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Fall 2022

Discussion 1 - Groups Related to (Finite) Fields

Spring 2020 Problem 6 (Modified): Let F be a finite field with |F| = n(= pm) (why
is n = pm?). Find an explicit formula for |Glk(F)|.

Recall that Glk(F) = AutF−linear(Fk) = {A ∈ Mk(F) | det(A) ̸= 0}.

Soln. A k × k matrix A =
(−→a1 −→a2 · · · −→ak

)
is invertible if and only if the column

vectors −→a1 ,−→a2 , . . . ,−→ak are linearly independent. And this is true if and only if −→a1 ̸= 0,
−→a2 /∈ Span(−→a1), . . . ,−→ak /∈ Span(−→a1 ,−→a2 , . . . ,−−→ak−1).

So, there are nk−1 ways to choose −→a1 , nk−n ways to choose −→a2 , nk−n2 ways to choose
−→a3 , etc. until at stage k, we have nk − nk−1 ways to choose −→ak . By the multiplicative
principle of counting, there are exactly (nk − 1)(nk − n) · · · (nk − nk−1) many ways to

choose such pairs, so |Glk(F)| = (nk − 1)(nk − n) · · · (nk − nk−1) .

For the remainder of the session, we prove the following theorem:

Theorem 1. Let F be a finite field. Then F× = (F− {0},×) is cyclic.

Before we prove the theorem, we prove several lemmas.

Lemma 1. Let G be an abelian group with |G| = n. Then, for all g ∈ G, gn = e.

Proof. Let g ∈ G and consider the map g · (−) : G → G, a 7→ g · a the multiplication (left
or right, as they are equal) by g. Then, this is clearly a bijection with the inverse given
by g−1 · (−). So g · (−) shuffles the elements one-to-one, so∏

a∈G

a =
∏
a∈G

ga = gn
∏
a∈G

a.

Cancelling out the product
∏

a∈G a, we get e = gn as desired.

Remark 1. As a corollary to Lagrange’s Theorem (to be covered in later lectures), we
can show that the conclusion is true for arbitrary finite groups, not just abelian groups.

Lemma 2. Let G is an abelian group and g, h ∈ G be with ord(g) = m and ord(h) = n
such that gcd(m,n) = 1. Then, ord(gh) = mn = lcm(m,n).
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Proof. First, note (gh)mn = gmnhmn = e · e = e. Now, suppose (gh)k = gkhk = e, then
gk = h−k. We can ”raise” both sides to mth power to obtain e = gmk = h−mk. So we have
n | −mk since n = ord(h). But then, since gcd(m,n) = k, n | k. By similar reasoning
with m and n swapped, we get m | k. Hence, lcm(m,n) = mn | k.

Remark 2. Without the assumption that gcd(m,n) = 1, ord(gh) need not bemn or even
lcm(m,n). For example, take any g ∈ G not equal to the identity so that ord(g) = m > 1,
and consider g, g−1. We have ord(g) = ord(g−1) = m, but ord(gg−1) = ord(e) = 1 < m =
lcm(m,m).

Lemma 3. Let G be an abelian group with |G| = pe11 pe22 · · · pekk where p1, p2, . . . , pk are
distinct primes. Set, for each i = 1, 2, . . . , k,

mi = max {ai | ∃g ∈ G such that ord(g) = paii vi where pi ∤ vi}

In other words, each mi is the maximum power of pi that appears in the prime factoriza-
tion of order of g ∈ G. Then, there exists an element h ∈ G of order pm1

1 pm2
2 · · · pmk

k .

Proof. For each i, choose gi with order pmi
i vi with pi ∤ vi. Then, set hi = gvi , which has

order pmi . Now, by Lemma 2, the element h := h1h2 · · ·hk has order pm1
1 pm2

2 · · · pmk
k , as

desired.

Corollary 1. For all g ∈ G, ord(g) | pm1
1 pm2

2 · · · pmk
k .

Proof. Let g ∈ G. Then, ord(g) | |G| = pe11 pe22 · · · pekk by Lemma 1, so ord(g) =

pf11 pf22 · · · pfkk for some f1, f2, . . . , fk ≥ 0. By definition of mi’s it follows fi ≤ mi, which
implies that ord(g) divides pm1

2 pm2
2 · · · pmk

k .

We’re finally ready to present the proof of Theorem 1

Proof of Theorem 1. Let |F×| = n− 1 = pe11 pe22 · · · pekk . We can set mi as before.

Claim. For all i, mi = ei.

Proof of the Claim. Suppose for some i, mi < ei. Set L = pm1
1 pm2 · · · pmk which, by

assumption, must be strictly smaller than n − 1 = pe11 pe22 · · · pekk . Then, by Lemma 3,
αL = 1 for all α ∈ F×. But then, we have xL − 1 having at least n− 1 > L many distinct
roots, which is impossible for a field.

The claim implies that we can find an element α ∈ F× of order pe11 pe22 · · · pekk = n−1 =
|F×| by Lemma 3 again. Hence, F× is cyclic.

Remark 3. Later in 210B, we will learn the Structure Theorem for Finitely Generated
Abelian Groups, which will allow us to prove the theorem much more easily.

Discussion 2 - Zorn’s Lemma and Finitely Generated

Groups

Definition 1. Given a set P , a partial order ⪯ on P is a binary relation satisfying the
following properties:
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(i) (Reflexivity) For all x ∈ P , x ⪯ x

(ii) (Anti-symmetry) For all x, y ∈ P , x ⪯ y and y ⪯ x implies x = y

(iii) (Transitivity) For all x, y, z ∈ P , x ⪯ y and y ⪯ z implies x ⪯ z.

A set P together with partial order ⪯ (P , ⪯) is called a Partially Ordered Set, or
poset for short. As usual, the partial order is often suppressed.

A subset ∅ ̸= C ⊂ P is a chain if the relation ⪯ restricted to C is in addition, linear
(total) order. That means for all x, y ∈ C, x ⪯ y or y ⪯ x.

An element M ∈ P is maximal if there doesn’t exist any x ∈ P with x ≻ M . In other
words, M is not strictly less than any other element.

Now, we state Zorn’s Lemma, which will be used throughout this 210ABC course
sequence.

Lemma 4 (Zorn’s Lemma). Let P be a non-empty poset. If every chain C ⊂ P has an
upper bound in P , then, P has a maximal element.

We state this lemma as fact without proof:

Lemma 5 (Hartog’s Lemma). Let A be any set. Then, there exists an ordinal α that
does not inject into A (α ̸↪→ A). I.e. there does not exists an injection f : α ↪→ A.

Proof of Zorn’s Lemma. Suppose for the sake of contradiction that P does not have a
maximal element. First, applying Hartog’s Lemma, choose an ordinal α ̸↪→ P . We apply
transfinite recursion on α to construct a strictly increasing α-sequence {aβ}β<α.

0 case: Choose any a0 ∈ P (this is where we use non-emptiness).
Successor β = γ + 1 case: Assume aλ has been constructed for all λ < β, including λ = γ.
Now, since P has no maximal element, aγ ∈ P is not maximal. So we can choose aβ ≻ aγ
(we use the Axiom of Choice here).
Limit case β = supγ<β γ: Again, assume aγ has been constructed for all γ < β. By

the inductive hypothesis, the sequence {aδ}δ<γ up to γ can be assumed to be a strictly
increasing sequence; hence, {aγ}γ<β is a strictly increasing sequence. In particular, this
is a chain in P , so we can choose abeta an upper bound of the sequence (we again used
Axiom of Choice here). Note aβ is strictly larger than aγ for all γ < β (why?).

Now, the sequence {aβ}β<α constructed must be an injective map from α → P since
it is also strictly increasing. But this contradicts the choice of α.

Recall given a set S ⊂ G,

⟨S⟩ :=
⋃
H≤G
S⊂H

H = {sε11 sε2 · · · sεnn | si ∈ S, εi = ±1}

We call ⟨S⟩ the subgroup generated by S (the second equality there is left as an exercise
to the reader).

Definition 2. We say a group G is finitely generated if there exists a finite subset S ⊂ G
so that ⟨S⟩ = G.
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Theorem 2. Every non-trivial finitely generated group G has a maximal (proper) sub-
group.

Proof. Let P = {H | H ⪇ G} the set of all proper subgroups of G (ordered by inclusion).
What we’re looking for is exactly a maximal element of P - to that end, we apply Zorn’s
lemma.

Since {e} ∈ P (this is where we use G is nontrivial), P is non-empty. Now, suppose
we have a chain C ⊂ P of proper subgroups. Set K = ∪C = ∪H∈CH.

Claim. K is an upper bound of C in P .

Proof of the Claim. Clearly, if K ∈ P , K is an upper bound of C, so this is what we
check. Let g, h ∈ K be two elements. Then, g ∈ H1 and h ∈ H2 for some H1, H2,∈ C.
Assume WLOG H1 ≤ H2 (this is where we use that C is a chain). Then, gh−1 ∈ H2 ⊂ K.
So K is a subgroup.

Next, we check K is proper. Suppose K = G. Since G is finitely generated, there
exists g1, g2, . . . , gn which generate G, and we know g1, g2, . . . , gn ∈ K. So for each i,
gi ∈ Hi for some Hi ∈ C. Take H = max(H1, H2, . . . , Hn) ∈ C (again, this is where we
use that C is a chain). Then, g1, g2, . . . , gn ∈ H ∈ C. But then, this contradicts that
H ∈ C as H is not a proper subgroup.

By the claim, we can now apply Zorn’s Lemma to P . It follows that P has a maximal
element as desired.

Fall 2015 Problem 8: Let F be a field. Show that the group Sl2(F) is generated by the

matrices

(
1 e
0 1

)
and

(
1 0
e 1

)
for elements e ∈ F.

Spring 2012 Problem 5: Let G be a finite group, K a normal subgroup and P a
p-Sylow subgroup of G. Prove that P ∩K is a p-Sylow subgroup of K.

Proof. Note P ∩ K ≤ P is also group of prime power. By the second isomorphism
theorem,

P/P ∩K ∼= PK/K

So |P |
|P∩K| =

|PK|
|K| , so rearranging, we get |K|

|P∩K| =
|PK|
|P | . Now, note P ≤ PK ≤ G since K

is normal (so PK is a subgroup of G) and p ∤ |G|
|P | . Hence, p ∤ |PK|

|P | = |K|
|P∩K| . So we have

P ∩ K a subgroup of K of p-power such that p ∤ [K : P ∩ K], so P ∩ K is a p-Sylow
subgroup of K.

Discussion 3 - Group Actions: Part 1

Definition 3 (Group Action Dynamical Version). Let G be a group and X a set. Then, a
group action of G onX, denoted G ↷ X, is a binary function · : G×X → X, (g, x) 7→ g ·x
satisfying the following:

(i) e · x = x for all x ∈ X

(ii) for all g, h ∈ G, and x ∈ X, (gh) · x = g · (h · x).
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Definition 4 (Group Action Alternative Version). Let G be a group and X a set. A
group action of G on X is just a homomorphism ϕ : G → SX , where SX is the symmetric
group on X.

Remark 4. We can translate one definition from another as follows. Given a · : G ×
X → X, we define ϕ(g) ∈ SX to be x 7→ g · x (check ϕ(g) belongs to SX). This is a
homomorphism by the condition (ii). On the other hand, if we’re given a homomorphism
ϕ : G → SX , we can define g · x = ϕ(g)(x). From the fact that ϕ is a homomorphism, (ii)
immediately follows. Since ϕ(e) = idX , (i) follows as well.

Moreover, the assignment · 7→ ϕ and ϕ 7→ · described as above gives one-to-one
correspondence between the two definitions which are inverses of one another.

Remark 5. Orbits partition X, so if X is finite, then |X| =
∑

|orbit(X)| where the
sum ranges over all possible orbits. Now, orbit(X) ∼= G/Stab(X) as G-sets. So if G is a
p-group, then p | orbit(X) if and only if Stab(X) ⪇ G. In particular, |X| ≡ |XG| mod(p).

Spring 2014 Problem 5: Let G be a finite group acting transitively on a finite set X.
Let x ∈ X and let P be a Sylow p-subgroup of the stabilizer of x in G. Show that NG(P )
acts transitively on XP .

Proof. Let y ∈ XP . Since G ↷ X is transitive, ∃g ∈ G such that y = g · x. We want to
look for such a g ∈ NG(P ). Set S = {g ∈ G | y = g · x}. Then, we want S ∩NG(P ) ̸= ∅.

Lemma 6. For any finite subgroup H ≤ G, we have H ↷ G/H via h · (gH) = hgH.
Then, g ∈ NG(H) if and only if gH is a fixed point.

Proof. Let g ∈ G. Now,

gH is a fixed point ⇔ hgH = gH for all h ∈ H

⇔ g−1hgH = H for all h ∈ H

⇔ g−1hg ∈ H for all h ∈ H

⇔ g−1Hg ≤ H

But note since H is finite, and |g−1Hg| = |H|, g−1Hg = H. But this is equivalent to
g ∈ NG(H).

So we want g ∈ S such that gP is the fixed point of the action P ∩ G/P . Set
S/P = {gP | g ∈ S} (which equals π(S) where π : G → G/P, g 7→ gP ). Note for any
g ∈ S, S = g ·Stab(x). So, S/P ∼= g ·Stab(x)/P as G-sets. So |S/P | = |Stab(x)/P |. But
note p ∤ |S/P | = |Stab(x)| since P is a Sylow p-subgroup of Stab(x), so |S/P | must have
a fixed point. In particular, there exists g ∈ S so that gP is a fixed point, equivalently,
g ∈ NG(P ).

Fall 2014 Problem 6: Let G be a finite group and let p be the smallest prime number
dividing the order of G. Assume G has a normal subgroup H of order p. Show that H is
contained in the center of G.

Proof. Let G ↷ H by the conjugation: g · h = ghg−1. This is a valid action since H is
conjugation invariant (since it is normal in G). Note h ∈ Z(G) if and only if ghg−1 = h
for all g ∈ G, i.e. h is a fixed point.
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Note Orbit(e) = {e} ⪇ H, and since the orbits partition H, for all h ∈ H, Orbit(h) ⪇
H. Now, again, by the orbit-stabilizer theorem, Orbit(h) = G/Stab(h), so |Orbit(h)| |
|G|. But note since |Orbit(h)| < p and p is the smallest prime dividing |G|, no prime
divisor of |G| can divide |Orbit(h)|. Hence, the only possibility is |Orbit(h)| = 1, i.e. h
is a fixed point.

Lemma 7 (Burnside’s Lemma). Let G be a finite group and X a finite set, and suppose
G ↷ X. Set, for each g ∈ G, Fix(g) = {x ∈ X | g · x = x}. Then,

#Orbits =
1

|G|
∑
g∈G

|Fix(g)|

Proof. First, note

#Orbits =
∑
A⊂X
A orbit

1 =
∑
A⊂X
A orbit

∑
x∈A

1

|A|

Since orbits partition X, summing over all the said partitions, then over all element in the
said partition is the same as just summing over all element of X. Also, in preparation,
set for each g ∈ G and x ∈ X, χ(g, x) = 1 if g · x = x and 0 otherwise. Combining these,
we get:

∑
A⊂X
A orbit

∑
x∈A

1

|A|
=

∑
x∈X

1

|Orbit(x)|

=
∑
x∈X

|Stab(x)|
|G|

=
1

|G|
∑
x∈X

∑
g∈G

χ(g, x)

=
1

|G|
∑
g∈G

∑
x∈X

χ(g, x)

=
1

|G|
∑
g∈G

|Fix(g)|

Spring 2016 Problem 9: Show that if G is a finite group acting transitively on a set
X with at least two elements, then there exists g ∈ G which fixes no point of X.

Proof. Here, since G acts transitively, X has exactly one orbit, so #Orbit = 1. So by
the Burnside’s lemma, 1 = 1

|G|
∑

g∈G |Fix(g)|, or equivalently, |G| =
∑

g∈G |Fix(g)| =

|Fix(e)| +
∑

g∈G
g ̸=e

|Fix(g)|. But we know Fix(e) = X, and |X| ≥ 2, so |G| ≥ 2 +∑
g ̸=e |Fix(g)|. Now, assume for the sake of contradiction, that every g ∈ G fixes at

least one point, i.e. for all g ∈ G, |Fix(g)| ≥ 1; then, we get |G| ≥ 2 +
∑

g ̸=e 1 =
2 + |G| − 1 = |G|+ 1, a contradiction.
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Remark 6. It was suggested during the discussion that since X ∼= G/Stab(x) as G-sets,
it’s enough to choose g /∈ Stab(x). This is wrong for the following reason:

We know hStab(x) is fixed by g if and only if ghStab(x) = hStab(x) if and only if
h−1gh ∈ Stab(x) if and only if g ∈ hStab(x)h−1. So g has no fixed point if and only if
for all h ∈ G, g /∈ hStab(x)h−1. Note this requires more than just selecting g /∈ Stab(x)
(unless Stab(x) is normal, which is not necessarily true!).

Here’s how to fix the argument: we can have G act on Stab(x) by conjugation, with
the stabilizer of Stab(x) under this action equaling to NG(Stab(x)) ≥ Stab(x). So this
descends to an action G/NG(Stab(x)) on Stab(x). So ∪h∈GhStab(x)h

−1 is a union of
at most |G/NG(Stab(x))| ≤ |G/Stab(x)| many sets of size |Stab(x)|. But note the
sets hStab(x)h−1 all share the element e ∈ G, so in fact, the union must have at
most 1 less than |Stab(x)||G/Stab(x)| = |G| many elements (the only exception is if
|G/NG(Stab(x)| = |G/Stab(x)| = 1, i.e. |X| = 1). So we can choose g /∈ ∪h∈GhStab(x)h

−1.

Discussion 4 - Group Actions: Part 2 and Sylow Groups

Fall 2018 Problem 1: Let Q8 = {±1,±i,±j,±k} be the quaternion group of order 8.

(1) Show that every non-trivial subgroup contains −1.

(2) Show that Q8 does not embed in the symmetric group S7 (as a subgroup).

Proof. For (1), suppose H ≤ Q8 which contains g ̸= 1. If g = −1, then we’re done.
Otherwise, note i2 = j2 = k2 = −1, so g2 = −1 ∈ H.

For (2), suppose we have an embedding ϕ : Q8 ↪→ S7. Then, note the homomorphism ϕ
corresponds to an action · given by g ·m = ϕ(m). Note Orbit(m) ∼= Q8/Stab(m) by as Q8-
sets by orbit-stabilizer theorem. Since the orbit is at most size 7, Stab(m) is a nontrivial
subgroup. By part (1), it must contain −1. So for all m ∈ {1, 2, . . . , 7}, −1 ∈ Stab(m).
But this means that for all m, ϕ(−1)(m) = (−1) ·m = m, so ϕ(−1) = ϕ(1) = id, which
contradicts that ϕ was an embedding.

Fall 2018 Problem 2: Let G be a finitely generated group having a subgroup of finite
index n > 1. Show that G has finitely many subgroups of index n and has a proper
characteristic subgroup (i.e. preserved by all automorphisms) of finite index.

Proof. First, we prove that there are finitely many subgroups of index ≤ n. Choose
a subgroup H ≤ G of index n, and consider the action G ↷ G/H. This induces a
homomorphism ϕ : G → SG/H

∼= Sn. So let’s analyze the number of homomorphisms
from G → Sn.

Lemma 8. Given a finitely generated group G and a finite group K, there are only
finitely many homomorphisms from G to K.

Proof. Choose g1, g2, . . . , gm which generates G. Then, note a homomorphism ϕ : G → K
is uniquely determined by where it sends g1, g2, . . . , gm. Expressed more formally, the map
HomGrp(G,K) ↪→ Km, ϕ 7→ (ϕ(g1), ϕ(g2), . . . , ϕ(gm)) is injective (note we are not saying
the map is surjective - we do not claim that any choice of m-tuples of K induces a
homomorphism ϕ : G → K). Since the latter set is finite, so is the former, but that’s
exactly what we were trying to prove.
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It follows there are only finitely many homomorphisms from G → Sn. Now, given
the homomorphism G → SG/H

∼= Sn induces by H, we can translate back to the group
action G → [n] and thus, we get H = Stabϕ(1) (say in the bijection G/H → [n], we sent
H to 1). So, we have a surjection HomGrp(G,Sn) ↠ {H | H ≤ G, [G : H] ≤ n} given by
ϕ 7→ Stabϕ(1). Since the former is finite, so should be the latter as well. In particular,
we showed that there are only finitely many subgroups of index ≤ n (and hence = n) as
desired.

Next, we show that there is a characteristic normal subgroup of finite index. Set

N =
⋂

σ∈Aut(G)

σ(H)

This group is clearly invariant under all automorphisms, so it remains to check that it is
finite index. Observe that for all σ ∈ Aut(G), σ(H) also has index n. So by the previous
part, the above intersection is actually a finite intersection, say, H1, H2, . . . , Hk. Now, we
know for any two groups H1, H2, [G : H1∩H2] = [G : H1] · [H1 : H1∩H2] ≤ [G : H1] · [G :
H2]. We can apply that to k many subgroups to get: [G : N ] ≤ [G : H1][G : H2] · · · [G :
Hk] ≤ nk, which is finite.

For the remainder of the session, we begin solving qual problems that involve Sylow
groups. We will state 1st-3rd Sylow theorems without proof.

Theorem 3 (1st Sylow Theorem). Every finite group G has a p-Sylow subgroup for all
prime divisors p of |G|.

Theorem 4 (2nd Sylow Theorem). Any two p-Sylow subgroups are conjugates.

Theorem 5 (3rd Sylow Theorem). Let np be the number of p-Sylow groups. Then, for
any given Sylow p-group P ,

np = [G : NG(P )] ≡ 1 mod (p)

Fall 2017 Problem 1: Let G be a finite group, p a prime number, and S a Sylow
p-subgroup of G. Let N = {g ∈ G | gSg−1 = S}. Let X and Y be two subsets of Z(S)
(the center of S) such that there exists g ∈ G with gXg−1 = Y .

Show that there exists n ∈ N such that nxn−1 = gxg−1 for all x ∈ X.

Proof. Note for each x ∈ X, nxn−1 = gxg−1 if and only if g−1nxn−1g = g−1nx(ng−1)−1.
So n satisfies the above condition if and only if g−1n ∈ CG(X) if and only if n ∈ gCG(X).
So it suffices to show N ∩ gCG(X) = NG(S) ∩ gCG(X) ̸= ∅.

Recall that n ∈ NG(S) if and only if nS is a fixed point of the action S ∩G/S, so we
want to find n ∈ gCG(X) so that nS is a fixed point. Consider the action S ↷ gCG(X)/S
where again, gCG(X)/S = π(gCG(X)) for π : G → G/S. First, we check that this is
a valid action: for any s ∈ S and gh ∈ gCG(X), we want to show sgh ∈ gCG(X). Let
x ∈ X, and set y = gxg−1 ∈ Y . Then

sghx(sgh)−1 = sghxh−1g−1s−1

= sgxg−1s−1

= sys−1

= y (this is true since Y ⊂ Z(S))

= gxg−1
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So it follows sgh ∈ gCG(X) as the conjugation by sgh results in conjugation by g for all
x ∈ X.

Since S ≤ CG(X) (because X ⊂ Z(S)), |gCG(X)/S| = |CG(X)/S| | |G/S|. In
particular, p ∤ |gCG(X)/S| so it must have a fixed point nS. This is our desired n ∈
N ∩ CG(S).

Discussion 5 - Sylow Groups: Part 2

Fall 2020 Problem 1: Let p < q < r be primes and G a group of order pqr. Prove that
G is not simple and, in fact, has a normal Sylow r-subgroup.

Proof. Let us first prove that G is not simple. We’ll do this by showing G has a normal
p, q, or r Sylow subgroup. By the second Sylow theorem, a Sylow subgroup is normal if
and only if it is the unique Sylow subgroup. So let np, nq, nr be the number of each Sylow
subgroups - we want to show np = 1 or nq = 1 or nr = 1. Suppose not, i.e. np, nq, nr > 1.

By the Third Sylow’s theorem, nr | pqr and nr ≡ 1 mod (r). So nr | pq, so nr = 1, p, q,
or pq. Since nr > 1, the only possibility is nr = pq. With similarly analyses, we can
conclude np | qr, nq | pr with np ≡ mod (p) and nq ≡ mod (q), so np ≥ q and nq ≥ r.

Let P1, P2, . . . , Pq be q distinct Sylow q-subgroups, Q1, Q2, . . . , Qr be r many distinct
Sylow r-subgroups, and R1, R2, . . . , Rpq be pq many distinct Sylow r-subgroups.

Claim. Consider the collection of subgroups {Pi}qi=1∪{Qi}ri=1∪{Ri}pqi=1. Any two distinct
subgroups there have trivial intersection {e}.

Proof of the Claim. Let A,B ∈ {P,Q,R}. If A ̸= B, then |Ai ∩ Bj| | gcd(|A|, |B|) = 1.
If A = B, then for any i ̸= j, Ai ∩ Aj ⊊ Ai, Aj, so it is a proper subgroup of a group of
prime order; by Lagrange’s theorem, it must be trivial.

So, the union

q⋃
i=1

Pi

⋃ r⋃
i=1

Qi

⋃ pq⋃
i=1

Ri =

q⊔
i=1

(Pi − {e})
⊔ r⊔

i=1

(Qi − {e})
⊔ pq⊔

i=1

(Ri − {e})
⊔

{e}

So, the union of those subgroups have size at (p − 1)q + (q − 1)r + (r − 1)pq + 1 =
pqr− pq + pq − q + qr− r = pqr + qr− q − r + 1 > pqr = |G|. So we have a subset of G
of size > |G|, a contradiction.

We conclude that np = 1, or nq = 1, or nr = 1. If we’re given nr = 1, then we’ve
already proven that R ⊴ G. So suppose np = 1 or nq = 1, and in fact, without loss
of generality, np = 1 (nq = 1 case is dealt similarly). We have P ⊴ G, so consider the

quotient G/P of size qr. Choose an r-Sylow subgroup K̃ ≤ G/P . This is a normal

subgroup (why?). Take K = π−1(K̃) ⊴ G where π : G → G/P is the quotient map.
Then, K is a normal subgroup of size pr, so it must also have a Sylow r-subgroup
R ⊴ K ⊴ G (R ⊴ K part is left as an exercise, similar to K̃ ⊴ G/P part). Normality
isn’t transitive, but in this case, R ⊴ G, as we show in the following:

Claim. R ⊴ G.

Proof of the Claim. Let g ∈ G. Then, gRg−1 ≤ gKg−1. Since K ⊴ G, gKg−1 = K,
so gRg−1 is another r-Sylow subgroup of K. But since R ⊴ K, R is the unique Sylow
r-subgroup, so in fact, R = gRg−1.
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Spring 2018 Problem 9: Show that there is no simple group of order 616.

Proof. Factor 616 = 23 × 7 × 11. Once again, assume we have a group G of order 616
which is simple, so that n2, n7, n11 > 1. We have n11 | 23 × 7 and n11 ≡ 1 mod (11) ,
so n11 = 56. We have n7 | 23 × 11 and n7 ≡ 1 mod (7), so n7 = 8 or 22 (in particular,
n7 ≥ 8). We have n2 ≥ 2.

Fall 2017 Problem 2: Let G be a finite group of order a power of a prime number
p. Let Φ(G) be the subgroup of G generated by elements of the form gp for g ∈ G and
ghg−1h−1 for g, h ∈ G.

Show that Φ(G) is the intersection of the maximal proper subgroups of G.

Discussion 6 - Solvability

Spring 2019 Problem 1: Let G be a finite solvable group, and 1 ̸= N ⊂ G be a
minimal normal subgroup. Prove that there exists a prime p such that N is either cyclic
of order p or a direct product of cyclic groups of order p.
Fall 2021 Problem 9: The outer automorphism group of a group H is the quotient of
the group of automorphisms of H by the subgroup of inner automorphisms. It is known
that the outer automorphism group of every finite simple group is solvable. Using that,
show that if G is a finite group with a normal subgroup N such that both N and G/N
are nonabelian simple groups, then G is isomorphic to the product group N × (G/N).

Discussion 7 - Presentation of Groups, how to Solve

Hard Group Theory Problems

Theorem 6. ddddd
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