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Abstract: A fishing model of Starr, Wardrop, and Woodroofe is related to the sequential
search model of Cozzolino. The latter is generalized to allow an arbitrary joint distribution
of capture times and fish sizes. Implications to the foraging models of Oaten and Green
and to debugging software are indicated.

0. Introduction.

The central theme of this paper is a result in sequential analysis that has application
to a wide variety of problems. These problems have appeared in papers dealing with
sequential estimation in statistics, estimation of the number of species, the fishing problem,
the proofreading problem, auditing, foraging, search, etc. Authors in different areas are
not always aware of each other, and so often recompute the basic results again. This is
partly because the basic assumptions required in the different areas necessarily differ in
signficant ways. Yet the main result in Section 4 of this paper would be of interest in
all these areas. Since the basic assumption of the result is that a certain parameter has a
Poisson distribution, it seems appropriate to use the model of Starr, Woodroofe and others
as a fishing problem.

1. The Fishing Problem.

One of the first papers to deal with the fishing problem was Starr (1974). The main
result of this paper is easy to state. There are m fish in a lake, where m is known. The
capture time of fish j if one fishes indefinitely is 7;. We assume T1,...,T,, are ii.d.
exponential with hazard rate r. Let K(t) denote the number of fish caught by time ¢, so
that

(1) K(t) = iI(Tj <t),

where I denotes the indicator function. There is a constant cost of time, so the payoft for
stopping at time t is

(2) Y = K(t) — ct.
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The problem is to find a stopping rule 7 to maximize EY,. Starr shows that the optimal
stopping rule is

(3) T=inf{t >0: K(t) >m —c¢/r}.

This is a fixed number of captures rule: Fish until there are at most ¢/r fish left.

This was generalized by Starr and Woodroofe (1974). Again there are m fish and the
payoff is given by (2), but now the capture times 71, ..., T}, , assumed to be i.i.d. positive
random variables with absolutely continuous distribution function F'(¢). There are two
basic results of their paper.

The first is as follows. If F' has increasing failure rate (IFR), then it is optimal to stop
only at catch times. This allows one to discretize the problem and solve it by backward
induction. However, the optimal rule will not generally be a fixed number of captures rule;
the optimal decision to stop may also depend on time.

In spite of this, the easy case turns out to be the case when F' has decreasing failure
rate (DFR). In this case, then it may be optimal to stop between capture times, but the
infinitesmal look-ahead rule is optimal. The theory for this rule is developed by Ross
(1971). Its application to the present problem produces the optimal rule,

(4) T=inf{t >0: (m — K())rr(t) <c},

where rp(t) is the failure rate of F', namely, rp(t) = f(t)/(1 — F(t)), where f(t) is the
density of F'.

This result for DFR has been extended by Starr, Wardrop and Woodroofe (1976) to
allow the payoff to be of the form

(5) Yy = g(K(t) = c(t),

where ¢ is concave utility function, and ¢ is a convex cost function. The corresponding
optimal rule is

(6) T=inf{t 2 0: (m — K())(9(K(t) +1) — g(K(t))re(t) < (t)}.

The main application of this result, that motivated generalizing the payoft, is to the
statistical problem of estimating the mean of a normal distribution with “delayed” observa-
tions. If you start off an experiment with m experimental units and the observations come
in sequentially and sporadically, and if you are paying a cost in real time, you might want
to stop the experiment early rather than wait for the last observation. If you estimate the
mean after K (t) observations, you incur a terminal loss of o2/K (t). Since g(k) = —o?/k
is concave in k, the rule (6) is optimal.

A further extension is made in Kramer and Starr (1990). In this paper, the fish are
allowed to have different sizes, and the time of capture may be dependent on the size. If
we let the size of fish j be denoted by X, then the basic assumption of this model is



3

that (X1,71),...,(Xm,Tmn) areii.d. with absolutely continuous distributions with 7 > 0
a.s. and E|X| < oco. The payoff for stopping at time t is now the total catch size, R(t),
minus a cost of time,

(7) Y, = R(t) — c(t) = iXiI(TZ- < 1) — c(t).

i=1
The infinitesimal look-ahead rule for this problem is
(8) T=inf{t >0: (m— K@)EX|T =t)rr(t) < (t)}

where 7 (t) is the failure rate of the marginal distribution of 7'. Since it is assumed
that ¢(t) is convex, this rule is optimal provided E(X|T = t)rp(t) is nonincreasing in ¢.
In particular, if F' has DFR and if E(X|T = ¢) is nonincreasing in ¢, then 7 of (8) is
optimal. When E(X|T = t) is nonincreasing in ¢, bigger fish are easier to catch. This is
a natural assumption for Kramer and Starr because they are interested in exploration for
oil, where the bigger deposits are easier to find. In fact, because of a nice theorem of theirs
from an earlier paper, they restrict attention to joint distributions of X and T for which
P(T > t|X =z) = (1—H(t))* for some distribution function H. The nice theorem states
that with appropriate regularity conditions, this is a necessary and sufficient condition
that sampling becomes proportional to size. That is, at all times ¢ conditional on the
sizes X1,...,X,, of the uncaught fish, the probability that the ith fish is caught next is
Xi/(X1+ -+ Xp). (It is assumed that X; > 0 a.s.) Sampling proportional to size is a
natural assumption for oil exploration. If H has DFR, then Kramer and Starr show that
E(X|T = t)rp(t) is nonincreasing so that (8) is optimal.

2. A Search Problem.

Let us go back to an earlier version of this problem found in a paper of Cozzolino
(1972). This paper is in the area of optimal allocation of search effort initiated by B.
O. Koopman in the late 1950’s. In the terminology of the fishing problem, the fish are
allowed to have different sizes or values that are dependent on their catch times as in
Kramer and Starr. However, the number of fish is allowed to be unknown. This is an
important generalization since it is rare in applications that m is known exactly. It is
useful to express one’s uncertainty of m in a prior probability distribution that may then
be updated as information is received. Specifically, Cozzolino assumes that the number of
fish, M, has a Poisson distribution with parameter A, denoted by P()). Given M = m,
the sizes of the fish, Xi,...,X,, are assumed to be i.i.d. with a gamma distribution,
and given M and Xi,...,X,,, the capture times are assumed to be independent, with
T; having an exponential distribution at rate yX;. Bigger fish are easier to catch. In
symbols,

M e P(N)
(X1, T, (Xar, Tar)| M iid.
X; €G(a,B)
Tj|1X; € G(1,7X;)

(9)
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where G(a, 3) denotes the gamma distribution with density proportional to exp(—gz)z*~1.
The payoff is the sum of the sizes of the fish caught minus a constant cost per unit time,
Y: = R(t) — ct. In addressing the problem of when to stop searching, Cozzolino finds that
there is an optimal fixed time rule,

(10) T=inf{t > 0: AE(X|T = t)f(t) < ¢} = B [(

y cf?

+
In contrast to the case with a known number of fish when the optimal rule (3) of Starr
stops after a fixed number of catches, the optimal rule with a Poisson number of fish stops
at a fixed time.

3. The Species Problem.

Another problem related to this is the species problem. The standard objective in
the species problem is to estimate the number of unobserved species or the probability
of observing a new species. But our interest is in the stopping problem. When should
one abandon the search for new species? This problem was investigated in Rasmussen
and Starr (1979) “Optimal and adaptive stopping in the search for a new species”. Their
formulation of the problem is a discrete version of the fishing problem outlined above.
Consider an infinite population consisting of m subpopulations, or species. Let p; denote
the proportion of members of the population that belong to species i. Selections are
made from the population sequentially at random and the species of the selection is noted.
It is assumed that each trial is independent and the probability that the ith species is
observed is p; for each trial. For i = 1,...,m and n = 0,1,2,..., let X;(n) denote
the number of times species i is observed among the first n observations. Let K(n) =
S 1 I(Xi(n) > 0) denote the number of distinct species observed in the first n trials and
let u(n) = > 7" p:I(X;(n) = 0) denote the total probability of the unobserved species. The
reward for stopping at stage n is Y,, = g(K(n)) — nc, where ¢ is a concave function on
the integers and ¢ > 0 is a constant. The one-stage look-ahead rule (the 1-sla) is optimal
for this problem. It is

(11) N =min{n >0: [g(K(n) + 1) — g(K(n))]u(n) < c}.

The trouble with this analysis for the species problem is that m and the p; are
assumed known, and which species is associated with p; is also known. However, since the
rule N depends on this knowledge only through u(n), Rasmussen and Starr suggest using
Turing’s nonparametric estimate of this quantity in (11). This estimate is

(12) v(n) = =) 1(Xi(n) = 1).

S|

Numerical computation shows that the adaptive strategy (11) with u(n) replaced by v(n)
for stopping compares well with the original rule.



I would like to suggest another way to deal with this problem. Namely, the Bayes solu-
tion in which the prior distribution of (p1,...,pm) is taken to be the Dirichlet distribution
D(a,...,am). One good feature about this approach is that the one-stage look-ahead
rule is still optimal for this adaptive problem. It is (11) with u(n) replaced by its Bayes
estimate,

(13) wn) = 20 =0)

n + 21 (677
The drawback of presuming to know which species are associated with which «; still
remains, but at least w(n) — 0 as n — oo, even if m is incorrectly specified too large.
One may also estimate the unknown parameters, (m may even be taken to be infinite),
thus providing an adaptive Bayes solution.

Banerjee and Sinha (1985) extend Rasmussen and Starr to sampling in batches of size
k > 1. They also propose a new estimator of the probability of discovering a new species.

Alsmeyer and Irle (1989) put the problem in continuous time, allow stochastic intensi-
ties depending on the past, A;(t) for species i, and allow the reward, r; to depend on the
species, i. As an example, they take constant intensities, and find as the optimal stopping
rule, similar to (11),

(14) T = inf{t > 0: iTz)\zI(Xz(t) = 0) < C}.

It is assumed that it is known which species are attached to which intensities and rewards.
So the fishing model is more appropriate than the species model for this problem.

4. The Basic Fishing Model.

We generalize Cozzolino’s formulation as follows. There are a random number, M , of
fish. The distribution of M is known and EM < oco. Given M = m, the sizes and times of
capture, (X1,71),...,(Xm,Tmn), are i.i.d. 2-dimensional random vectors with E|X;| < oo
and T; > 0 a.s., with known distribution function, F'(z,t). As before, we let for fixed t,

K@) =Y I(T; <t)= # fish caught by time ¢
(15)
R(t) = Zz]\il X,I(T; <t) = total value of fish caught

The payoff we receive if we stop at time ¢ is Y; = R(t) — c(t), where c¢(t) is a given
increasing function of ¢t. An optimal (finite-valued) stopping time exists if Esup, ¥; < co.
This is true under the assumptions that EM < oo and EXT < oo. The infinitesimal
look-ahead rule is

(16) r=inf{t > 0: B(M — Kt)|F)EX|T = t)re(t) < (1)}

where F; denotes the o-field generated by the observations up to time t. Moreover,
E(M — K(t)|F:) depends only on K (t). In our model, this rule is optimal if the problem
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is monotone. The problem is monotone if the validity of the inequality in (16) at t = ¢
implies its validity a.s. for all £ > t3. For monotonicity, it suffices to have

1. ¢(t) to be non-decreasing (i.e. ¢ convex.)

2. E(M — K(t)|F:) to be non-increasing in ¢ a.s.

3. E(X|T =t)rr(t) to be non-increasing in t.

The first condition is standard. It was used by Starr, Wardrop and Woodroofe. The
third condition breaks into two conditions. It is satisfied if both E(X|T' = t) is non-
increasing (bigger fish are easier to catch) and rg(t) is nonincreasing (7 has DFR). How-
ever, it is easy to see that it can be satisfied more generally.

The second condition is the critical one. Let us consider some special cases.

(a) M degenerate at m. Then E(M — K(t)|F;) = m — K(t) a.s., which is non-increasing
a.s. so that condition 2 is satisfied.

(b) M Poisson, P(\). Then (M — K(t))|F; has the Poisson distribution, P(AP(T > t)),
so that E(M — K(t)|F:) = AP(T > t). This is a non-random function, non-increasing in
t, so again condition 2 is satisfied.

In this case, something more interesting is true. Namely, there is an optimal fixed
time rule whether or not the problem is monotone, whether or not bigger fish are easier to
catch. This is because at time ¢, the future is independent of the past. Thus, in Cozzolino’s
problem, there is an optimal fixed time rule whether or not the assumptions on T and X
are satisfied. This means that the optimal rule may be found as a simple maximization
problem, namely, find ¢ to maximize

EY; =EY  X,(T; <t) — c(t) = \E(XI(T < t)) — c(t).

The derivative with respect to t is

(17) %Eyt — AB(X|T = )f(t) — ¢ (1),

There exists a unique root of this expression if and only if the problem is monotone. In
this case the optimal rule reduces to

(18) r=inf{t > 0: AE(X|T = t)f(t) < (1)},

If the problem is not monotone, we must inspect each of the negative-going roots of (17)
to find the value.

(¢) M has the binomial distribution, B(W,w). Then M — K(t)|F; has the binomial
distribution, B(W — K (t),n(t)), where 7(t) = 7P(T > t)/[1 — 7 + 7#P(T" > t)]. Hence,
E(M — K(t)|F:) = (W — K(t))r(t), and the rule (16) becomes

(19)  7=inf{t > 0: (W — K@)nB(X|T = t)f(t) < ()1 — 7 + 7P(T > t)]}.
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(d) M has the negative binomial distribution, NB(a,1/(6 + 1)). This distribution arises
when M| has the Poisson distribution, P(A) and A has the gamma distribution, G(a, ().
Then M — K(t)|F: € NB(K(t) + o, P(T > t)/(8 +1)). We have E(M — K(t)|F;) =
(K(t)+a)P(T > t)/(B+P(T <t)). Although P(T > t)/(6+P(T < t)) is non-increasing,
the other term K (t) + « increases in jumps at the time of each observation. Thus the
problem is not monotone. The infinitesimal look-ahead rule can be improved.

(e) M is beta-binomial, BB(W, «, 3). This distribution arises when M|r has the binomial
distribution, B(W,7) and 7 has the beta distribution, Be(«a, ). To make the family
of distributions closed under prior-to-posterior analysis, it is necessary to add another
parameter. The 4-parameter beta-binomial BB(W, a, 3,q) with W > 0 integer, a > 0,
B >0, and g > 0, is defined as the distribution with mass function proportional to

W, 0.0) o () Blatm 5+ W~ m)g”

where B(a,3) represents the beta function. When ¢ = 1 this is the beta-binomial dis-
tribution, and when = 1 and 0 < ¢ < 1, this is the negative binomial distribution
truncated at W . If T" has a continuous distribution, this problem is never monotone.

5. Proofreading and Testing Computer Software.

In proofreading and in testing computer software, the problem is usually to estimate
the number of errors remaining after a debugging process. M represents the initial number
of misprints or bugs in the program. I'll mention two papers. In the software debugging
paper of Dalal and Mallows (1988), the model is as follows. M has a negative binomial
prior distribution, M € NB(a,1/(1 + )), all bugs are equally valuable to detect, and
the times of detection are i.i.d. This is an important problem and Dalal and Mallows
suggest a method of solving it in a fairly general setting. When M is Poisson with known
mean A, they note that the optimal rule in their setting is a fixed time rule. When \ is
large and there is a large number of observations taken before stopping, one may obtain an
adaptive approximately optimal solution by replacing A in the optimal rule by its estimate,
K(t)/P(T <t).

In the proofreading paper of Ferguson and Hardwick (1989), the basic model is followed
but the setting is discrete and the marginal distribution of 7T is taken to be a mixture of
geometrics. If P(T = t) = E(Q'(1 — Q)), then E(X|T = t)f(t) = E[Q'(1 — Q)X] is
decreasing in ¢, so that in the Poisson case, the 1-sla optimal in general. In the beta-
binomial model, the distribution of catch time is discrete, and the 1-sla is optimal in some
important cases.

6. Foraging.

Consider an animal that forages for food in spacially separated patches of prey. He
feeds at one patch for awhile and then moves on to another. The problem of when to move
to a new patch in order to maximize the rate of energy intake is addressed in the paper of
Oaten (1977). His results have been extended in a number of ways by Green (1980, 1987).
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For example, take the fisherman who moves from waterhole to waterhole catching fish.
Here, M represents the number of fish in a waterhole. Given M = m, the distribution of
the times of catch Ti,...,T,, is known. The expected time to travel from one patch to
another is also a known constant, say 1, as is the expected energy required for the trip,
a. The problem Oaten and Green consider is to choose a stopping time 7 to move to the
next waterhole in order to maximize the rate of return, (EK(7) —a)/(ET + 1).

Green in his 1987 paper treats discrete time and considers six cases, when the dis-
tribution of M is {degenerate, Poisson, negative binomial }, and when the distribution
of catch times is {uniform, exponential }. The reason for considering the uniform case is
interesting. Green is very much attuned to applications, and he is especially interested in
birds. It seems that certain birds are systematic foragers, that is they are active in their
search for prey and avoid covering the same ground twice. For systematic foragers, the
time needed to catch a given prey would be approximately uniform over the time needed
to cover the whole patch.

With the observations we have made about the Poisson fishing model, we may extend
the model of Oaten/Green to allow size of catch to depend on time. Therefore, our
model is given by M with a known distribution, (X1,71),..., (X, Ta)|M i.i.d. with a
known distribution independent of M. We are to maximize (ER(7) — a)/(E7 + 1). This
problem may be related to the problem of finding a stopping rule to maximize the return
E(R(T)—a—¢1—¢) and then to adjust ¢ so that the optimal return is zero. The resulting
¢ is the optimal rate of return and the optimal rules for the two problems are the same.

In the Poisson case, since the optimal rule is a fixed time rule, we need only compute
E(R(t) —a—¢t—¢) =EMEXI(T <t))—a—¢t—¢

Setting this to zero gives one equation, and setting the derivative to zero gives a second
equation, to be solved jointly for ¢ and ¢. Eliminating ¢ from these two equations gives

(20) EME(XI(T <t)) = a+ (t+ )EME(X|T = t)f(t).

As an example, suppose T' has the inverse power distribution with density, f(t) =
0(1 + t)~+D " and suppose that the expectation of X given T = t is BE(X|T = t) =
a(l+1t)Y where v < 0. (This arises, for example, when the distribution of Z given T' =t
is the gamma, G(a, (1 +¢)77).) If v < 0, bigger fish are easier to catch, and if v > 0,
smaller fish are easier to catch. In this example, (20) can be solved explicitly for ¢ to give

t = (Al/(t‘)fv) — 7t

as the optimal time to stop, where

. (0 —~v+ 1) ab
S Aal—a(@—7)
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