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Abstract: In the house-hunting problem, i.i.d. random variables, X1� X2� � � � are observed
sequentially at a cost of c > 0 per observation. The problem is to choose a stopping rule,
N , to maximize E�XN − Nc�. If the X’s have a finite second moment, the optimal stopping
rule is N ∗ = min�n ≥ 1 � Xn > V ∗�, where V ∗ satisfies E�X − V ∗�+ = c. The statement of the
problem and its solution requires only the first moment of the Xn to be finite. Is a finite
second moment really needed? In 1970, Herbert Robbins showed, assuming only a finite
first moment, that the rule N ∗ is optimal within the class of stopping rules, N , such that
E�XN − Nc�− > −�, but it is not clear that this restriction of the class of stopping rules
is really required. In this article it is shown that this restriction is needed, but that if the
expectation is replaced by a generalized expectation, N ∗ is optimal out of all stopping rules
assuming only first moments.
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1. INTRODUCTION

The house-hunting problem, also called the problem of selling an asset or the job
search problem, was introduced and solved almost simultaneously in articles by
MacQueen and Miller (1960), Derman and Sacks (1960), Chow and Robbins (1961),
and Sakaguchi (1961). This problem may be described as follows. Independent,
identically distributed random variables, X1� X2� � � � with common distribution
function, F�x�, are observed sequentially at a cost of c per observation, where c > 0.
We always assume that the expectation of the positive part of X is finite: EX+ < �,
where X has distribution F�x�.
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You must take at least one observation. If you stop after n ≥ 1 observations,
you receive Xn as a payoff, so your net return is Xn − nc. If you never stop, your
payoff is defined to be −�, since Xn − nc → −� a.s. as n → � when EX+ < �.

The problem is to choose a stopping rule, N , to maximize E�XN − Nc�. It is
customary to assume F�x� has a finite second moment, or more generally that
E��X+

1 �
2� < �. Under this assumption, the stopping rule

N ∗ = min�n ≥ 1 � Xn > V ∗� (1.1)

maximizes E�Xn − nc� among all stopping rules, where V ∗satisfies

∫ �

V ∗
�x − V ∗�dF�x� = c� (1.2)

In addition, V ∗ = E�XN ∗ − N ∗c� is also the optimal expected return.
The statement of the problem and its solution requires only the first moment of

F�x� to be finite. In particular, the stopping rule (1.1) still gives expected return V ∗.
Yet the proofs of optimality of N ∗ seem to require that the second moment of F�x�
be finite. Is a finite second moment really needed? By an elegant direct argument
based on Wald’s equation and using only the assumption that EX+ < �, Robbins
(1970) shows that the rule N ∗ given by (1.1) with V ∗ given by (1.2) is still optimal.
However, he uses a slightly different definition of optimality, namely, he defines N ∗

to be optimal if it maximizes E�XN − Nc� within the class of stopping rules, N , such
that E�XN − Nc�− > −�.

This seems innocuous enough. Who would like to accept a random reward the
expectation of whose negative part is −�? The trouble is that this restriction also
excludes payoffs the expectation of whose positive part is +�. If E�XN − Nc�− =
−� and E�XN − Nc�+ < �, then you do not need to exclude N . The rule N ∗ is
definitely better. So a slightly stronger definition of optimality would be to restrict
consideration to stopping rules N such that E�XN − Nc�+ < �. This looks more
questionable. Why should one exclude rules with infinite positive expectation?

Is a finite second moment necessary for N ∗ to be optimal out of all stopping
rules?

2. NECESSITY OF E��X+�2� < �

Robbins’ result certainly provides an extension of the optimal property of the rule
N ∗ that is valid even if E�X+�2 = �. However, there are difficulties of interpretation
that arise because of the restriction to stopping rules that satisfy E�XN − Nc�+ <
�. Restricting attention to such rules seems to say that any rule, N , with E�XN −
Nc�<�, no matter how bad, is better than a rule whose expected payoff does not
exist because E�XN − Nc�− = −� and E�XN − Nc�+ = +�. For what W do you
prefer a gamble giving you a payoff of $W to a gamble giving you $Z, where Z is
chosen from a standard Cauchy distribution? Answering such questions seems to
require an extension to standard utility theory.

One important question that arises is whether or not there are some
distributions of X with E�X+�2 = � for which all stopping rules have E�XN −
Nc�+ < �. Then, at least for some distributions with infinite second moment one
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could say that N ∗ is optimal among all stopping rules. It will be shown that for all
distributions F with E�X+�2 = �, there exist stopping rules, N , such that E�XN −
Nc�− = −� and E�XN − Nc�+ = +�.

Theorem 2.1. If X�X1� X2� � � � are i.i.d. with EX+ < � and E�X+�2 = �, then the
stopping rule,

N = min �n ≥ 1 � Xn ≥ 2nc� (2.1)

satisfies E�XN − Nc�+ = �.

Thus no new examples of optimality within the class of all stopping rules may
be found using Robbins’ result. Proofs are deferred to the appendix.

3. A STRONGER RESULT

As it stands, Theorem 2.1 would not impress Robbins because the stopping rule,
N , of (2.1) does not stop with probability one. The general theory of Chow et al.
(1971) allow stopping rules. N such that P�N = �� > 0. This allows treatment of
more general problems, for example bandit problems, but it requires specifying what
the payoff will be if N = �.

However in this problem, the restriction to stopping rules that stop with
probability one is very reasonable. Theorem 2.1 is really a counterexample for the
general theory. All it really says is that if E�X+�2 is infinite, a prophet can get an
infinite expected return. He simply stops at N if there exists an n such that Xn > 2nc
and stops at n = 1 otherwise. It seems that those of us without superpowers must
be satisfied with V ∗ or risk not stopping and so receiving infinite loss.

Therefore to satisfy Robbins, we need to answer the question: For what
distributions of X with finite first moment and E�X+�2 = � is it true that there exists
stopping rules N that stop with probability one and for which E�XN − Nc�+ = �?
The answer is contained in the following theorem.

Theorem 3.1. If X�X1� X2� � � � are i.i.d. with EX+ < � and E�X+�2 = �, then there
exists a stopping rule, N , with P�N < �� = 1 such that E�XN − Nc�+ = �, for all
c<�.

Thus there are no distributions with infinite positive second moment for
which we may dispense with Robbins’ restriction to stopping rules, N , such that
E�XN − Nc�+ < �.

It is interesting to note that the stopping rule, N , of Theorem 3.1 does not
depend on c. The proof is constructive. In addition, the stopping rule has the simple
form, N = min �n � Xn > an� for some sequence of constants, an.

4. OPTIMALITY OF N ∗ AMONG ALL STOPPING RULES

To extend Robbins’ result to make it valid for all stopping rules, we must therefore
find some way to compare two payoff distributions whose first moments do not
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exist. Certainly if given the choice between two Cauchy distributions with the same
interquartile range, we would prefer the one with the higher median. More generally,
we would prefer F to G if F stochastically dominates G (i.e., if F�x� < G�x� for all
x�. There are many ways to extend this idea further. One sufficient for the problem
at hand is the following.

We say that a lottery from a distribution G is preferred to a 0 payoff if for
i.i.d. Z1� Z2� � � � from G we have �1/n�

∑n
1 Zi → � a.s. for some 0 < � ≤ �. For a

distribution G with finite mean, this just means that a lottery from G is preferred
to 0 if the mean of G is positive. For a distribution G whose mean does not exist,
it can still happen that �1/n�

∑n
1 Zi → +� a.s., in which case we prefer G to 0. This

can happen if the mass on the positive axis dominates the mass on the negative axis,
even though the expectation of the positive and negative parts are both infinite.

Similarly, we prefer 0 to a lottery from G if for i.i.d. Z1� Z2� � � � from G we have
�1/n�

∑n
1 Zi → −� a.s. More generally, we prefer a lottery for G1 to a lottery for

G2 if for i.i.d. Y1� Y2� � � � from G, and independent i.i.d. Z1� Z2� � � � from G2, we have
�1/n�

∑n
1�Yi − Zi� → � a.s. for some 0 < � ≤ �.

Using this extension of the definition of preference between lotteries, one
can show that Robbins’ result is true without restricting the stopping rules one
considers. In the article of Robbins and Samuel (1966), an extension of the definition
of mathematical expectation is given which is useful in this context.

Definition. For a random variable X, we say that the extended expectation of X
exists and is equal to 	, in symbols ÊX = 	, if

1
n

n∑
i=1

Xi → 	 a.s. (4.1)

when X1� X2� � � � are i.i.d. with the same distribution as X.

If EX exists, then ÊX = EX, including the case where EX = ±�. However, if
EX does not exist, it still may happen that �1/n�

∑n
1 Xi converges almost surely to

+� or −�. Thus, Ê is indeed an extension of the notion of expectation.
Using this notion, we can state the optimality of the stopping rule (1.1) for the

house hunting problem.

Theorem 4.1. In the house hunting problem with finite first moment, the stopping rule
N ∗ of (1.1) is optimal in the sense that for all stopping rules N� Ê�XN − Nc� ≤ V ∗.

In other words, if E�X+� < �, then for any stopping rule, N , either XN − Nc

has finite expectation less than or equal to V ∗, or its extended expectation is −�.

5. A NEAR COUNTEREXAMPLE

If the first moment of X barely exists in the sense that EX+ < � and
EX+ log+�X+� = �, then there is a stopping rule that looks as if it might be a
counterexample to Theorem 4.1.
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Theorem 5.1. If EX+ < � and EX+ log+�X+� = �, then there exists a stopping
rule of the form N = min �n ≥ 1 � Xn > an� for some sequence an → � such that
P�N <��= 1, and

�∑
n=1

��Xn − nc�I�N = n�� =
�∑
n=1

P�N > n− 1�E��X − nc�I�X > an�� = � (5.1)

for all c > 0.

Note that, again, N does not depend on c.
To see how curious this result is, examine the second sum in (5.1). The stopping

rule N stops with probability one, and when it stops at stage n, the conditional
payoff given N = n is simply E��X − nc�I�X > an��, a fairly large positive number,
even though stopping may occur at negative values of Xn − nc. This has to be
multiplied by the probability of reaching that stage, which is P�N > n− 1� =∏n−1

i=1 F�ai�. The product of this and E��X − nc�I�X > an�� is the summand of the
second sum, and is a fairly small number. Nevertheless, if you add up all these small
numbers, you get +�. Does that not seem better than receiving V ∗ as the payoff?

The catch is, of course, that this summation is not equal to E�XN − Nc�, which
doesn’t exist. This is an example where the expectation of the sum is not the sum of
the expectations. Worse, the sum of the expectations is +� whereas the generalized
expectation of the sum is −�; in other words, if you take a sample from the
distribution of XN − Nc, the average of the sample will tend to −�, a.s.

APPENDIX

Proof of Theorem 2.1. We show that the rule N = min �n ≥ 1 � Xn ≥ 2nc� gives
E�XN − Nc�+ = � when EX+ < � and E�X+�2 = �.

E�XN − Nc�+ =
�∑
n=1

E�Xn − nc�I�N = n�

≥
�∑
n=1

ncP�N = n�

=
�∑
n=1

ncP�N > n− 1�P�Xn > 2nc�

≥
�∑
n=1

ncP�N = ��P�Xn > 2nc� = �� (6.1)

since E�X+�2 = � implies
∑�

n=1 nP�Xn > 2nc� = �, and

P�N = �� = P�Xn < 2nc for all n�

=
�∏
n=1

P�Xn < 2nc� =
�∏
n=1

�1− P�Xn ≥ 2nc��

∼ exp
{−∑

P�Xn > 2nc�
} ∼ exp �−EX+/2c� > 0� (6.2)
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Proof of Theorem 3.1. Without loss of generality, assume that X > 0 and that X has
a continuous distribution function. (Otherwise, only stop when X > 0 and replace
the distribution of X with the distribution of XU where U has a uniform (0,1)
distribution independent of X�� Since E�X+�2 = �, we have

�∑
k=1

∫ �

k
P�X > y�dy = �� (6.3)

Let

Ek =
∫ �

k
P�X > y�dy and Qk = E1 + E2 + · · · + Ek� (6.4)

for k > 0. Then,
∑

k Ek = � and Qk → �. It is also true that

�∑
k=1

Ek

Qk

= �� (6.5)

See, for example, Rudin (1976, Problem 11(b), p. 79). Let n∗ be the smallest k such
that Qk > 1. Let an∗ be defined by

P�X ≤ an∗� =
1
Qn∗

(6.6)

and for k > n∗, let ak satisfy

P�X ≤ ak� =
Qk−1

Qk

� (6.7)

Let N = min �k ≥ n∗ � Xk > ak�. Notice that for n > n∗.

P�N > n� = P
( n⋂

k=n∗

�Xk ≤ ak�

)

= 1
Qn∗

n∏
k=n∗+1

Qk−1

Qk

= 1
Qn

→ 0� (6.8)

Hence N stops with probability 1. (This may also be seen using
∑

k>n∗+1 P�X > ak� =∑
k>n∗+1�1− �Qk−1/Qk�� =

∑
k>n∗+1�Ek/Qk� = �; so P�Xn > an i.o.� = 1��

Notice that for any 1 < c < �,

P�X > ak�

P�X > ck�
= Ek

QkP�X > ck�
≥ �c − 1�kP�X > ck�

QkP�X > ck�
= �c − 1�k

Qk

→ �� (6.9)

In particular, Qk < ck from some point on.
Fix any c > 1. There exists nc such that Qk ≤ ck for all k ≥ nc. Therefore,

E�XN − Nc�+ =
�∑

k=nc

∫ �

ck
P�X > y�dy P�N > k− 1� =

�∑
k=nc

Eck

Qk−1

≥
�∑

k=nc

Eck

Qck

>
1
2c

�∑
j=cnc

Ej

Qj

= �� (6.10)
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Proof of Theorem 4.1. We use the cute idea, cited in the article of Robbins (1970)
as due to David Burdick, entailed in the inequality

Xn − nc = v+ �Xn − v�− nc

≤ v+ �Xn − v�+ − nc

≤ v+
n∑
1

�Xi − v�+ − nc�

= v+
n∑
1

��Xi − v�+ − c�

= v+
n∑
1

Wi (6.11)

where Wi = �Xi − v�+ − c. Now choose v to be any number greater than V ∗. The Wi

are i.i.d. with expectation EWi < 0, since v > V ∗. Let N be an arbitrary stopping
rule. We show below that Ê

∑N
1 Wi < 0; this implies that Ê�XN − Nc� < v and, since

v is an arbitrary number greater than V ∗, that Ê�XN − Nc� ≤ V ∗.
We now use the idea of Blackwell (1946) in his proof of Wald’s Equation.

Consider n stopping problems as follows. Let N1 be the stopping rule N applied to
the sequence W1�W2� � � � � let N2 be the stopping rule N applied to WN1+1�WN1+2� � � � �
etc., and let Nn be the stopping rule N applied to WN1+···+Nn−1+1�WN1+···+Nn−1+2� � � � .
Let the returns for these problems be denoted by Z1� � � � � Zn where Zj =
WN1+···+Nj−1+1 + · · · +WN1+···+Nj

. Then, the Zj are independent with the same
distribution as

∑N
1 Wi, and we have

Z1 + · · · + Zn

n
= W1 + · · · +WN1+···+Nn

N1 + · · · + Nn

· · · N1 + · · · + Nn

n
(6.12)

From the strong law of large numbers, the first term on the right of (6.12), �W1 +
· · · +WN1+···+Nn

�/�N1 + · · · + Nn�, converges a.s. to EWi < 0. The second term on the
right of (6.12), �N1 + · · · + Nn�/n, converges a.s. to EN , whether EN is finite or
+�. Therefore, the left side of (6.12) converges a.s. to EWiEN < 0. This shows that
Ê
∑N

1 Wi < 0 as was to be shown. �

Proof of Theorem 5.1. Again assume without loss of generality that X > 0 and that
X has a strictly increasing continuous distribution function on �0���. Let


�b� = E�X �X > b� = E�XI�X > b��

P�X > b�
�

Then 
�b� is increasing and continuous and the inverse function, b�y� = 
−l�y�, is
well-defined by


�b�y�� = E�X �X > b�y�� = y (6.13)

for y ≥ E�X�. Clearly, b�y� is increasing, limy→� b�y� = �, and b�y� < y. Then

�∑
n=1

P�X > b�n�� =
�∑
n=1

1
n
E�XI�x > b�n���
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=
�∑
n=1

( n∑
j=1

1
j

)
E�XI�b�n� < X ≤ b�n+ 1���

≥
�∑
n=1

E�X log�
�X�/2�I�b�n� < X ≤ b�n+ 1��� (6.14)

Therefore, using 
�y� > y,
�∑
n=1

P�X > b�n�� ≥ E�X log�X/2�I�X > b�1��� = �� (6.15)

There exist constants, �k, increasing to infinity such that
�∑
k=1

P�X > b�k�k�� = �� (6.16)

Let ak = b�k�k�. Notice that as in the first line of (6.14),

P�X > ak� =
E�XI�X > ak��

k�k
= o�1/k�� (6.17)

There exists a k∗ such that

P�X > ak� <
1
2k

for all k ≥ k∗� (6.18)

Let N = min �k ≥ k∗ � Xk > ak�. Then from (6.18) and Borel-Cantelli, P�N < �� =
1. Now fix any c > 1 and choose kc so that ak > b�2ck� for all k ≥ kc. Notice that
for k > k∗,

P�N > k� = P�Xj ≤ aj for k∗ ≤ j ≤ k�

=
k∏

j=k∗

�1− P�X > aj��

≥
k∏

j=k∗

2j − 1
2j

>
2k∗ − 1

2k
≥ 1

2k
� (6.19)

Putting these inequalities together,
�∑

n=kc

P�N > n− 1�E��X − cn�I�X > an��

=
�∑

n=kc

P�N > n− 1�E��X − cn�I�X > b�n�n��� �def. of an�

=
�∑

n=kc

P�N > n− 1��n�n − cn�P�X > b�n�n�� (from (6.13))

>
1
2

�∑
n=kc

��n − c�P�X > b�n�n�� (from (6.19))

= � �since �n → � and �6�16�� �
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