to id_Y . Going down and right, it's sent to f first, and then, to something. On the other hand, if we move to the right and then, down $\operatorname{id}_Y \mapsto \operatorname{id}_{F(Y)} \mapsto \eta_Y$ by definition of η_Y , and then, is sent to $\eta_Y \circ f$. So f in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ must be sent to $\eta_Y \circ f$ in $\operatorname{Hom}_{\mathcal{C}}(X, GF(Y))$.

 $(\Rightarrow$ Part:) Suppose F is fully faithful. Then, on the above diagram, F (from hom-sets to hom-sets) is bijective. So the map $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,GF(Y))$ $f \mapsto \eta_Y \circ f$ is bijective for all $X \in \operatorname{Obj}(\mathcal{C})$. The conclusion follows immediately from the following lemma:

Lemma 3. Let $g: Y \to Z$ be such that for all X, the map $\operatorname{Hom}(X, Y) \xrightarrow{g \circ -} \operatorname{Hom}(X, Z)$ is bijective. Then, g is an isomorphism.

Proof of the Lemma. The Yoneda functor $Y \mapsto \operatorname{Hom}_{\mathcal{C}}(-, Y)$ is fully faithful, so an isomorphism $f \mapsto g \circ f$ pulls back to an isomorphism g.

Proof of the Lemma (Without Yoneda). Set X = Z, and we get that $\operatorname{Hom}(Z, Y) \xrightarrow{g \circ -} \operatorname{Hom}(Z, Z)$ is surjective, in particular, there exists $h \in \operatorname{Hom}(Z, Y)$ such that $h \mapsto g \circ h = \operatorname{id}_Z$. So g is right-invertible. Now, we claim that $h \circ g = id_Y$. Once again, we have $g \circ h \circ g = g = g \circ id_Y$. But then, since $f \mapsto g \circ f$ is injective, we have that $h \circ g = id_Y$. \Box

(\Leftarrow Part:) Suppose η_Y is invertible. Then the composition by η_Y is bijective again (inverse given by composition with η_Y^{-1}) so we have the following diagram:

Hence, the inverse of F can be found by inverting the right isomorphisms.

Discussion 2 - More Category Theory, Localizations of Rings

Fall 2017 Problem 10: Let C be a category with finite products, and let C^2 be the category of pairs of objects of \mathcal{C} together with morphisms $(A, A') \to (B, B')$ of pairs consisting of pairs $(A \to B, A' \to B')$ of morphisms in \mathcal{C} . Let $F : \mathcal{C}^2 \to \mathcal{C}$ be the direct product functor (that takes pairs of objects and morphisms to their products).

(a) Find a left adjoint of F

(b) For \mathcal{C} a category of abelian groups, determine whether or not F has a right adjoint.

Proof of Part a). We want:

$$\operatorname{Hom}_{\mathcal{C}^2}(L(X), (Y, Z))) \simeq \operatorname{Hom}_{\mathcal{C}}(X, Y \times Z)$$

But observe that we have an isomorphism $\operatorname{Hom}_{\mathcal{C}}(X, Y \times Z) \xrightarrow{\simeq} \operatorname{Hom}_{\mathcal{C}}(X, Y) \times \operatorname{Hom}_{\mathcal{C}}(X, Z)$ given by $g \mapsto (p_Y \circ g, p_Z \circ g)$ where $p_Y : Y \times Z \to Y$ and $p_Z : Y \times Z \to Z$ are projection maps. The fact that it is an isomorphism is equivalent to the universal property of the

product. $X \xrightarrow{g} Y \times Z$ But not c T But note now that by definition, $\operatorname{Hom}_{\mathcal{C}}(X, Y) \times \operatorname{Hom}_{\mathcal{C}}(X, Z) = \operatorname{Hom}_{\mathcal{C}^2}((X, X), (Y, Z)).$ So, if we take $L: \mathcal{C} \to \mathcal{C}^2$ to be L(X) = (X, X) (and with the morphisms sent to the obvious ones), we have that $\operatorname{Hom}_{\mathcal{C}}(X, Y \times Z) \simeq \operatorname{Hom}_{\mathcal{C}^2}(L(X), (Y, Z))$ naturally (we leave the naturality of the isomorphism as an exercise).

Part b) solution. The answer is a YES. It follows from the fact that in Ab, finite coproducts and products coincide. As before, if we set R(G) = (G, G), then

 $\operatorname{Hom}_{\operatorname{Ab}}(G \times H, K) \xrightarrow{=} \operatorname{Hom}_{\operatorname{Ab}}(G \oplus H, K)$

$$\downarrow \simeq$$

Hom_{Ab}(G, K) × Hom_{Ab}(H, K) $\xrightarrow{=}$ Hom_{Ab²}((G, H), (K, K))
ght adjoint of F. \Box

So R is a right adjoint of F.

Fall 2016 Problem 8: Prove that if a functor $\mathcal{F} : \mathcal{C} \to \text{Sets}$ has a left adjoint functor, then \mathcal{F} is representable.

Proof. Once again, we use the fact that F has a left adjoint functor $L \upharpoonright F$ so Sets

 $\operatorname{Hom}_{\mathcal{C}}(L(X), Y) \simeq \operatorname{Hom}_{\operatorname{Sets}}(X, F(Y))$

Conveniently, this is true for when $X = \{p\}$ for some element p. So then,

 $\operatorname{Hom}_{\mathcal{C}}(L(\{p\}), Y) \simeq \operatorname{Hom}_{\operatorname{Sets}}(\{p\}, F(Y)) \simeq F(Y)$ (the last bijection can be given by $g \mapsto g(p)$ and $a \mapsto (p \mapsto a)$). So F(Y) is represented by $L(\{p\})$. \square **Definition 5.** Let R be a commutative ring and $S \subset R$ a multiplicatively closed subset (i.e $1 \in S$ and $\forall x, y \in S, xy \in S$). Then, we can define an equivalence relation \sim on $R \times S$ via $(r_1, s_1) \sim (r_2, s_2)$ iff $\exists t \in S$ such that $t(r_1s_2 - r_2s_1) = 0$ (the fact that \sim is an equivalence relation is HW). We denote $\frac{r}{s} = [(r, s)]_{\sim}$ and $S^{-1}R = (R \times S)/\sim$ and define addition and multiplication as follows:

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$$
$$\frac{r_1}{s_1} \cdot \frac{r_2}{s_2}$$

It's again a HW that 1) these operations are well-defined (that it does not depend on the choice of the representatives) and 2) $(S^{-1}R, +, \cdot)$ is a commutative ring.

Theorem 2. The map $f: R \to S^{-1}Rr \mapsto \frac{r}{1}$ is a homomorphism. Moreover, if $g: R \to T$ is a homomorphism to a commutative ring T such that $\forall s \in S, g(s) \in T^{\times}$, there exists a unique $h: S^{-1}R \to T$ such that $g = h \circ f$. In other words, the following diagram commutes:

$$\begin{array}{c} R \xrightarrow{f} S^{-1}T \\ \swarrow \\ g \\ & \downarrow \\ g \\ & \downarrow \\ T \end{array}$$

Proof. HW!

Example 1 (Examples of Multiplicative Subsets and Localizations with them).

- (I) $S = \{1, r, \dots, r^n, \dots\}$. We denote $S^{-1}R = R[r^{-1}]$. As a special case, if R = F[X] for some field F, and r = X, then $S^{-1}R = F[X, X^{-1}]$, the set of all Laurent polynomials in F (finite sum of aX^n as $n \in \mathbb{Z}$).
- (II) S = 1 + I for an ideal I.
- (III) For a prime ideal P, S = R P. Then, we denote $S^{-1}R = R_P$. As a special case, we can take R an integral domain, and P = (0), and we get $R_{(0)} = Q(R)$, the field of fractions of R.

Remark 1. In the example (III) from above, $\frac{r_1}{s_1} = \frac{r_2}{s_2}$ if and only if $r_1s_2 - r_2s_1 = 0$. In general, $f: R \to S^{-1}R$ is injective iff S does not contain any non-zero divisors iff $\frac{r_1}{s_1} = \frac{r_2}{s_2} \Leftrightarrow r_1s_2 - r_2s_1 = 0$.

Lemma 4. Fix an ideal $I \subset R$ s.t. $I \cap S = \emptyset$, denote $I \cdot S^{-1}R$ the ideal of $S^{-1}R$ generated by $f(I) \subset S^{-1}R$.

(a) $I \cdot S^{-1}R = S^{-1}I = \{\frac{r}{s} \mid r \in I, s \in S\}$, and it's a proper ideal of $S^{-1}R$.

(b)
$$f^{-1}(S^{-1}I) = \{a \in R \mid S \cdot a \cap I \neq \emptyset\} (\supset I)$$

(c) For any proper ideal $J \subset S^{-1}R$, $f^{-1}(J) \cap S = \emptyset$ and $S^{-1}f^{-1}(J) = J$

In other words, we can view $I \mapsto S^{-1}I$ and $J \mapsto f^{-1}(J)$ as mappings from $\{I \subset R \mid I \cap S = \emptyset, I \text{ is an ideal}\}$ to $\{J \subset S^{-1}R \mid J \text{ is a proper ideal}\}$ and $I \mapsto S^{-1}I \mapsto f^{-1}S^{-1}(I) \supset I$ and $J \mapsto f^{-1}(J) \mapsto J$.

Proof. (Part a): Clearly, $S^{-1}(I) \subset I \cdot S^{-1}$ as if $\frac{r}{s}$ is such that $r \in I$, then $\frac{r}{s} = \frac{r}{1} \cdot \frac{1}{s} \in I \cdot S^{-1}R$. For the other inclusion, suppose we have $\sum_{k=1}^{n} \frac{a_k}{1} \cdot \frac{r_k}{s_k}$ with $a_k \in I$. Then, each $\frac{a_k}{r_k} s_k \in S^{-1}(I)$ so their sum must also remain in $S^{-1}(I)$ (it's not hard to check that $S^{-1}I$ is additively closed).

(Part b): If a is in the latter set, then there exists $s \in S$ such that $sa \in I$. So then, $\frac{a}{1} = \frac{sa}{s} \in S^{-1}(I)$. So $a \in f^{-1}S^{-1}(I)$. For the reverse inclusion, take $a \in f^{-1}S^{-1}(I)$. Then, $\frac{a}{1} \in S^{-1}(I)$, so $\frac{a}{1} = \frac{r}{s}$ for some $r \in I$. Then, there exists $t \in S$ such that t(sa - r) = 0, so $(ts)a = tr \in I$. Since $ts \in S$ (this is where we use that S is multiplicatively closed), $tr \in Sa \cap I$.

(Part c): Let $\frac{r}{s} \in J$. Then, $\frac{r}{1} = \frac{r}{s} \cdot \frac{s}{1} \in J$. So $r \in f^{-1}(J)$. So $\frac{r}{s} = \frac{r}{1} \cdot \frac{1}{s} \in f(f^{-1}(J)) \cdot S^{-1}R = S^{-1}(f^{-1}(J))$. Now, suppose $\frac{r}{s} \in S^{-1}f^{-1}(J)$. Then, $\frac{r}{s} = \frac{a}{t}$ for some $a \in f^{-1}(J)$ and $t \in S$. Then, $\frac{a}{t} = \frac{a}{1} \cdot \frac{1}{t} \in J$ since by definition, $f(a) = \frac{a}{1} \in J$.

Discussion 3 - More Ring Localizations

Theorem 3 (Given as Qual Spring 2017 Problem 5). Suppose in addition, that $P \cap S = \emptyset$ is a prime ideal. Then, $S^{-1}P$ is prime, and the map $P \mapsto S^{-1}P$ and $Q \mapsto f^{-1}(Q)$ are inverse bijections between

 $\{P \subset R \mid P \text{ prime and } P \cap S = \emptyset\}$ and $\{Q \subset S^{-1}R \mid Q \text{ prime}\}$

Proof. Suppose $\frac{r}{s} \cdot \frac{a}{t} \in S^{-1}P$. Then, $\frac{ra}{st} = \frac{b}{u}$ for some $u \in S$. So there exists $w \in S$ s.t. $w(ra \cdot u - b \cdot st) = 0$, or equivalently, rauw = bstw. The right hand side belongs to P as $b \in P$, so $rauw \in P$. But since $uw \in S$, $uw \notin P$, so $ra \in P$. So $r \in P$ or $a \in P$, hence $\frac{r}{s} \in S^{-1}P$ or $\frac{a}{t} \in S^{-1}P$.

Now, it remains to show that $\{a \in P \mid Sa \cap P \neq \emptyset\} = P$. The \supseteq part is already done, so we do the other inclusion. Let a be such that there exists $s \in S$ s.t. $sa \in P$. Then, since $s \in S$, $s \notin P$, so $a \in P$ (this is where we use P is prime!).

Remark 2. It's clear that the above maps $I \mapsto S^{-1}I$ and $J \mapsto f^{-1}(J)$ are inclusion-preserving. This leads to the following corollaries.

Corollary 1. For any *P* prime, R_P is a local ring with max ideal $P \cdot R_P = P_P$, hence the name "localization."

Proof. An ideal is maximal if and only if it is maximal among prime ideals (since every maximal ideal is prime). Every prime ideal of R_P is of the form $Q \cdot R_P$ for some $Q \subset P$. So $P \cdot R_P$ is the maximal prime ideal.

Corollary 2. If R is a commutative noetherian (resp. artinian) ring, then so is $S^{-1}R$.

Proof. Take any X a non-empty set of ideals of $S^{-1}R$. Take $Y = \{f^{-1}(J) \mid J \in X\}$, which, since R is noetherian (resp. artinian), has a maximal (resp. minimal) element $f^{-1}(J)$. Then, $J = S^{-1}(f^{-1}(J))$ must be maximal (resp. minimal) among ideals in X as well.

Lemma 5. Let $S \subset R$ be a multiplicative subset, and let I be an ideal. Denote $\overline{S} \subset R/I$ the image of S in R/I (i.e. $\overline{S} = \pi(S)$ where $\pi : R \to R/I$). Then, as rings,

$$S^{-1}R/S^{-1}I \cong \overline{S}^{-1}(R/I)$$

Proof. Of course, we want $\frac{r}{s} + S^{-1}I := \frac{\overline{r}}{s}$ matched with $\frac{r+I}{s+I} = \frac{\overline{r}}{\overline{s}}$. The problem is with well-definedness of the maps, etc. Here's how to proceed: take a commutative diagram (black arrows) below.

Observe that for all $s \in S$, $f_I \circ \pi(s) = f_I(\overline{s}) = \frac{\overline{s}}{\overline{1}}$ which is invertible (with inverse given by $\frac{\overline{1}}{\overline{s}}$). So by the universal property, there exists unique $h: S^{-1}R \to \overline{S}^{-1}(R/I)$ s.t. $h \circ f = f_I \circ \pi$. For any $\frac{r}{s} \in S^{-1}I$ (with $r \in I$), $h : \frac{r}{s} \mapsto \frac{\overline{r}}{\overline{1}} \cdot \frac{\overline{s}^{-1}}{\overline{1}} = 0 \cdot \frac{\overline{1}}{\overline{s}}$. So $S^{-1}(I) \subset \text{Ker}(h)$,

so *h* descends to the quotient $\overline{h}: S^{-1}R/S^{-1}I \to \overline{S}^{-1}(R/I)$. As desired, $h: \frac{\overline{r}}{\overline{s}} \mapsto \frac{\overline{r}}{\overline{s}}$. Similarly, if $r \in I$, $\pi_S \circ f(r) = \pi_S(\frac{r}{1}) = 0$ since $\frac{r}{1} \in S^{-1}I$. So $\pi_S \circ f$ descends to the quotient, say $\overline{g}: R/I \to S^{-1}R/S^{-1}I$. Take any $\overline{s} \in \overline{S}$ (with $s \in S$ mapping to \overline{s}). Then, $\overline{g}(s) = \frac{\overline{s}}{1}$ which has an inverse $\frac{\overline{1}}{\overline{s}}$ in $S^{-1}R/S^{-1}I$. So once again, by the universal property, there exists unique $\overline{g}_{\overline{S}}: \overline{S}^{-1}(\overline{R}/I) \to S^{-1}R/S^{-1}I$ such that $\overline{g}_{\overline{S}} \circ f_I = \overline{g}$. We see that $\overline{g}_{\overline{S}}: \frac{\overline{r}}{\overline{s}} \mapsto \overline{\frac{r}{s}}.$

Clearly, h and $\overline{g}_{\overline{S}}$ are inverses to one another.

Corollary 3. For any prime $P, F(R/P) \cong R_P/P_P$ where F(T) denotes a field of fractions of a given integral domain T.

Proof. Set
$$S = R - P$$
 and $I = P$. Then, $\overline{S} = R/P - \{0\}$.

Remark 3. The above field is called the "residue field" at *P*.

Fall 2020 Problem 8: Consider $R = \mathbb{C}[X,Y]/(X^2,XY) := \mathbb{C}[x,y]$. Determine the prime ideals of R. Which of the localizations R_P are integral domains?

Proof. (Prime ideals of R Part:) Let $\pi : \mathbb{C}[X,Y] \twoheadrightarrow \mathbb{C}[X,Y]/(X^2,XY)$ be the quotient map. Then, $P \subset R$ corresponds one-to-one to $\pi^{-1}(P)$ a prime ideal of $\mathbb{C}[X,Y] \supset$ (X^2, XY) . Given a prime $Q \subset \mathbb{C}[X, Y], X^2 \in Q \Rightarrow X \in Q$ so $(X^2, XY) \subset Q$ if and only if $X \in Q$. Hence, prime ideals of $P \subset R$ corresponds to prime ideals $\pi^{-1}(P)$ of $\mathbb{C}[X,Y]$ containing X, which, by taking the surjection $q: \mathbb{C}[X,Y] \to \mathbb{C}[Y]$ sending $X \mapsto 0$, corresponds to the prime ideals of $\mathbb{C}[Y]$ (since $\mathbb{C}[X,Y]/(X) \simeq C[Y]$ via the map induced by q). The prime ideals of $\mathbb{C}[Y]$ are (0) and (Y-z) (as the only irreducible $g \in \mathbb{C}[Y]$ are of the form Y-z). So $P \subset R$ are either $|(x)| \subset \mathbb{C}[x,y]$ or $|(x,y-z)| \subset \mathbb{C}[x,y]$ for some irreducible $z \in \mathbb{C}$. (Which Localization R_P are integral domains Part:) Answer: P = (x) or (x, y - z) for $z \in \mathbb{C} - \{0\}$

Note first that $R_P = \mathbb{C}[X,Y]_P/(X^2,XY)_P$ (by abuse of notation, $\pi^{-1}(P)$ will also be denoted P). So R_P is an integral domain iff $(X^2, XY)_P$ is a prime ideal in $\mathbb{C}[X, Y]$. If P = (X) or (X, Y - z) for some $z \in \mathbb{C} - 0$, then $Y \notin P$ (exercise!), so in $\mathbb{C}[X, Y]_P$, Y becomes invertible. Hence, $\frac{X}{1} = \frac{XY}{Y} \in (X^2, XY)_P$, so $(X^2, XY)_P = (X)_P$. Since (X)

is already a prime ideal, so is $(X)_P$. On the other hand, if P = (X, Y), then we claim that $\frac{X}{1} \notin (X^2, XY)_P$. Suppose otherwise; then $\frac{X}{1} = \frac{fX^2}{g} + \frac{kXY}{h}$ for some $f, k \in \mathbb{C}[X, Y]$ and $h, g \notin (X, Y)$. Clearing out the denominator, we have $ghX = fhX^2 + kgXY$ so gh = fhX + kgY after canceling X. But $gh \notin P = (X, Y)$ whereas, $fhX + kgY \in (X, Y)$, a contradiction.

But then, we have $(\frac{X}{1})^2 = \frac{X^2}{1} \in (X^2, XY)_P$ even though $\frac{X}{1} \notin (X^2, XY)_P$, so $(X^2, XY)_P$ is not prime.

Discussion 4 - Localization of Modules, Nakayama's Lemma

Fall 2018 Problem 5: Let R be a commutative ring. Show the following:

- (a) Let S be a non-empty saturated multiplicative set in R, i.e. if $a, b \in R$, then $ab \in S$ if and only if $a, b \in S$. Show that R S is a union of prime ideals.
- (b) (Kaplansky's Theorem for UFDs): If R is a domain, show that R is a UFD if and only if every nonzero prime ideal in R contains a non-zero principal prime ideal.

Proof. (Part a): Clearly,

$$R - S \supseteq \bigcup_{P \cap S = \emptyset} P$$

where the union is taken over all P prime not meeting S. So, it suffices to prove the other inclusion. Let $x \notin S$. We want x to be in the union - i.e. we want to find a P prime ideal not meeting S such that $x \in P$.

Now, consider $\mathcal{A} = \{I \mid x \in I \text{ and } I \cap S = \emptyset\}$, with the partial order \subseteq .

Lemma 6. $(x) \in \mathcal{A}$.

Proof. The only thing to check is $(x) \cap S = \emptyset$. Suppose not; let $rx \in (x)$ be such that $rx \in S$. Then, since S is saturated, $x \in S$, which contradicts that $x \notin S$.

So $\mathcal{A} \neq \emptyset$. Now, we apply Zorn's lemma to \mathcal{A} to find a maximal element. Let $\{I_{\alpha}\}_{\alpha \in \Lambda}$ be a chain of ideals in \mathcal{A} . Then, $I := \bigcup_{\alpha \in \Lambda} I_{\alpha}$ is an ideal which contains all I_{α} 's, $x \in I$, and $I \cap S = \bigcup_{\alpha \in \Lambda} (I_{\alpha} \cap S) = \emptyset$. Hence, I is an upper bound of I_{α} 's in \mathcal{A} .

Thus, by Zorn's lemma, \mathcal{A} has a maximal element $M \in \mathcal{A}$. The conclusion follows by the following lemma:

Lemma 7. M is a prime ideal.

Proof. Let $a, b \notin M$. Then, $M \subsetneq M + (a), M + (b)$, so $M + (a), M + (b) \cap S \neq \emptyset$. So choose $s \in M + (a) \cap S$ and $t \in M + (b) \cap S$. Then, $st \in (M + (a))(M + (b)) \subset M + (ab)$. If $ab \in M$, then $st \in M + (ab) = M$ and $st \in S$, contradicting that $S \cap M = \emptyset$. So $ab \notin M$.

(Part b): If R is a UFD and P is a prime containing a nonzero $r = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, then at least one p_i belongs to P. So we prove the reverse implication, which is much harder.

Let $S = R^{\times} \cup \{p_1 p_2 \cdots p_k \mid p_i \text{ are primes}\}$. This is also the multiplicative subset generated by primes and units (Exercise!).

Lemma 8. S is a saturated multiplicative subset.

Proof. Let $st \in S$. If $st \in R^{\times}$, then take $u = (st)^{-1}$, then stu = s(tu) = 1 and t(su) = 1, so both s and t are invertible. So we assume st is of the form $p_1p_2\cdots p_k$ for some primes p_i 's.

We know $p_1 \mid s \text{ or } t$. Define $s_1 = \frac{s}{p}$ if $p \mid s_1$ and $t_1 = t$; otherwise, $s_1 = s$ and $p \mid t$ so $t_1 = \frac{t}{p}$. So we have $s_1t_1 = p_2p_3 \cdots p_k$. Continuing in this way, we can define s_jt_j such that $s_jt_j = p_{j+1} \cdots p_k$. Then, $s_kt_k = 1$, so s_k and t_k are units. But note s is s_k times a product of some p_i 's, and t is t_k times a product of primes. Hence, $s, t \in S$. \Box

Now, clearly, $R - S \supseteq (0)$. Now, suppose R - S contains an $r \neq 0$. Then, by part a), there exists a prime $P \subset R - S$ such that $r \in P$. But then, P contains a principal prime $(p) \subseteq P$. But by definition, $p \in S$, contradicting the fact that $(p) \cap S \subseteq P \cap S = \emptyset$.

Since every non-zero element has a prime factorization, R is in fact, a UFD (since factorization by primes must be unique and primes are always irreducible).

Definition 6 (Localization of Modules). Let R be a commutative ring, and M be an R-module. We can construct $S^{-1}M$, the localization of M at S, as follows: take $S \times M$ and define a relation \sim by $(s,m) \sim (t,n) \Leftrightarrow \exists u \in S$ such that u(sn - tm) = 0. Set $\frac{m}{s} = [(s,m)]_{\sim}$, and $S^{-1}M = S \times M/\sim$.

Furthermore, we can define addition + on $S^{-1}M$ by:

$$\frac{m}{s} + \frac{n}{t} = \frac{tm + sn}{st}$$

which is 1) well-defined, and 2) turns $S^{-1}M$ with + into an abelian group. Then, we can define scalar multiplication by $\frac{r}{s} \cdot \frac{m}{t} = \frac{r \cdot m}{st}$, which again, is well-defined and turns $S^{-1}M$ into an $S^{-1}R$ -module (exercise!).

Proposition 1 (Restriction of Scalars). Let $\phi : A \to B$ a ring homomorphism between two commutative rings, and M a B-module. We can turn M into an A-module by setting $r \cdot_A m = \phi(r) \cdot_B m$. Furthermore, if $f : M \to N$ is a B-module homomorphism, f is also an A-module homomorphism. So this act of taking a B-module and assigning an A-module structure as in above is functorial (from B-Mod to A-Mod), and is called *Restriction of Scalars along* $\phi : A \to B$. It's clear restriction of scalars is in fact, exact.

Proposition 2. Via restriction of scalars along $f: R \to S^{-1}R$, $r \mapsto \frac{r}{1}$, we can view $S^{-1}M$ as an *R*-module as well. Moreover, every *R*-module *M* such that $\forall s \in S, s \cdot -: M \to M$ $(m \mapsto s \cdot m)$ is invertible, can be turned into an $S^{-1}R$ -module via $\frac{r}{s} \cdot m = (s \cdot -)^{-1}(r \cdot m)$. In particular, such *M*'s form precisely the image of restriction of scalars along $f: R \to S^{-1}R$.

Proposition 3 (Universal Property of Localization). Let R be a commutative ring and $g: M \to N$ be a R-module homomorphism. If N is such that $\forall s \in S, (s \cdot -) : N \to N$ is invertible, there exists unique $\hat{g}: S^{-1}M \to N$ such that $g = \hat{g} \circ eta_M$ (where $\eta_M : M \to S^{-1}M, \ m \mapsto \frac{m}{1}$). That is, $\hat{g}(\frac{m}{s})$ is given by $(s \cdot -)^{-1}g(m)$.

$$\begin{array}{c}
M \\
\eta_M \downarrow \qquad g \\
S^{-1}M \xrightarrow{g} N
\end{array}$$

Remark 4. Given $f: M \to N$, we can apply the universal property to the *R*-module homomorphism $\eta_N \circ f: M \to S^{-1}N$ (where η_N and $S^{-1}N$ are now viewed as *R*-modules and homomorphisms under restriction of scalars). Then, we obtain a unique map, labeled $S^{-1}f: S^{-1}M \to S^{-1}N$, such that $S^{-1}f \circ \eta_M = \eta_N \circ f$. That is, the following diagram commutes:

$$\begin{array}{cccc}
M & & \xrightarrow{f} & N \\
\eta_M & & & & \downarrow \eta_N \\
S^{-1}M & & \xrightarrow{S^{-1}f} & S^{-1}N
\end{array}$$

Moreover, $(S^{-1}f)(\frac{m}{s}) = (s \cdot -)^{-1}\eta_N \circ f(m) = (s \cdot -)^{-1}\frac{f(m)}{1} = \frac{f(m)}{s}$. So, the localization $M \mapsto S^{-1}M$ and $f \mapsto S^{-1}f$ is functorial (exercise!). It's a

So, the localization $M \mapsto S^{-1}M$ and $f \mapsto S^{-1}f$ is functorial (exercise!). It's a homework problem that this is actually an exact functor.

Remark 5. We may similarly denote $S^{-1}M$ as $M[r^{-1}]$, M_P when $S = \{1, r, \ldots, r^n, \ldots\}$, S = R - P, respectively.

Proposition 4. Let R be a commutative ring. For an R-module, the following are equivalent:

- (I) M = 0.
- (II) $\forall P \text{ prime}, M_P = 0.$
- (III) $\forall P \text{ maximal}, M_P = 0.$

Proof. (I) \implies (II) \implies (III) are trivial, so we prove (III) \implies (I). Suppose $M \neq 0$. Then, choose $m \neq 0$ in M. Then, consider $I = \operatorname{Ann}(M) := \{r \in R \mid r \cdot m = 0\}$, which is an ideal (exercise!) not containing 1 (otherwise, $1 \cdot m = m = 0$). So I is a proper ideal, so there exists a maximal ideal P containing I. Now, consider M_P .

Claim. $M_P \neq 0$

Proof of the Claim. Consider $\frac{m}{1}$, and suppose it is 0. Then, there exists $s \notin P$ such that $s \cdot m = 0$. So then, $s \in I = \operatorname{Ann}(m) \subset P$, contradicting that $s \notin P$. So $\frac{m}{1} \neq 0$, so $M_P \neq 0$.

So we found a prime ideal P such that $M_P \neq 0$.

Proposition 5. Let R be a commutative ring and $f: M \to N$ an R-module homomorphism. The following are equivalent.

- (I) f is injective.
- (II) $\forall P \text{ prime}, f_P : M_P \to N_P \text{ is injective}.$
- (III) $\forall P \text{ maximal}, f_P : M_P \to N_P \text{ is injective.}$

Proof. ((I) \implies (II) Part:) We have an exact sequence $0 \longrightarrow M \xrightarrow{f} N$. Localizing at P, we obtain an exact sequence $0 \longrightarrow M_P \xrightarrow{f_P} N_P$, so f_P remains injective. ((II) \implies (III) Part:) Trivial

 $((\text{III}) \implies (\text{I}) \text{ Part:})$ Given any f, we get an exact sequence $0 \longrightarrow \ker(f) \longrightarrow M \xrightarrow{f} N$. Localizing at P, we get:

 $0 \longrightarrow (\ker(f))_P \longrightarrow M_P \xrightarrow{f_P} N_P$ So $(\ker(f))_P \cong \ker(f_P)$ by exactness. So in particular, $(\ker(f))_P = 0$ at every P maximal. By the previous proposition, $\ker(f) = 0$, hence, f is injective.

Remark 6. We can replace the word "injective" with surjective and obtain the same equivalence in the proposition. The proof would involve analyzing the cokernel of f instead of f, but otherwise, is exactly the same.

Theorem 4 (Nakayam's Lemma, Most General Version). Let R be a commutative ring and M a finitely generated R-module, and let $f : M \to M$ is an R-module homomorphism such that $f(M) = I \cdot M$ for an ideal I. Then, there exists

$$p = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n \in R[x]$$

with $a_i \in I$ (for i = 0, 1, ..., n - 1) such that

$$p(f) = a_0 \operatorname{id} + a_1 f + \dots + a_{n-1} f^{n-1} + f^n = 0$$
 in $\operatorname{End}_R(M)$

Proof. Choose $x_1, x_2, \ldots, x_n \in M$ a generator. Then,

$$f(x_{1}) = \sum_{i=1}^{n} a_{1i}x_{i} = \sum_{i=1}^{n} (a_{1i}id)(x_{i})$$

$$f(x_{2}) = \sum_{i=1}^{n} a_{2i}x_{i} = \sum_{i=1}^{n} (a_{2i}id)(x_{i})$$

$$\vdots$$

$$f(x_{n}) = \sum_{i=1}^{n} a_{ni}x_{i} = \sum_{i=1}^{n} (a_{ni}id)(x_{i})$$

$$: M^{n} \to M^{n} \text{ defined by} \begin{pmatrix} f - a_{11}id & -a_{12}id & \cdots & -a_{1n}id \\ -a_{21}id & f - a_{22}id & \cdots & -a_{2n}id \\ \vdots & \vdots & \vdots \\ -a_{n1}id & -a_{n2}id & \cdots & f - a_{nn}id \end{pmatrix} \text{ Now,}$$

the equations above can be rephrased as

Now, consider F

$$F\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} = \begin{pmatrix}0\\0\\\vdots\\0\end{pmatrix}$$

Observe that $F \in M_n(R[f]) \subset M_n(\operatorname{End}_R(M))$ as the coefficients are all in terms of the *R*-multiplications and *f*. More importantly, R[f] is a *commutative* ring, so we can multiply by the adjoint to obtain:

$$F^{\text{adjoint}}F\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} = (\det F)I_n\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} = \begin{pmatrix}0\\0\\\vdots\\0\end{pmatrix}$$

Setting $\phi = \det F$, we see that $\phi(x_1) = \phi(x_2) = \dots \phi(x_n) = 0$. So $\phi = 0$. But $\phi = p(f) = a_0 + a_1 f + \dots + a_{n-1} f^{n-1} + f^n$, for some $a_0, a_1, \dots, a_{n-1} \in I$, so the conclusion follows. \Box

Discussion 5 - More Nakayama, Exact Sequences and Functors, and Tensor-Hom Adjunctions

Remark 7. When $M = \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^n$ is represented by the matrix $A = (a_{ij})$, the above determinant is precisely $P_A(f)$, the characteristic polynomial of A evaluated at f. By the arguments from the theorem above, $P_A(f) = 0$, which is precisely the statement of the Cayley-Hamilton Theorem. This is one of the nicest proofs of the Cayley-Hamilton Theorem.

Corollary 4. Let R be a commutative ring, and M be a finitely generated R-module. If for a given ideal $I \subseteq R$, $M = I \cdot M$, then there exists $r \equiv 1 \mod I$ such that $r \cdot M = 0$.

Proof. Take f = id, then $a_0 + a_1 f + \dots + a_{n-1} f^{n-1} + f^n = (a_0 + a_1 + \dots + a_{n-1} + 1)id = 0$ in $End_R(M)$.

Theorem 5 (Nakayama's Lemma Local Version). Let R be a commutative ring, M a finitely generated R-module, and I an ideal contained in J(R), the Jacobson radical of R (e.g. this happens when R is local and I is the unique maximal ideal). If $M = I \cdot M$, then M = 0.

Proof. By the corollary, there exists $r \equiv 1 \mod I$ such that $r \cdot M = 0$. But then, since $r - 1 \in J(R)$, r is actually a unit. So $M = r^{-1} \cdot (r \cdot M) = r^{-1} \cdot 0 = 0$.

Second proof. Suppose $M \neq 0$ and x_1, x_2, \ldots, x_n be the minimum number of generators. Then, $x_n \in M = I \cdot M$, so $x_n = \sum_{j=1}^n a_j \cdot x_j = \sum_{j=1}^{n-1} a_j \cdot x_j + a_n x_n$ for some $a_1, a_2, \ldots, a_n \in I$. So $(1 - a_n)x_n = \sum_{j=1}^n a_j \cdot x_j$. But since $a_n \in J(R)$, $1 - a_n$ is a unit, so $x_n = \sum_{j=1}^{n-1} (1 - a_n)^{-1} a_j x_j \in \sum_{j=1}^{n-1} Rx_j$. This contradicts the assumption that x_1, x_2, \ldots, x_n was a minimal generator.

Remark 8. The second proof goes through for even when R is non-commutative.

Definition 7 (Exactness). Recall we say $L \xrightarrow{f} M \xrightarrow{g} N$ is exact if Im(f) = ker(g). In general, given a sequence of modules and maps

 $\dots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_{i+1}} M_{i+2} \longrightarrow \dots$ We say such a sequence is exact if $\operatorname{Im}(f_i) = \ker(f_{i+1})$ whenever it makes sense.

Remark 9. In the definition, exactly where i ranges is made purposefully vague as to include a wide range of possible sequences.

Definition 8 (Short Exact Sequence). An exact sequence of the form

 $0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ is called a short exact sequence.

Definition 9 (Long Exact Sequence). An exact sequence where i ranges over an unbounded set (of integers) in either directions is called a long exact sequence.

Remark 10. Any exact sequence $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \dots \xrightarrow{f_{n-1}} M_n$ can be extended to a long exact sequence as follows:

 $\cdots \longrightarrow 0 \longrightarrow \ker(f_1) \longrightarrow M_1 \longrightarrow \cdots \xrightarrow{f_{n-1}} M_n \longrightarrow \operatorname{coker}(f_n) \longrightarrow 0 \longrightarrow \cdots$

Lemma 9 (Epi-Mono Factorization). Let R be a ring and $f: M \to N$ an R-linear $M \xrightarrow{f} N$

map. Then, we have the following commutative diagram

Moreover, if K is any other such decomposition, that is, if we had another K fitting as in

the diagram,

such that the above diagram commutes.

Remark 11. The factorization of $f: M \to N$ as in the lemma $M \xrightarrow{f} N$

is called the Epi-mono factorization of f.

Proof of the lemma. The first part of the lemma (that $M \to \text{Im}(f)$ is surjective and $\operatorname{Im}(f) \to N$ is injective) is trivial. So suppose we had another factorization of f: i.e. $p': M \to K$ surjective and $j': K \to N$ injective such that $j' \circ p' = f$. Then, for each $y \in K$, define y = p'(x) for some $x \in M$. Then, define $\phi(y) := j'(y)$. Then, $j'(y) = j' \circ p'(x) = f(x) \in \text{Im}(f)$ so $\phi: M \to \text{Im}(f)$. Since ϕ is (as a function) same as j', ϕ is clearly *R*-linear.

Now, by definition, $j_f \circ \phi(y) = j'(y)$ so ϕ commutes with the j's. For p's, let $x \in M$, and note that $\phi \circ p'(x) = j' \circ p'(x) = f(x) = p_f(x)$. So ϕ commutes with the p's as well. As for checking ϕ is an iso, note that ϕ is injective since j' is, and ϕ is surjective since p_f is.

Finally, suppose $\psi: K \to \text{Im}(f)$ was another map that commuted with the p's and the j's. Then, $\psi \circ p' = \phi \circ p'$ and p' is surjective, so $\psi = \phi$ (or similarly, we could use that $j_f \circ \psi = j_f \circ \phi$ and that j_f is injective). So uniqueness follows.

Lemma 10. Given long sequence together with epi-mono factorizations K_i of f_i ,

The following are equivalent:

(I) The above sequence is exact

(II) For each $i, 0 \longrightarrow K_{i-1} \xrightarrow{j_{i-1}} M_i \xrightarrow{p_i} K_i \longrightarrow 0$ is short exact

Proof. (I) \Rightarrow (II) Part: Each K_i is $\text{Im}(f_i) = \text{ker}(f_{i+1})$. So the short sequence is $0 \longrightarrow \ker(f_i) \longrightarrow M_i \longrightarrow \operatorname{Im}(f_i) \longrightarrow 0$ which is exact.

(II) \Rightarrow (I) Part: Note ker $(f_i) = \text{ker}(j_i \circ p_i)$, but since j_i is injective, ker $(f_i) = \text{ker}(p_i)$. Similarly, $\operatorname{Im}(f_{i-1}) = \operatorname{Im}(j_{i-1} \circ p_{i-1})$, but again, since p_{i-1} is surjective, so $\operatorname{Im}(f_{i-1}) =$ $\operatorname{Im}(j_{i-1})$. By short-exactness, we have $\ker(p_i) = \operatorname{Im}(j_{i-1})$, which clearly implies $\ker(f_i) =$ $\operatorname{Im}(j_{i-1}).$

Definition 10. Given two abelian categories (e.g. *R*-Mod, Mod-*R*, *R*-Mod-*S*, etc.) \mathcal{A} and \mathcal{B} , a functor $F: \mathcal{A} \to \mathcal{B}$ is additive if it preserves finite (co)-products. Equivalently, F(f+g) = F(f) + F(g) for all f, g homomorphisms.

Lemma 11. Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor between two abelian categories. The following are equivalent:

- (I) F sends an exact sequence $L \xrightarrow{f} M \xrightarrow{g} N$ to an exact sequence $FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN$
- (II) F sends a long exact sequence to a long exact sequence
- (III) F sends a short exact sequence $0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ to a short exact sequence

$$0 \longrightarrow FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN \longrightarrow 0$$

Proof. (I) \Leftrightarrow (II) Part: (I) \Rightarrow (II) is trivial, and (II) \Rightarrow (I) follows immediately from the fact that every exact sequence can be extended to a long exact sequence.

 $(I) \Rightarrow (III)$ Part: Trivial

 $(III) \Rightarrow (II)$ Part: Given a long exact sequence

For each $i, 0 \longrightarrow K_{i-1} \longrightarrow M_i \longrightarrow K_i \longrightarrow 0$ is short exact. Now, under the image of the functor $F, 0 \longrightarrow FK_{i-1} \longrightarrow FM_i \longrightarrow FK_i \longrightarrow 0$ remains short exact. But that shows the image of the long exact sequence is exact.

Definition 11. We say that an additive functor $F : \mathcal{A} \to \mathcal{B}$ is exact if it satisfies any of the three conditions above.

Definition 12. Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor between additive categories. We say F is left exact if it sends a short exact sequence $0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ to an exact sequence $0 \longrightarrow FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN$ Similarly, we say F is right exact if it sends a short exact sequence to an exact sequence $FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN \longrightarrow 0$ **Lemma 12.** Let F be a left-exact functor. Then, F sends every exact sequence of the form $0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N$ to an exact sequence

 $0 \longrightarrow FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN$ Similarly, if F is a right-exact functor, then F sends every exact sequence of the form $L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ to an exact sequence $FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN \longrightarrow 0$

Proof. Take an epi-mono factorization of g of the exact sequence:

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N$$

$$\searrow p_{g} j \uparrow$$

$$\operatorname{Im}(g)$$

Now, the sequence $0 \longrightarrow L \longrightarrow M \longrightarrow \operatorname{Im}(g) \longrightarrow 0$ is exact. So by leftexactness of $F, 0 \longrightarrow FL \xrightarrow{Ff} FM \xrightarrow{Fp_g} F\operatorname{Im}(g)$ is exact. So we have a sequence $0 \longrightarrow FL \xrightarrow{Ff} FM \xrightarrow{Fg} FN$

$$\xrightarrow{F_{p_g}} F_{p_g} \xrightarrow{F_j} F_{III}(g)$$

Notice Fp_g is no longer surjective, but it doesn't matter (though Fj still remains injective by left-exactness of F). First, on the far left, the map Ff still remains injective. And in them middle, $\ker(Fg) = \ker(Fj \circ Fp_g) = \ker(Fp_g)$ since Fj is injective. So then, $\ker(Fg) = \ker(Fp_g) = \operatorname{Im}(Ff)$, as desired.

For the right exactness part of the lemma, take the epi-mono factorization of f instead of g:

$$\begin{array}{ccc} L & \xrightarrow{f} & M & \xrightarrow{g} & N & \longrightarrow & 0 \\ & & \downarrow^{p_f} & \xrightarrow{j} & & & \\ & & \ker(g) \end{array}$$

The rest of the details are left as an exercise.

Exercise 1. An additive functor F is left exact if and only if F sends kernels to kernels. That is, if for $f: M \to N$, $j: \ker(f) \to M$ is the inclusion map, then $Fj: F \ker(f) \to \ker(Ff)$ is an isomorphism. Similarly, F is right exact if and only if F sends cokernels to cokernels.

Remark 12 (Tensor product as a bimodule). Let A be a ring. Given A-mod (left A-module) N and mod-A (right A-module) M, we have an abelian group $M \otimes_A N$. If in addition, M is a B-mod or N a mod-C for some rings B and C, then $M \otimes_A N$ has the structure of B-mod or mod-C via:

$$b \cdot_B (m \otimes_A n) = (bm) \otimes_A n$$

and

$$(m \otimes_A n) \cdot_C c = m \otimes_A nc$$

Moreover, if M is a B-mod and N is a mod-C, then $M \otimes_A N$ has the structure of B - C bimodule (denoted B-mod-C).

Moreover, in that case, we have, for M a B-mod-A, and N a A-mod-C, tensor producting with M or N are additive functors:

$$M \otimes_A (-) : A - \operatorname{Mod} - C \to B - \operatorname{Mod} - C$$

and

$$(-) \otimes_A N : B - Mod - A \rightarrow B - Mod - C$$

Remark 13 (Hom-set as a bimodule). Similarly, given two A-mods M and N, $\text{Hom}_A(M, N)$ is an abelian group. If in addition, M has a structure of mod-B and N a mod-C, then $\text{Hom}_A(M, N)$ is B-C bimodule via:

$$(b \cdot_B f) : x \mapsto f(xb)$$

and

$$(f \cdot_C c) : x \mapsto f(x)c$$

Note that the side flips when B acts on the input! (the hom set is now a *left B*-module). Moreover, once again, we have additive functors

$$\operatorname{Hom}_A(M,(-)): A - \operatorname{Mod} - C \to B - \operatorname{Mod} - C$$

and

$$\operatorname{Hom}_A((-), N) : (A - \operatorname{Mod} - B)^{\operatorname{op}} \to B - \operatorname{Mod} - C$$

We're now ready to state Tensor-Hom adjunctions in full-generality:

Theorem 6. Given a B - A bimodule X, the following functors are adjunctions:

$$B - \operatorname{Mod} - C$$

$$X \otimes_A(-) \uparrow \downarrow \operatorname{Hom}_B(X, (-))$$

$$A - \operatorname{Mod} - C$$

Proof. $\operatorname{Hom}_{B-C}(X \otimes_A M, N) \cong \operatorname{Bil}(X \times M, N)$ where here, the set Bil denotes the set of all *B-C* bilinear AND *A*-balanced maps from $X \times N$ to *N*. Now, $\operatorname{Bil}(X \times M, N) \cong \operatorname{Hom}_{A-C}(M, \operatorname{Hom}_B(X, N))$, so the conclusion follows.

Exercise 2. Formulate and prove the Tensor-Hom adjunctions for the right-A modules (i.e. find adjunctions of $(-) \otimes_A X$).

Theorem 7 (Hom-Hom adjunctions). Given a A-mod-C X, the following are adjunctions:

 $(A - \operatorname{Mod} - B)^{\operatorname{op}}$ $\operatorname{Hom}_{\operatorname{Mod}-C}((-),X)^{\operatorname{op}} \hspace{-0.5cm} \uparrow \hspace{-0.5cm} \downarrow \hspace{-0.5cm} \operatorname{Hom}_{A}((-),X)$ $B - \operatorname{Mod} - C$

where $\operatorname{Hom}_{\operatorname{Mod}-C}((-), X)$ indicates the right C-module hom set.

Proof. Exercise!

Remark 14. It follows that Hom((-), X), Hom(X, (-)) are left exact (as right-adjoints) and $X \otimes_A (-)$ is right exact (as a left-adjoint).

Corollary 5. Recall that given two rings A and B, and a homomorphism $\phi : A \to B$, we have the restriction of scalars from B-Mod to A-Mod via taking M and setting $a \cdot_A m = \phi(a) \cdot_B m$. The two functors $B \otimes_A (-)$ and $\operatorname{Hom}_A(B, (-))$ are left and right adjoints to the restriction of scalar functors.

Proof. Apply Tensor-Hom adjunctions to $B: B \otimes_A (-)$ is left adjoint to $\text{Hom}_B(B, (-))$ when B is viewed as a B-Mod-A and $B \otimes_B (-)$ is left adjoint to $\text{Hom}_A(B, (-))$ when B is viewed as A-Mod-B. Note $\text{Hom}_B(B, (-))$ and $B \otimes_B (-)$ are precisely the restriction of scalars (why?).

Proposition 6. Given a commutative ring R, $S^{-1}R \otimes_R M$ is naturally isomorphic to $S^{-1}M$ (as $S^{-1}R$ -modules). And given a ring R (not necessarily commutative) and a (two-sided) ideal I, $R/I \otimes_R M$ is naturally isomorphic to $M/I \cdot M$ (as R/I-modules).

Proof. We define an *R*-bilinear map $S^{-1}R \times M \to S^{-1}M$ via $(\frac{r}{s}, m) \mapsto \frac{rm}{s}$, which induces an *R*-linear map $S^{-1} \otimes_R M \to S^{-1}M$, with $\frac{r}{s} \otimes_R m \mapsto \frac{rm}{s}$. Now, we define a map $M \to S^{-1}R \otimes_R M$ via $m \to \frac{1}{1} \otimes m$, which is clearly *R*-linear. Then, since $S^{-1}R \otimes_R M$ is an $S^{-1}R$ -module (every element of *S* acts as an automorphism), this descends to a map $S^{-1}M \to S^{-1}R \otimes_R M$ with $\frac{m}{s} \mapsto (s \cdot -)^{-1}(\frac{1}{1} \otimes_R m) = \frac{1}{s} \otimes_R m$. It's not hard to check that the two maps are inverses.

Similarly, for R/I, we have a bilinear map $R/I \times M \to M/I \cdot M$ via $(\overline{r}, m) \mapsto rm+IM$. We can check that this does not depend on the representative of $\overline{r} = r + I$. So we have an induced R-linear map $R/I \otimes_R M \to M/I \cdot M$ via $\overline{r} \otimes_R m \mapsto rm + IM$. Now, we also define a map $M \to R/I \otimes_R M$ via $m \mapsto \overline{1} \otimes_R m$, whose kernel contains IM (check!). So this descends to the R-linear map $M/I \cdot M \to R/I \otimes_R M$ via $m + IM \mapsto \overline{1} \otimes_R m$. It's not hard to check again, that the two maps are inverses of one another. \Box

Corollary 6. $S^{-1}R$ is flat, and the functor $M \to M/I \cdot M$ is right-exact.

Discussion 6 - Rings and Modules Qual Problems

Spring 2020 Problem 10: Let *R* be a commutative ring and *M* a left *R*-module. Let $f: M \to M$ be a surjective *R*-linear endomorphism. [Hint: Let R[X] act on *M* via *f*.]

- (a) Suppose that M is finitely generated. Show that f is an isomorphism and that f^{-1} can be described as a polynomial in f.
- (b) Show that this fails if M is not finitely generated.

Proof. (b): Take $M = R^{(\mathbb{N})}$ and $f : M \to M(r_1, r_2, \ldots, r_n, \ldots) \mapsto (r_2, r_3, \ldots, r_n, \ldots)$. This is clearly surjective (and *R*-linear) but not injective.

(a): As given in the hints, turn M into an R[X]-module via $X \cdot m = f(m)$. More formally, we have $R \to \operatorname{End}_R(M)$ via $r \mapsto (m \mapsto rm)$ and $X \mapsto f \in \operatorname{End}_R(M)$. By the universal property, we have the map $R[X] \to \operatorname{End}_R(M)$. Now, M still remains finitely generated, and by surjectivity of f, M = (X)M. So by Nakayama's lemma, there exists $q \cong 1 \mod (X)$ such that q(X)M = 0. Set q(X) = 1 + p(X)X.

Let's look at ker(f). Let m be such that $f(m) = X \cdot m = 0$. Then, $p(X)X \cdot m = 0$. So 0 = q(X)m = m + p(X)Xm = m. Hence, it follows ker(f) = 0, and f is injective. For the inverse of f, consider m = Xn. Then, p(X)m = p(X)Xn = -n. So n = -p(X)m, so $f^{-1} = -p(f)$.

Spring 2021 Problem 6: Let A be a commutative ring, and P a flat A-module and let I be an injective A-module. Show that $\text{Hom}_A(P, I)$ is an injective A-module.

Proof. Let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be a short exact sequence. We want $\operatorname{Hom}_A((-), \operatorname{Hom}_A(P, I))$ to be an exact functor. First, since P is flat, we have a short exact sequence $0 \longrightarrow P \otimes_A L \longrightarrow P \otimes_A M \longrightarrow P \otimes_A N \longrightarrow 0$

Next, we use that I is an injective to an exact sequence:

 $0 \longrightarrow \operatorname{Hom}_{A}(P \otimes_{A} N, I) \longrightarrow \operatorname{Hom}_{A}(P \otimes_{A} M, I) \longrightarrow \operatorname{Hom}_{A}(P \otimes_{A} L, I) \longrightarrow 0$

But by Tensor-Hom adjunction, this is precisely naturally isomorphic to an exact sequence:

$$0 \longrightarrow \operatorname{Hom}_{A}(N, \operatorname{Hom}_{A}(P, I)) \longrightarrow \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(P, I)) \longrightarrow \operatorname{Hom}_{A}(L, \operatorname{Hom}_{A}(P, I))$$

 $\frac{1}{0}$

So we have that $\operatorname{Hom}_A((-), \operatorname{Hom}_A(P, I))$ is exact, as desired.

Spring 2020 Problem 9: Let R be a commutative ring and $S \subset R$ a multiplicative subset. Construct a natural transformation (in either direction) between the functors $\operatorname{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N)$ and $S^{-1}\operatorname{Hom}_R(M, N)$, considered as functors of R-modules M and N, and prove that it is an isomorphism if M is finitely presented.

Proof. Observe that we have a R-linear map from $\operatorname{Hom}_R(M, N) \to \operatorname{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N)$ given by $f \mapsto S^{-1}f$ (the localization functor map). Since the latter is an $S^{-1}R$ -module (where S acts invertibly), this descends to an $S^{-1}R$ -linear map $S^{-1}\operatorname{Hom}_R(M, N) \to$ $\operatorname{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N)$ via $\frac{f}{s} \mapsto \frac{S^{-1}f}{s} : \frac{m}{t} \mapsto (s \cdot (-))^{-1}S^{-1}f(\frac{m}{t}) = (s \cdot (-))^{-1}\frac{f(m)}{t} = \frac{f(m)}{st}$. We live it as an exercise to check that this is natural in both M and N.

Now, recall M is finitely presented if there exists an exact sequence

$$R^m \longrightarrow R^n \longrightarrow M \longrightarrow 0$$

For a fixed M, denote the map $S^{-1}\operatorname{Hom}_R(M, N) \to \operatorname{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N)$ via $\frac{f}{s} \mapsto \frac{S^{-1}f}{s}$ as η_M . We show that η_M is an isomorphism in stages:

M = R case: we have the following commutative diagram:

To check that this is commutative, the top map (η_R) takes $\frac{f}{s}$ to $\frac{S^{-1}f}{s}$. The right map takes $\frac{S^{-1}f}{s}$ to $\frac{S^{-1}f}{s}(\frac{1}{1}) = \frac{f(1)}{s}$. The left map takes $\frac{f}{s}$ to $\frac{f(1)}{s}$, which gets sent to itself by the identity map on the bottom. So the above diagram is commutative. Since all three other maps are isomorphisms, so is η_R .

 $\underline{M = R^n \text{ case}}: \text{ We have that } \eta_{R^n} : S^{-1} \text{Hom}_R(M, N) \to \text{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N) \text{ is given}$ by $\frac{1}{s} \begin{pmatrix} f_1 & f_2 & \cdots & f_n \end{pmatrix} \mapsto \begin{pmatrix} \frac{S^{-1}f_1}{s} & \frac{S^{-1}f_2}{s} & \cdots & \frac{S^{-1}f_n}{s} \end{pmatrix}$. Injectivity is clear from injectivity in each entry. For surjectivity, suppose we had $\begin{pmatrix} h_1 & h_2 & \cdots & h_n \end{pmatrix}$ given by $h_i = \frac{S^{-1}f_i}{t_i}$ for some f_i and $t_i \in S$. Then, set $\hat{t}_i = t_1 t_2 \cdots t_{i-1} t_{i+1} \cdots t_n$ and $t = t_1 t_2 \cdots t_n$. Then, the above map is the image of the map $\frac{1}{t} (\hat{t}_1 f_1 & \hat{t}_2 f_2 & \cdots & \hat{t}_n f_n)$

<u>General case</u>: We have an exact sequence $R^m \longrightarrow R^n \longrightarrow M \longrightarrow 0$. By left exactness of the functors

$$S^{-1}\operatorname{Hom}_R((-), N) (= S^{-1}(-) \circ \operatorname{Hom}_R((-), N))$$

and

$$\operatorname{Hom}_{S^{-1}R}(S^{-1}(-), S^{-1}N) (= \operatorname{Hom}_{S^{-1}R}((-), S^{-1}N) \circ S^{-1}(-))$$

we have a natural transformation between the exact sequences:

$$0 \longrightarrow 0 \longrightarrow S^{-1}\operatorname{Hom}_{R}(M, N) \longrightarrow S^{-1}\operatorname{Hom}_{R}(R^{n}, N) \longrightarrow S^{-1}\operatorname{Hom}_{R}(R^{m}, N)$$

$$\downarrow^{\simeq} \qquad \downarrow^{\gamma_{M}} \qquad \qquad \downarrow^{\eta_{R^{m}} \simeq} \qquad \qquad \downarrow^{\eta_{R^{m}} \simeq}$$

$$0 \longrightarrow 0 \longrightarrow \operatorname{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N) \longrightarrow \operatorname{Hom}_{S^{-1}R}(S^{-1}R^{n}, N) \longrightarrow \operatorname{Hom}_{S^{-1}R}(S^{-1}R^{m}, N)$$

We know from the $M = R^n$ case that the last two columns are isomorphisms, and the first two columns are clearly isomorphisms. By the five lemma, the middle column map η_M is also an isomorphism.

Fall 2018 Problem 9: Let $f: M \to N$ and $g: N \to M$ be two *R*-linear homomorphisms of *R*-modules such that $id_M - gf$ is invertible. Show that $id_N - fg$ is invertible as well and give a formula for its inverse. [Hint: You may use Analysis to make a guess.]

Proof. As given in the hints, we use analysis to make a guess: if we had an operator $A: L \to L$ from a \mathbb{R} -vector space with ||A|| < 1, then $(I - A)^{-1} = I + A + A^2 + \cdots$. So this is how we make a guess:

$$(\mathrm{id}_N - fg)^{-1} = \mathrm{id} + fg + fgfg + fgfgfgfg + \dots + (fg)^{m+1} + \dots$$
$$= \mathrm{id} + f[\mathrm{id}_M + gf + gfgf + \dots + (gf)^m + \dots]g$$
$$= \mathrm{id} + f(\mathrm{id}_M - gf)^{-1}g$$

Now that we made a guess, it remains to check that the guess is in fact the desired inverse.

$$(\mathrm{id}_N - fg)(\mathrm{id}_N + f(\mathrm{id}_M - gf)^{-1}g) = \mathrm{id}_N - fg + f(\mathrm{id}_M - gf)^{-1}g - fgf(\mathrm{id}_M - gf)^{-1}g$$
$$= \mathrm{id}_N - fg + f\mathrm{id}_M - gf^{-1}g$$
$$= \mathrm{id}_N - fg + f\mathrm{id}_M g$$
$$= \mathrm{id}_N$$

And

$$(\mathrm{id}_N + f(\mathrm{id}_M - gf)^{-1}g)(\mathrm{id}_N - fg) = \mathrm{id}_N - fg + f(\mathrm{id}_M - gf)^{-1}g - f(\mathrm{id}_M - gf)^{-1}gfg$$
$$= \mathrm{id}_N - fg + f(\mathrm{id}_M - gf)^{-1}[\mathrm{id}_M - gf]g$$
$$= \mathrm{id}_N - fg + f\mathrm{id}_M g$$
$$= \mathrm{id}_N$$

Discussion 7 - Rings and Modules Qual Problems Part 2

Spring 2019 Problem 4: Let R be a commutative local ring and P a finitely generated projective R-module. Prove that P is R-free.

Proof. Let \mathfrak{m} be the unique maximal module $\mathfrak{m} = R - R^{\times}$, and $K = R/\mathfrak{m}$. Then, consider $K \otimes_R P \simeq P/\mathfrak{m}P$. It is a finitely generated $R/\mathfrak{m} = K$ -module (vector space!), so it has a finite basis: $\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}$. Then, consider the elements $x_1, x_2, \ldots, x_n \in P$ mapping to the basis.

We can now define a map $f : \mathbb{R}^n \to P$ by $e_i \mapsto x_i$ (which, by the universal property of the coproduct, extends to the unique *R*-linear homomorphism). This f will be our desired isomorphism. The conclusion follows immediately from the next two claims:

Claim. f is surjective

Proof of the Claim. We have an exact sequence $R^n \xrightarrow{f} P \longrightarrow \operatorname{coker}(f) \longrightarrow 0$ Tensoring $(K \otimes_R (-))$ is right-exact, so we have a new exact sequence:

But note that $\mathrm{id} \otimes_R f$ sends $1_K \otimes_R e_i$ to $1_K \otimes_R x_i$, so in the corresponding bottom exact sequence, the new map sends $e_i \in K^n$ to $\overline{x_i}$, so this is in fact, an isomorphism. Hence, the map from $P/\mathfrak{m}P$ to $\mathrm{coker}(f)/\mathfrak{m}\mathrm{coker}(f)$ is in fact, the zero map, so $\mathrm{coker}(f)/\mathfrak{m}\mathrm{coker}(f) =$ 0. But that implies $\mathrm{coker}(f) = \mathfrak{m}\mathrm{coker}(f)$. Since $\mathrm{coker}(f)$ is finitely generated (as a quotient of a finitely generated module), by Nakayama's lemma, $\mathrm{coker}(f) = 0$. So f is in fact, surjective. \Box

Claim. f is injective.

Proof of the Claim. This time, we have a short exact sequence:

$$0 \longrightarrow \ker(f) \longrightarrow R^n \xrightarrow{f} P \longrightarrow 0$$

Since P is projective, the sequence is split, so we have $R^n \simeq \ker(f) \oplus P$, so by tensoring, we get $K \otimes_R R^n \simeq K^n \simeq (K \otimes_R \ker(f)) \oplus (K \otimes_R P) \simeq \ker(f)/\mathfrak{m} \ker(f) \oplus P/\mathfrak{m} P$. Note, by construction, $\dim_K(P/\mathfrak{m} P) = n = \dim_K(K^n)$. So in particular, $\dim_K(\ker(f)/\mathfrak{m} \ker(f)) = 0$, so $\ker(f)/\mathfrak{m} \ker(f) = 0$, i.e. $\ker(f) = \mathfrak{m} \ker(f)$.

Once again, $\ker(f)$ is finitely generated as a direct summand (hence a quotient) of \mathbb{R}^n . So by Nakayama's lemma, $\ker(f) = 0$.

Fall 2020 Problem 4: Let R be a ring and M be a left R-module. Show that M is a projective R-module if and only if there is an index set I and $m_i \in M$ and $f_i : M \to R$ *R*-linear satisfying:

- (a) For all $m \in M$, $f_i(m) = 0$ for all but finitely many $i \in I$.
- (b) For all $m \in M$, $m = \sum_{i \in I} f_i(m) m_i$

Proof. (\Rightarrow Part:) Let M be a projective R-module. Then, $M \oplus N = R^{(I)}$ for some index set I (i.e. M is a direct summand of a free-module $R^{(I)}$). Define $\pi : R^{(I)} \to M$ the projection onto M. For each $i \in I$, define $g_i : R^{(I)} \to R$ by $g_i(e_j) = 1$ if j = i and 0 else. Take $m_i = \pi(e_i)$ and $f_i = g_i \upharpoonright M$ which is really $g_i \circ k$ where $k : M \to R^{(I)}$ is the embedding.

Now, we check these m_i 's and f_i 's satisfy (a) and (b). For (a), note for all $m \in M$, $m = \sum_{i \in I} a_i e_j$ for $a_j \in R$ where $a_j = 0$ for all but finitely many $j \in J$. Then, $f_i(m) =$ $\sum_{j \in I} a_j f_i(e_j) = a_i$. So $a_i = f_i(m) = 0$ for all but finitely many $i \in I$. For (b), we now have:

$$m = \pi(m) = \pi(\sum_{i \in I} a_i e_i)$$
$$= \sum_{i \in I} a_i \pi(e_i)$$
$$= \sum_{i \in I} f_i(m) m_i$$

as desired.

(\Leftarrow Part): Suppose we're given such $m_i \in M$ and $f_i : M \to R$. Now, define $f : M \to R^I$ via $f(m) = (f_i(m))_{i \in I}$ (this f is the unique R-linear map satisfying the universal property of the product). Note by condition (a), $f(m) \in \mathbb{R}^{(I)}$.

Now, define $\pi: R^{(I)} \to M$ via $e_i \mapsto m_i \in M$ (so that $(r_i)_{i \in I} \mapsto \sum_{i \in I} r_i m_i$). Now, we check $\pi \circ f = \mathrm{id}_M$:

$$\pi \circ f(m) = \pi((f_i(m))_{i \in I}) = \sum_{i \in I} f_i(m) m_i \underbrace{=}_{\text{by (b)}} m_i$$

Hence, $f: M \to R^{(I)}$ is an embedding of M into a free module which splits: so M is a direct summand of a free-module, hence projective.

Spring 2018 Problem 7: Let B be a commutative noetherian ring, and let A be a noetherian subring of B. Let I be the nilradical of B. If B/I is finitely generated as an A-module, show that B is finitely generated as an A-module.

Proof. Observe that since B is noetherian, I is finitely generated: $I = (b_1, b_2, \ldots, b_k)$ for some k. Choose n_1, n_2, \ldots, n_k such that $b_i^{n_i} = 0$. Then, if we set $N = n_1 + n_2 + \cdots + n_k + 1$, $I^N \subseteq (b_1^{n_1}, b_2^{n_2}, \ldots, b_k^{n_k}) = 0$, so $I^N = 0$. Consider the ring B/I^2 . Since $I \supset I^2$, I/I^2 is an ideal of B/I^2 . Moreover, the quotient

 $B/I^2/I/I^2 \simeq B/I$. So we have a short exact sequence:

$$0 \longrightarrow I/I^2 \longrightarrow B/I^2 \longrightarrow B/I \longrightarrow 0$$

Note $I \cdot (I/I^2) = I^2/I^2 = 0$ (take any $r, s \in I$, and $r \cdot s \in I^2$, so $r \cdot \overline{s} = 0$). So both B/I and I/I^2 are *B*-modules that vanish when multiplied by *I*, hence B/I-modules. Moreover, since I/I^2 is finitely generated *B*-module, it remains finitely generated as a B/I-module. But since B/I is finitely generated as an *A*-module, I/I^2 and B/I remain finitely generated as an *A*-module. This is an exercise!

Exercise 3. Show that if $f : R \to S$ a ring homomorphism between commutative rings and M is a finitely generated S-module, and S a finitely generated R module via restriction of scalars, then M is finitely generated as an R-module as well.

Now, we I/I^2 and B/I finitely generated as A-modules, so the middle term in the exact sequence B/I^2 (which is an A-module) is also finitely generated A-module. Again, this is an exercise!

Exercise 4. Show if $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ is a short exact sequence of A-modules and L and N are finitely generated, then M is finitely generated as well.

Now, by induction on m, we'll show that B/I^m is A-finitely generated. We already did m = 1 and illustrated the idea for $m \to m + 1$ inductive step for m = 1.

Take the exact sequence $0 \longrightarrow I^m/I^{m+1} \longrightarrow B/I^{m+1} \longrightarrow B/I^m \longrightarrow 0$

Once again, I^m/I^{m+1} is a finitely generated B/I-module, hence is finitely generated as an A-module. By the inductive hypothesis, B/I^m is A-finitely generated. So B/I^{m+1} is a finitely generated A-module as well.

Taking m = N, we get $B/I^N = B$ is a finitely generated A-module, as desired. \Box

Discussion 8 - Field Theory Basics

Proposition 7. Let $f : A \to B$ and $g : A \to C$ be homomorphisms between commutative rings. Then, $B \otimes_A C$ is an A-module. But we can turn $B \otimes_A C$ into a ring as well as by defining multiplication as follows:

$$(b \otimes_A c) \cdot (r \otimes_A s) = br \otimes_A cs$$

and extending linearly. It's not hard to check that $B \otimes_A C$ is a commutative ring with homomorphisms $B \to B \otimes_A C, b \mapsto b \otimes_A 1$ and $C \to B \otimes_A C, c \mapsto 1 \otimes_A c$. In fact, we have a pushout diagram in Commutative Rings:

$$\begin{array}{ccc} A & \stackrel{g}{\longrightarrow} & C \\ \downarrow_{f} & & \downarrow \\ B & \longrightarrow & B \otimes_{A} C \end{array} \quad \text{In particular, if } A = \mathbb{Z}, \text{ then } B \otimes_{A} C \text{ is a coproduct in the category} \end{array}$$

of commutative rings (which is related to a homework problem).

Remark 15. There is a problem with the above definition of multiplication and "extending linearly." It's not clear that the multiplication is well-defined: if $\sum_{i=1}^{n} b_i \otimes_A c_i = \sum_{j=1}^{m} b'_j \otimes_A c'_j$ and $\sum_{k=1}^{u} r_k \otimes_A s_k = \sum_{l=1}^{v} r'_l \otimes_A s'_k$ in $B \otimes_A C$, it's not clear that the corresponding products $\sum_{i,k} b_i r_k \otimes_A c_i s_k$ and $\sum_{j,l} b'_j r'_l \otimes_A c'_j s'_l$ are equal in $B \otimes_A C$. In fact, checking this manually (using Tensor product construction) is very tedious.

Here is how we get around to this issue: given $b \in B$ and $c \in C$, we have $b \cdot (-) : B \to B$ and $c \cdot (-) : C \to C$ multiplication by the corresponding elements, which are also Amodule homomorphisms when B and C are viewed as such. The maps $b \cdot (-)$ and $c \cdot (-)$ lie in $\operatorname{End}_A(B)$ and $\operatorname{End}_A(C)$, and the assignment $b \mapsto b \cdot (-)$ and $c \mapsto c \cdot (-)$ are A-linear from $B \to \operatorname{End}_A(B)$ and $C \to \operatorname{End}_A(C)$. Moreover, we know that given any $\phi : B \to B$ and $\psi : C \to C$ A-linear, we can define $\phi \otimes_A \psi : B \otimes_A C \to B \otimes_A C$, A-linear, and the assignment $\operatorname{End}_A(B) \times \operatorname{End}_A(C) \to \operatorname{End}_A(B \otimes_A C)$ is A-bilinear.

Hence, the composition $B \times C \to \operatorname{End}_A(B) \times \operatorname{End}_A(C) \to \operatorname{End}_A(B \otimes_A C)$ is A-bilinear. So in particular, this induces the unique A-linear $B \otimes_A C \to \operatorname{End}_A(B \otimes C)$. We want the image of x in $\operatorname{End}_A(B \otimes C)$ to define a multiplication by x: define $x \cdot y =$ to be the evaluation of image of x in $\operatorname{End}_A(B \otimes_A C)$ at y. It's not hard to check that this turns $B \otimes_A C$ into a commutative ring. Moreover, $(b \otimes_A c) \cdot (r \otimes_A s) = br \otimes_A cs$ so this agrees with our desired definition from the proposition.

Spring 2018 Problem 8: Let F be a field that contains the real numbers \mathbb{R} as a subfield. Show that the tensor product $F \otimes_R \mathbb{C}$ is either a field or isomorphic to the product of two copies of $F, F \times F$.

Proof. Observe that $\mathbb{C} \simeq \mathbb{R}[X]/(X^2+1)$, so $F \otimes_R \mathbb{C} \simeq F \otimes_R \mathbb{R}[X]/(X^2+1)$. It'd be nice if $F \otimes_R \mathbb{R}[X]/(X^2+1)$ is isomorphic to $F[X]/(X^2+1)$. And it is indeed true:

Claim. In general, given two commutative rings A and B and $f : A \to B$, $A[X] \otimes_A B = B[X]$.

Proof of the Claim. Define the A-linear map from $A[X] \otimes_A B \to B[X]$ by $p(X) \otimes_A b \mapsto bf(p)(X)$ (here, given $p(X) = a_0 + a_1X + \cdots + a_nX^n \in A[X]$, $f(p)(X) = f(a_0) + f(a_1)X + \cdots + f(a_n)X^n$). This is the A-linear map induced from the bilinear map $A[X] \times B \to B[X], (p(X), b) \mapsto bf(p)(X)$. It's not hard to check that this map is also a ring homomorphism (or, as we'll see now, it is the inverse of the map we'll construct which we know is a ring homomorphism).

Next, define the ring homomorphism by $B[X] \to A[X] \otimes_A B, b \mapsto 1 \otimes_A b$ and $X \mapsto X \otimes_A 1$ (the universal property guarantees there is exactly one such ring homomorphism with this property). It's not hard to check that these two maps are inverses of one another.

Claim. $L \subset F$ be a field extension, and $p \in L[X]$. Then, $F \otimes_L L[X]/(p) \simeq F[X]/(p)$.

Proof of the Claim. We have an exact sequence

 $0 \longrightarrow pL[X] \longrightarrow L[X] \longrightarrow L[X] \longrightarrow D[X]/pL[X] \longrightarrow 0$

Then, tensoring with F, the L-free vector space, gives you the exact sequence:

 $0 \longrightarrow F \otimes_L pL[X] \longrightarrow F \otimes_L L[X] \longrightarrow F \otimes_L L[X] \longrightarrow 0$

By the claim, $F \otimes_L L[X] \simeq F[X]$ as rings. Now, $F \otimes_L pL[X]$ gets sent to pF[X] in F[X] (exercise!). So it follows that $F \otimes_L L[X]/pL[X] \simeq F[X]/pF[X]$.

Now, it follows that $F \otimes_{\mathbb{R}} \mathbb{C} \simeq F \otimes_{\mathbb{R}} \mathbb{R}[X]/(X^2 + 1) \simeq F[X]/(X^2 + 1)$. We can divide into cases when F contains the root of $X^2 + 1$ or not.

Case i): F does not contain an element i such that $i^2 + 1 = 0$. Then, $X^2 + 1$ is a quadratic polynomial with no roots, so it is irreducible. Hence, $F[X]/(X^2 + 1)$ is a field.

Case ii: F contains an element i such that $i^2+1=0$. Then, $X^2+1=(X-i)(X+i)$, so by the Chinese Remainder Theorem, $F[X]/(X-i)(X+i) \simeq F[X]/(X-i) \times F[X]/(X+i) \simeq$ $F \times F$.

Spring 2018 Problem 1: Let $\alpha \in \mathbb{C}$. Suppose that $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is finite and prime to n!for an integer n > 1. Show that $\mathbb{Q}(\alpha^n) = \mathbb{Q}(\alpha)$.

Proof. Call $[\mathbb{Q}(\alpha):\mathbb{Q}] = m$. Then, the assumption is that gcd(m, n!) = 1. Now, we have $\mathbb{Q}(\alpha^n) \subset \mathbb{Q} \text{ so } [\mathbb{Q}(\alpha) : \mathbb{Q}] = \underbrace{[\mathbb{Q}(\alpha) : \mathbb{Q}(\alpha^n)]}_{k} \cdot [\mathbb{Q}(\alpha^n) : \mathbb{Q}] = k[\mathbb{Q}(\alpha^n) : \mathbb{Q}]. \text{ So } k \text{ divides } m.$ Moreover, we know that $X^n - \alpha^n \in \mathbb{Q}(\alpha^n)[X]$ is a polynomial with root α . So $m \leq n$,

so m divides n!. Since gcd(m, n!) = 1, k must be 1.

Fall 2021 Problem 1: Let $a \in \mathbb{Q}$ and $b, d \in \mathbb{Q}^{\times}$, and suppose that d is not a cube in \mathbb{Q}^{\times} . Find the minimal polynomial of $a + b\sqrt[3]{d}$ over \mathbb{Q} .

Proof. Let $\alpha = a + b\sqrt[3]{d}$. Then, $\alpha - a = b\sqrt[3]{d}$, so cubing both sides, we get $(\alpha - a)^3 = b^3 d$. So clearly, $(X - a)^3 - b^3 d \in \mathbb{Q}[X]$ is a polynomial with α as a root. We claim that it is actually the minimal polynomial.

First, observe that in $Y^3 - b^3 d \in \mathbb{Q}[Y]$ has no root since $b^3 d$ is not a cube (otherwise, d would be a cube!). Since it is a polynomial of degree ≤ 3 , it is actually irreducible. So now, the ring homomorphism $\mathbb{Q}[Y] \to \mathbb{Q}[X]$ given by $Y \mapsto X - a$ is an isomorphism with inverse $X \mapsto Y + a$. Then, $(X - a)^3 - b^3 d$ is an image of the irreducible $Y^3 - b^3 d$, so $(X-a)^3 - b^3 d$ is monic irreducible as well. It follows that this must be the minimal polynomial.

Spring 2019 Problem 6: Let F be a field of characteristic p > 0 and $a \in F^{\times}$. Prove that if the polynomial $f = X^p - a$ has no root in F, then f is irreducible over F.

Proof. Choose any root α and an extension $F(\alpha) \supset F$. Then, in $F(\alpha)[X], f = X^p - a =$ $X^p - \alpha^p = (X - \alpha)^p.$

Suppose $g \mid f$ in F[X] with $\deg(g) > 0$ (i.e. g is a polynomial IN F[X] dividing f). In, $F(\alpha)[X]$, $g = (X - a)^k$ for some k = 1, 2, ..., p. If k < p, then g has the form $X^k - k\alpha X^{k-1} +$ Junk. $-k\alpha \in F$ and $-k \in F^{\times}$ since k < p. So $\alpha \in F$ contradicting that $X^p - a$ did not have a root in F. So it follows k = p and $q = (X - \alpha)^p = f$.

Discussion 9 - Galois Theory

Fall 2019 Problem 2: Let L be a Galois extension of field K inside an algebraic closure K of K. Let M be a finite extension K in K. Show that the following are equivalent:

(i)
$$L \cap M = K$$
,

- (ii) [LM:K] = [L:K][M:K],
- (iii) Every K-linearly independent subset of L is M-linearly independent.

Proof. (I) \Leftrightarrow (II) Part: Note, since L/K is Galois, LM/M is Galois, and we have an isomorphism $\operatorname{Gal}(LM/M) \to \operatorname{Gal}(L/L \cap M)$ given by $\sigma \mapsto \sigma \mid_L$. So $[LM:M] = [L:L \cap M]$. Since $[LM:K] = [LM:M][L:K] = [L:L \cap M][L:K]$. Now, the second condition is clearly equivalent to $[L:L \cap M] = [L:K]$ but since $[L:K] = [L:L \cap M][L \cap M:K]$, this is equivalent to $[L \cap M:K] = 1$, the first condition.

(III) \Rightarrow (I) Part: Choose a K-basis $x_1, x_2, \ldots, x_n \in L$. Then, by assumption, this is *M*-linearly independent in *LM*. So $[LM : M] \geq n = [L : K]$. But again, by the isomorphism, $[L : L \cap M] \geq [L : K]$, and the only way this can happen is if $L \cap M = K$. (I) \Rightarrow (III) Part: Since L/K is separable, there exists an $\alpha \in L$ such that $L = K[\alpha]$. Then, $LM = M[\alpha]$. Now, let $p \in K[X]$ be the minimal polynomial of α . Since $[K[\alpha] : K] = [L : K] = [LM : M] = [M[\alpha] : M]$, it follows that p must remain irreducible in M[X] as well (otherwise, we'd have a minimal polynomial of small degree, making $[M[\alpha] : M]$ smaller.

We now, have the following commutative diagram:

$$\begin{array}{ccc} M[\alpha] & \stackrel{\simeq}{\longrightarrow} & M[X]/(p) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & &$$

But note $M[X]/(p) \simeq M \otimes_K K[X]/(p)$. If $f_1, f_2, \ldots, f_n \in K[X]/(p)$ is K-linearly independent, we have an exact sequence $0 \longrightarrow K^n \longrightarrow K[X]/(p)$ where $e_i \in K^n$ is sent to f_i . Since M is a flat (and in fact, free) K-vector space, so tensoring with M, we get: $0 \longrightarrow M^n \longrightarrow M[X]/(p)$ where $e_i \in M^n$ is still send to f_i . So the f_i 's remain M-linearly independent.

Fall 2020 Problem 5: Let F be a field and $f(X) = x^6 + 3$. Determine the splitting field K of f(X) over F and determine [K : F] and Gal(K/F) for each of the following fields: $F = \mathbb{Q}, \mathbb{F}_5, \mathbb{F}_7$.

Soln: The \mathbb{Q} case is left as a homework!

<u> \mathbb{F}_5 </u> case: Let *a* be a root (in a large enough finite extension) of X^6+3 . Then, $a^6 = -3 = 2$, so $(a^6)^4 = a^{24} = 2^4 = 1$ by Fermat's little theorem. But then, we know that $a^{25} = a$. Hence, it follows that every root *a* is contained in \mathbb{F}_{5^2} . Now, note no root *a* is contained in \mathbb{F}_{5^2} : since for every $k \in \mathbb{F}_5$, $k^4 = 1$, $k^2 = \pm 1$, so 2 is not a square. So $K = \mathbb{F}_{5^2}$ and the Gal $(K/F) = \mathbb{Z}/2Z$.

Spring 2021 Problem 4: Prove that the field extension $\mathbb{Q}(\sqrt{-3} + \sqrt[6]{2})$ over \mathbb{Q} is Galois and determine its Galois group.

Proof. Observe first that given a field extension $\mathbb{Q} \subset F$, $\sqrt{-3} \in F$ if and only if $\zeta_6 \in F$ where ζ_6 is the principal 6th root of unity. To see this, we can see that $X^6 - 1 =$

 $(X^3 - 1)(X^3 + 1) = (X - 1)(X + 1)(X^2 + X + 1)(X^2 - X + 1)$, and ζ_6 is the root of $X^2 - X + 1$.

So then, $\mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\zeta_6)$. Hence, $\mathbb{Q}(\sqrt{-3} + \sqrt[6]{2}) \subseteq \mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$. Set $F = \mathbb{Q}(\sqrt{-3} + \sqrt[6]{2})$ and $K = \mathbb{Q}(\sqrt[6]{2}, \zeta_6)$, and set $G = \operatorname{Gal}(K/\mathbb{Q})$ and $N = \operatorname{Gal}(K/F)$ so that $F = K^N$. Note clearly, K/\mathbb{Q} is Galois since it is the splitting field of $X^6 - 2 \in \mathbb{Q}[X]$, so it suffices to find G and N, and show that $N \leq G$ so that F/\mathbb{Q} is normal (and hence Galois), and that $\operatorname{Gal}(\mathbb{Q}(\sqrt{-3} + \sqrt[6]{2}/\mathbb{Q})) \cong G/N$.

First, consider any element $\sigma \in G$. Then, it is determined uniquely by the values of $\sigma(\zeta_6)$ and $\sigma(\sqrt[6]{2})$, since K is generated as a field by \mathbb{Q} and ζ_6 , $\sqrt[6]{2}$. Now, $\sigma(\sqrt[6]{2}) = \sqrt[6]{2}\zeta_6^a$ for some (unique) $a \in \mathbb{Z}/6\mathbb{Z}$ and $\sigma(\zeta_6) = \zeta_6^b$ for some $b \in (\mathbb{Z}/6\mathbb{Z})^{\times}$. So this gives us the embedding $G \to \mathbb{Z}/6\mathbb{Z} \rtimes (\mathbb{Z}/6\mathbb{Z})^{\times}$ for some appropriate semidirect product. Let us analyze it: suppose $\tau \mapsto (a_1, b_1)$ and $\sigma \mapsto (a_2, b_2)$. Then, $\tau \circ \sigma(\zeta_6) = \tau(\zeta_6^{b_2}) = (\zeta_6^{b_1})_6^{b_2} = \zeta_6^{b_1b_2}$, and $\tau \circ \sigma(\sqrt[6]{2}) = \tau(\sqrt[6]{2}\zeta_6^{a_2}) = \tau(\sqrt[6]{2})\tau(\zeta_6^{a_2}) = \sqrt[6]{2}\zeta_6^{a_1}\zeta_6^{b_1a_2} = \sqrt[6]{2}\zeta_6^{a_1+b_1a_2}$. So, a semidirect product structure where the mapping $\sigma \mapsto (a, b)$ is a homomorphism is given by $(a_1, b_1) \cdot (a_2, b_2) = (a_1 + b_1a_2, b_1b_2)$, which is the semidirect product structure induced by $(\mathbb{Z}/6\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/6\mathbb{Z}), k \mapsto (k \cdot (-))$.

We will next show that this embedding is actually surjective, so that $G \cong \mathbb{Z}/6\mathbb{Z} \rtimes (\mathbb{Z}/6\mathbb{Z})^{\times}$. To do this, we need some tools:

Claim. The fields $\mathbb{Q}(\zeta_6)$ and $\mathbb{Q}(\sqrt[6]{2})$ are linearly disjoint, i.e. $\mathbb{Q}(\zeta_6) \cap \mathbb{Q}(\sqrt[6]{2}) = \mathbb{Q}$.

Proof of the Claim. Note $\mathbb{Q}(\zeta_6 \cap \mathbb{Q}(\sqrt[6]{2})$ is a subfield of $\mathbb{Q}(\zeta_6)$, so since $[\mathbb{Q}(\zeta_6) : Q] = 2$, it is either \mathbb{Q} or $\mathbb{Q}(\zeta_6)$. But that field is contained in $\mathbb{Q}(\sqrt[6]{2}) \subset \mathbb{R}$, so since $\mathbb{Q}(\zeta_6) \not\subset \mathbb{R}$, it has to be \mathbb{Q} .

Since $\mathbb{Q}(\zeta_6)/\mathbb{Q}$ is Galois, so is the extension $\mathbb{Q}(\zeta_6, \sqrt[6]{2})/\mathbb{Q}(\sqrt[6]{2})$, and they have the same degree, 2. In particular, $[\mathbb{Q}(\zeta_6, \sqrt[6]{2}) : \mathbb{Q}] = [\mathbb{Q}(\zeta_6, \sqrt[6]{2}) : \mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q}] = 2 \times 6 = 12$, so |G| = 6. But the semidirect product also has order $6 \times 2 = 12$, so in fact, the embedding $G \to \mathbb{Z}/6\mathbb{Z} \rtimes (\mathbb{Z}/6\mathbb{Z})^{\times}$ must also be surjective.

Now, let's look at N. Suppose $\sigma \in N$ so that σ fixes all of F. It suffices to fix the elements $\sqrt{-3} = 2\zeta_6 + 1$ and $\sqrt[6]{2}$. So $\sigma(2\zeta_6 + 1) = 2\zeta_6^i + 1 = 2\zeta_6 + 1$ and $\sigma(\sqrt[6]{2}) = \sqrt[6]{2}\zeta_6^j = \sqrt[6]{2}$. Note, $\zeta_6^i = \zeta_6$ so i = 1, and $\zeta_6^j = 1$, so j = 0. But then, that gives us that $\sigma = \text{id}$, so $N = \{\text{id}\}$. Hence, $F = K \supset \mathbb{Q}$ is Galois and $\text{Gal}(F/\mathbb{Q}) = \text{Gal}(K/\mathbb{Q}) = G \cong \mathbb{Z}/6\mathbb{Z} \rtimes (\mathbb{Z}/6\mathbb{Z})^{\times}$.

Discussion 10 - Galois Theory Part 2

Spring 2018 Problem 2: Let $\zeta^9 = 1$ and $\zeta^3 \neq 1$ with $\zeta \notin \mathbb{C}$.

(a) Show that $\sqrt[3]{3} \notin \mathbb{Q}(\zeta)$,

(b) If $\alpha^3 = 3$, show that α is not a cube in $\mathbb{Q}(\zeta, \alpha)$.

Proof for Part (a). Suppose $\sqrt[3]{3} \in \mathbb{Q}(\zeta)$. Then, note $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) = (\mathbb{Z}/9\mathbb{Z})^{\times}$, which is abelian. In particular, every subgroup is normal. So it follows that the subgroup $N = \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}(\sqrt[3]{3})$ must be normal as well. But then, the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{3})$ must be normal, but it's not (for instance, take the polynomial $X^3 - 3 \in \mathbb{Q}[X]$, which does not split in $\mathbb{Q}(\sqrt[3]{3})[X]$). \Box Proof for Part (b). Once again, suppose α is a cube in $\mathbb{Q}(\zeta, \alpha)$. Then, after multiplying by an appropriate power of ζ , it follows that $\sqrt[9]{3} \in \mathbb{Q}(\zeta, \alpha)$. Also, by similar reasoning, $\mathbb{Q}(\zeta, \alpha) = \mathbb{Q}(\zeta, \sqrt[3]{3})$.

Note, by part (a), $\mathbb{Q}(\sqrt[3]{3}) \cap \mathbb{Q}(\zeta) = \mathbb{Q}$ since it is a subfield of $\mathbb{Q}(\sqrt[3]{3})$ not equal to $\mathbb{Q}(\sqrt[3]{3})$ and $[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}] = 3$ is prime. So since $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{3})$ is Galois, so is $\mathbb{Q}(\sqrt[3]{3}) \subset \mathbb{Q}(\sqrt[3]{3}, \zeta)$, and $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{3}, \zeta)/\mathbb{Q}(\sqrt[3]{3})) \cong \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong (\mathbb{Z}/9\mathbb{Z})^{\times}$. In particular, $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{3}, \zeta)/\mathbb{Q}(\sqrt[3]{3}))$ is abelian, so every subgroup is normal. But then, $\mathbb{Q}(\sqrt[3]{3}) \subset \mathbb{Q}(\sqrt[3]{3})$ is a normal extension, but it is not (as before, we can take $X^3 - \sqrt[3]{3} \in \mathbb{Q}(\sqrt[3]{3})[X]$ which does not split in $\mathbb{Q}(\sqrt[3]{3})[X]$). \Box

Fall 2016 Problem 5: Let $f \in F[X]$ be an irreducible separable polynomial of prime degree over a field F, and let K/F be a splitting field of f. Prove that there is an element in the Galois group of K/F permuting cyclically all roots of f in K.

Proof. Let $p = \deg(f)$ and $\alpha_1, \alpha_2, \ldots, \alpha_p$ be the p distinct roots of f in K, so that $K = F(\alpha_1, \alpha_2, \ldots, \alpha_p)$. Now, set $G = \operatorname{Gal}(K/F)$ and we have an embedding $G \to S_p$ $\sigma \mapsto \sigma \mid_{\{\alpha_1, \alpha_2, \ldots, \alpha_p\}}$. Moreover, since K/F is Galois, and f has degree $p, p \mid [K:F] = [K:F(\alpha_1)][F(\alpha_1):F] = [K:F(\alpha_1)]p$. So $p \mid |G|$.

By Cauchy's theorem, there exists an element σ of order p. But an element of order p in S_p must be a p-cycle, permuting all roots $\alpha_1, \alpha_2, \ldots, \alpha_p$ cyclically.

Fall 2018 Problem 4: Let K be a subfield of real numbers and f an irreducible degree 4 polynomial over K. Suppose that f has exactly two real roots. Show that the Galois group of f is either S_4 or of order 8.

Proof. Let r_1, r_2 be the two distinct real roots of f, and $z_1, z_2 (= \overline{z_1})$ be the two distinct non-real complex roots. Now, consider the extensions $K \subset K(r_1) \subseteq K(r_1, r_2) \subseteq K(r_1, r_2, z_1, \overline{z_1})$.

Clearly, $[K(r_1) : K] = 4$ as f is irreducible in K[X]. Now, note $f = (X - r_1)(X - r_2)(X - z_1)(X - \overline{z_1}) \in K(r_1)[X]$ and $(X - r_2)(X - \overline{z_1})(X - z_1) \in K(r_1)[X]$. And similarly, $(X - z_1)(X - \overline{z_1}) \in K(r_1, r_2)[X]$ and it is irreducible in $K(r_1, r_2)[X]$ as it is irreducible in $\mathbb{R}[X]$. Hence, clearly, $[K(r_1, r_2, z_1, \overline{z_1}) : K(r_1, r_2)] = 2$. So it remains to check $[K(r_1, r_2) : K(r_1)]$. But $(X - r_2)(X - z_1)(X - \overline{z_1}) \in K(r_1)[X]$ is a degree 3 polynomial with r_2 as a root. So if $r_2 \in K(r_1)$ already, then $K(r_1, r_2) : K(r_1)] = 1$ and otherwise, the degree 3 polynomial won't have a linear factor, so is irreducible, so $[K(r_1, r_2) : K(r_1)] = 3$. Hence, either |G| = 8 or |G| = 24, the latter case, being embedded to S_4 , must actually be S_4 .