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A Simple Example. Suppose that each day you are offered a gamble with probability
2/3 of winning and probability 1/3 of losing. You may bet any positive amount you like,
provided you have it. The amount you bet is either doubled or lost, independently each
day. This gamble is only offered for 20 days. The question is: how much should you bet
on each day?

Let X0 denote your initial fortune, and let Xk denote your fortune after the kth
gamble. On day k, you may bet bk provided

0 ≤ bk ≤ Xk−1 (1)

If you win on day k your fortune increases to Xk−1+bk; if you lose it decreases to Xk−1−bk.
So,

Xk =
{

Xk−1 + bk with probability 2/3
Xk−1 − bk with probability 1/3 (2)

It is an easy problem to find, by backward induction, the betting system that maximizes
E(X20|X0), your expected fortune after the 20 days have passed. It is to bet all you have
each day. On the last day, given you have fortune X19, to maximize E(X20|X19) you
bet it all, b20 = X19, and your expected final fortune is (2/3)2X19 + (1/3)0 = (4/3)X19.
Since E(X20|X18) = E(E(X20|X19)|X18) = (4/3)E(X19|X18) = (4/3)2X18, the analysis by
backward induction shows that E(X20|X0) = (4/3)20X0 = 315.34X0.

However, there is something disturbing about this solution. The distribution of X20

using the strategy of betting everything each time is

X20 =
{

220X0 with probability (2/3)20 = .00030
0 with probability .99970

(3)

In other words, you will end up destitute with high probability. This is silly. You are
playing a favorable game. You can control your destiny. You should want your fortune to
tend to infinity if you play infinitely long. Instead you fortune tends to zero almost surely.

Proportional Betting Systems. To avoid this fate, consider using a proportional
betting system. Such a system dictates that you bet a fixed proportion, call it π, of your
fortune at each stage, 0 < π < 1. This requires that we consider money infinitely divisible.
Under such a system, your fortune will tend to infinity almost surely. There remains the
problem of which value of π to use.

Let us search for a π that will make our fortune tend to infinity at the fastest rate. If
you bet the same proportion π at each stage, then after n stages if you have won Zn times
and lost n − Zn times, you fortune will be

Xn = (1 + π)Zn (1 − π)n−ZnX0, (4)
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where Zn has the binomial distribution, B(n, 2/3). The fortune has increased by the factor

(1 + π)Zn(1 − π)n−Zn = exp{Zn log(1 + π) + (n − Zn) log(1 − π)}
= exp{n[(Zn/n) log(1 + π) + (1 − (Zn/n)) log(1 − π)]}
� exp{n[(2/3) log(1 + π) + (1/3) log(1 − π)]}

(5)

We can see that (1 + π)Zn (1 − π)n−Zn tends to infinity almost surely exponentially fast.
The rate of convergence is defined as the limit of (1/n) log((1 + π)Zn (1 − π)n−Zn), which
here is

(2/3) log(1 + π) + (1/3) log(1 − π). (6)

The value of π that maximizes the rate of convergence is found by setting the derivative of
(6) to zero and solving for π. It is π = 1/3. Therefore the optimal rate of convergence of
Xn to infinity is achieved by wagering one-third of your fortune at each stage. The optimal
rate is

(2/3) log(4/3) + (1/3) log(2/3) = .0566 · · · (7)

This means that if two bettors compete, one using π = 1/3 and the other using π �= 1/3,
the fortune of the former will eventually be greater than that of the latter, and stay greater
from some stage on.

The Kelly Betting System and Log Utility. Consider the same example now but
with 2/3 replaced by an arbitrary probability of winning, p, and let us find the proportional
betting system that maximizes the rate at which Xn tends to infinity. Of course if p < 1/2,
you cannot achieve having your fortune tend to infinity. You might as well bet proportion
0 at each stage.

But suppose p ≥ 1/2. The same analysis as above yields the rate of convergence to
be (in place of (6))

p log(1 + π) + (1 − p) log(1 − π). (8)

This is easily seen to be maximized at π = 2p−1. This gives us what is known as the Kelly
betting system; see Kelly (1956). If, for an even money bet, the probability of success is
p, bet proportion π(p) of your fortune, where

π(p) =
{

0 if p ≤ 1/2
2p − 1 if p > 1/2. (9)

The Kelly Betting Proportion.
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This rule also has an interpretation as the optimal rule of an investor who has the
logarithm of the fortune as his utility function and wishes to maximize the expectation of
the utility of his fortune at each stage. Given the fortune at stage k − 1 and bk = πkXk−1

with 0 ≤ πk ≤ 1, the expectation of log(Xk) given Xk−1 is

E(log(Xk)|Xk−1) = p log(Xk−1 + bk) + (1 − p) log(Xk−1 − bk)
= p log(Xk−1(1 + πk)) + (1 − p) log(Xk−1(1 − πk))
= log(Xk−1) + [p log(1 + πk) + (1 − p) log(1 − πk)]

(10)

This is maximized by the same value of π that maximizes (8). This gives a small sample
justification of the use of the Kelly betting system.

This betting system may also be used if the win probabilities change from stage to
stage. Thus, if there are n stages and the win probability at stage i is pi for i = 1, . . . , n,
the Kelly betting system at each stage uses the myopic rule of maximizing the expected
log, one stage ahead. Thus at stage k, you bet proportion π(pk) of your fortune. The
asymptotic justification of the Kelly Betting System described above has a generalization
that holds in this situation also. See Breiman (1961).

A General Investment Model with Log Utility. A striking fact is that this
myopic rule is globally optimal for maximizing E(log(Xn)) under quite general conditions.
One might think that if some future pi are close to 1, one should pass up marginal pi and
wait for those that really make a difference. You do not have to look ahead; you don’t even
need to know the future pi to act at stage k. Here is a quite general model that shows this.
(For example, see Ferguson and Gilstein (1985).) It allows information to be gathered at
each stage that may alter the bettor’s view of his future winning chances.

Play takes place in stages. The bettor starts with initial fortune X0. At the beginning
of the kth stage, the bettor chooses an amount bk to bet and his fortune goes up or down
by that amount depending on whether he wins or loses. We assume

0 ≤ bk ≤ Xk−1 and Xk = Xk−1 + bkYk for k = 1, . . . , n (11)

where Yk represents the random variable which is plus one if he wins the kth bet and
minus one if he loses it. Choice of bk may depend on the information gathered through
the previous k − 1 stages. Let Z0 denote the information known to the decision maker
before he makes the first bet (Z0 contains X0), and let Zk denote the random vector
representing the information received through stage k. We assume that Zk contains Zk−1

(he remembers all information gathered at previous stages) and that Yk is contained in Zk

(he learns whether or not he wins in the kth stage). The joint distribution of the Zk is
competely arbitrary, possibly dependent, but known to the decision maker.

Theorem. The betting system that maximizes E(log(Xn)|Z0) is the Kelly betting system
with bk = π(pk)Xk−1, where pk = P(Yk = 1|Zk−1).

Proof. By backward induction. At the last stage, we seek bn to maximize
E(log(Xn)|Zn−1) = E(log(Xn−1 + bnYn)|Zn−1)

= E(log(Xn−1(1 + πnYn))|Zn−1)
= log(Xn−1) + E(log(1 + πnYn)|Zn−1)

(12)
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since Xn−1 is contained in Zn−1, and where πn = bn/Xn−1. Note that

E(log(1 + πnYn)|Zn−1) = P(Yn = 1|Zn−1) log(1 + πn) + P(Yn = −1|Zn−1) log(1 − πn)
= pn log(1 + πn) + (1 − pn) log(1 − πn)

(13)
We have seen in (8) that the value of πn that maximizes this is π(pn). Since we know we
will use this bet on the last stage, the problem for the next to last stage is to choose πn−1 =
bn−1/Xn−2 to maximize the expected value of (12) given Zn−2. The second term of (12) is
independent of πn−1, so this reduces to finding πn−1 to maximize E(log(Xn−1)|Zn−2). By
the same argument, the value of πn−1 that maximizes this is π(pn−1) and this argument
can be repeated down to the initial stage.

EXAMPLE 1. Suppose that the pk are chosen i.i.d. from a given distribution F (p)
on [0, 1] known to you. Each pk is announced to you just before you bet at stage k. How
much should you bet at each stage to maximize E{log(Xn)}?

Here, Z0 contains X0 and p1, while Zk−1 contains Xk−1 and p1, . . . , pk. Thus at stage
k, you should bet π(pk). This is a standard example where the Kelly betting system is
optimal for maximizing the log of your fortune n steps ahead.

EXAMPLE 2. Suppose the win probability at each trial is p but is unknown to you.
Suppose the prior distribution of p is the uniform distribution on [0, 1]. How much should
you bet at each stage to maximize E{log(Xn)}?

Here the only information given to us at each stage is whether we win or lose, so Zk−1

contains just the record of wins and losses during the first k − 1 stages. At each stage
P(Y = 1) = p but p is unknown. At stage 0, we have E(p|Z0) = 1/2, the mean of the
uniform distribution, Beta(1, 1); so p1 = 1/2, and π(p1) = 0. If one observes Sk−1 successes
during the first k − 1 trials, the posterior distribution of p is Beta(1 + Sk−1, k − Sk−1), so
pk = E(p|Zk−1) = E(p|Sk−1) = (1 + Sk−1)/(k + 1). At Stage k we bet proportion π(pk)
of our current fortune. Thus, if we observe a failure on the first stage, we bet nothing on
the second stage since π(1/3) = 0. However if a success occurs on the first stage, we bet
proportion π(2/3) = 1/3 of our fortune at the second stage.

If we were interested in maximizing the expected fortune n steps ahead in this example,
the myopic rule of maximizing the expected fortune one step ahead at each stage is not
optimal. In fact for n ≥ 2, betting everything on the first stage is strictly better than
betting nothing. You may even be called upon to bet everything on a gamble unfavorable
to you.

EXAMPLE 3. Suppose a deck of cards consists of n red cards and n black cards. The
cards are put in random order and are turned face up one at a time. At each stage you
may bet as much of your fortune as you like on whether the next card will be red or black.
There are 2n stages. How much should you bet at each stage to maximize E{log(X2n)},
and should you bet on red or black?

Here the observations at each stage tell you how many red and black cards are left in
the deck. So if at stage k there are rk red and bk black cards left in the deck, then if rk ≥ bk
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one should bet π(rk/(rk + bk)) on red, while if bk ≥ rk one should bet π(bk/(rk + bk)) on
black.

A practical example of the use of this type of information gathering occurs in the
game of blackjack. At the start of this game with a well-shuffled deck, the game is biased
against the player, i.e. the probability of win is less than 1/2, so the player bets as small
an amount as the rules of the blackjack table allow. As the game progresses, cards are
observed that are removed from the deck, and occasionally there occur reduced decks that
are favorable to the player. When these situations occur the player will bet more heavily,
depending on how favorable the reduced deck is.

Competitive Optimality of Kelly Betting. We have seen that the Kelly betting
system has a large sample optimality property. Here is a finite sample optimality property
due to Bell and Cover (1980) involving competition between two players to see who can
end up with the most capital.

Players I and II start with 1 dollar each. They are going to play a favorable game with
probability p > 1/2 of doubling your bet and probability 1−p of losing it. However, as the
first move of the game, they can exchange their dollar for the outcome of any non-negative
random variable with expectation 1. Let U , resp. W , denote the fortune of Player I, resp.
Player II, after this move. Thus,

U ≥ 0, W ≥ 0, and E(U) = E(W ) = 1. (14)

Then, not informed of the opponent’s fortune, each player chooses an amount to bet on
the favorable game. Let a(U), resp. b(W ), denote the proportion of I’s fortune, resp. II’s
fortune, that is bet. Let Z denote the indicator outcome of the favorable game, i.e.

Z =
{

1 with probability p
0 with probability 1-p (15)

Let X, resp. Y , denote the final fortune of Player I, resp. Player II. Then

X = U [(1 − a(U)) + a(U)2Z]
Y = W [(1 − b(W )) + b(W )2Z].

(16)

Player I wins if X > Y and Player II wins if Y > X. Player I wants to maximize P(X > Y )
and Player II wants to minimize this.

The game is symmetric so the value if it exists is 1/2, and any strategy optimal for
one player is optimal for the other.

Theorem. The value of the game is 1/2, and an optimal strategy for Player I is choose
the distribution of U to be uniform on (0,2),

P(U ≤ u) =
{

u/2 if 0 ≤ u ≤ 2
1 if u > 2

(17)
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and a(u) to be Kelly’s betting proportion, a(u) = 2p − 1, independent of u.

Proof. Suppose Player I uses the strategy of the theorem. We show that P(X < Y ) ≤ 1/2
for all strategies of Player II. Then, from (16)

P(X < Y ) = P(U [(1 − a(U)) + a(U)2Z] < W [(1 − b(W )) + b(W )2Z])

= P
(

U <
W [(1 − b(W )) + b(W )2Z]

2(1 − p) + 2(2p − 1)Z

)

≤ 1
2
E

(
W [(1 − b(W )) + b(W )2Z]

2(1 − p) + 2(2p − 1)Z

)
from (17)

=
1
2
E

(
p
W (1 + b(W ))

2p
+ (1 − p)

W (1 − b(W ))
2(1 − p)

)
from (15)

=
1
2
E(W ) =

1
2

from (14).

Note that this proof requires the players to wager on the same outcome of the favorable
game. The theorem is no longer true if they may wager on independent games. For
example, take p = 3/4, and suppose that Player I uses the strategy of the theorem, and
Player II chooses W to be degenerate at 1, and then bets her whole fortune. Player I ends
up with a distribution for U that has density 1/2 on the interval [0,1] and density 1/4 on
the interval [1,3]. Player II ends up at 0 with probability 1/4 and at 2 with probability
3/4. If she ends up at 0, she loses; if she ends up at 2, she has probability 3/4 of winning.
Her overall probability of winning is therefore (1/4)(0) + (3/4)(3/4) = 9/16, greater than
1/2.

Exercises.

1. (Bayes Hypothesis Testing.) You know the probability of win, p, is either 1/4 or
3/4. The prior probability of p is P(p = 1/4) = P(p = 3/4) = 1/2. You never observe p;
you only learn whether you win or lose. How much of your fortune should you bet at each
stage to maximize E{log(Xn)}?

2. Here is a problem that combines the type of learning that occurs in Examples 2
and 3. A deck of n cards is formed containing Y winning cards and n − Y losing cards.
Cards are turned face up one at a time and at each of the n stages you may bet as much
of your fortune as you like that the next card will be a winning card. How much of your
fortune should you bet at each stage to maximize E{log(Xn)}, if
(a) the prior distribution of Y is binomial, B(n, 1/2)?
(b) the prior distribution of Y is uniform on the set {0, 1, . . . , n}?
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Solutions.

1. At stage k, after observing sk wins and k − sk losses, the posterior probability of
win is pk+1 = 3sk/(3sk + 3k−sk). So bet π(pk+1) at stage k + 1.

2. (a) The prior density is g(y) =
(
n
y

)
(1/2)n. Let Zk denote the number of wins

through stage k. The distribution of Zk given Y = y is hypergeometric with density
f(z|y) =

(
y
z

)(
n−y
k−z

)
/
(
n
k

)
. The joint distribution of Y and Zk is the product, g(y)f(z|y), and

the posterior density of Y given Zk = z is proportional to this:

g(y|z) ∝
(

n

y

)(
y

z

)(
n − y

k − z

)
∝ 1

(y − z)!(n − y − k + z)!

for y = z, z +1, . . . , n−k + z. Let Rk = Y −Zk be the number of winning cards remaining
after stage k. Change variable from Y to Rk to find

g(r|z) ∝ 1
r!(n − k − r)!

∝
(

n − k

r

)
(1/2)n−k

for r = 0, 1, . . . , n − k. So the posterior distribution of Rk is binomial B(n − k, 1/2),
independent of Zk. The expectation of win is pk+1 = E(Rk/(n − k)) = 1/2. So bet
nothing.

(b) The prior density for Y is g(y) = 1/(n + 1) for y = 0, 1, . . . , n. Let Zk denote
the number of winning cards observed through stage k. Given Y = y, the density of Zk

is Hypergeometric, f(z|y) =
(
y
z

)(
n−y
k−z

)
/
(
n
k

)
. The posterior density of Y given Zk = z is

proportional to the product g(y)f(z|y). Thus,

g(y|z) ∝ y!
(y − z)!

· (n − y)!
(n − y − k + z)!

It is preferable to work with the remaining number of winning cards left after k stages,
Rk = Y − Zk in place of Y , and the number of cards remaining n′ = n − k in place of n.
Making this change of variable, we find the posterior density of Rk given Zk = z as

g(r|z) ∝ (r + z)!
r!

· (n′ + k − r − z)!
(n′ − r)!

for r = 0, 1, . . . , n′
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We show this is a beta-binomial distribution. The beta-binomial distribution BB(α, β, n)
has density

h(x) =
(

n

x

)
Γ(α + β)Γ(x + α)Γ(n − x + β)

Γ(α)Γ(β)Γ(n + α + β)

∝ (x + α − 1)!
x!

· (n − x + β − 1)!
(n − x)!

for x = 0, 1, . . . , n

From this we see that the distribution of Rk given Zk = z is BB(z + 1, k − z + 1, n′). The
expectation of BB(α, β, n) is nα/(α + β). The probability of win on the next stage given
Rk is Rk/n′. Its expectation is therefore pk+1 = E(Rk/n′|Zk) = (Zk +1)/(k+2). At stage
k + 1, you should bet proportion π(pk+1) of your fortune.
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