
Minimizing the Expected Rank with Full Information

F. Thomas Bruss and Thomas S. Ferguson

UCLA

11/05/92; correction in bold-face pp.11-12, 01/03/05

Abstract: The full-information secretary problem in which the objective is to minimize the

expected rank is seen to have a value smaller than 7/3 for all n (the number of options). This

can be achieved by a simple memoryless threshold rule. The asymptotically optimal value for the

class of such rules is about 2.3266. For a large finite number of options, the optimal stopping

rule depends on the whole sequence of observations and seems to be intractable. This raises the

question whether the influence of the history of all observations may asymptotically fade. We

have not solved this problem, but we show that the values for finite n are nondecreasing in n and

exhibit a sequence of lower bounds that converges to the asymptotic value which is not smaller

than 1.908.

§1. Introduction and Summary. We consider the full-information secretary prob-

lem with the objective of minimizing the expected rank. Thus, we have a stopping rule

problem with observations, X1, · · · ,Xn , known to be independent, identically and uni-

formly distributed on the interval [0, 1] . The payoff for selecting the k th observation, Xk ,

is equal to Rk , the rank of Xk among X1, · · · ,Xn ,

Rk = Rk(n) =
n∑

i=1

I(Xi ≤ Xk), (1.1)

AMS 1980 subject classification: 60G40, 62L15.
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where I(A) denotes the indicator function of the event A . Note that we define the smaller

observations to be the better ones (i.e. having smaller ranks), which is here more con-

vienent. The problem is to find a stopping rule, N∗ , adapted to the sequence X1, · · · ,Xn ,

that minimizes the expected rank,

E RN∗ = inf
N

E RN = Vn. (1.2)

We refer to this problem as Robbins’ problem, as it was posed as an unsolved problem

by Robbins at the AMS/IMS/SIAM Conference on Sequential Search and Selection in

Real Time in Amherst, June 1990. In the “classical” secretary problem, solved by Lindley

(1961), one is only allowed to use rules that depend on the relative ranks of the observations

(called the no-information problem) and the objective is to maximize the probability of se-

lecting the observation of absolute rank 1 (the best-choice problem). The full-information

best-choice problem was solved by Gilbert and Mosteller (1966) and the no-information

expected-rank problem was solved by Chow et al. (1964). Thus the solution to the full-

information expected-rank problem would complete a two by two factorial design of sec-

retary problems. The main motivation to study this problem is however that it touches

questions of general interest. Given that a finite problem requires history-dependent opti-

mal stopping rules, what structure of the problem would imply an “asymptotic irrelevance”

of the history.

MOSER’S PROBLEM.

A closely related problem, due to Moser (1956), is to choose a stopping rule, N̂ ,

adapted to X1, · · · ,Xn , to minimize the expectation of XN ,

E XN̂ = inf
N

E XN . (1.3)

Moser shows that the optimal stopping rule for this problem is to stop after observing Xk

if Xk ≤ an−k , where a0 = 1, and inductively for j ≥ 1, aj+1 = aj − 1
2a2

j , and moreover,

the optimal return is an . Thus, the optimal rule is

N̂ = min{k ≥ 1 : Xk ≤ an−k}, (1.4)
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and its value is E XN̂ = an . Moser also shows that

an � 2
n + log(n) + O(1)

. (1.5)

Gilbert and Mosteller (1966) refine the O(1) to 1.767 . . . + o(1).

RELATIONSHIP BETWEEN MOSER’S PROBLEM AND ROBBINS’ PROBLEM

There is a strong relation between the ranks, Rk , and the values, Xk . The distribution

of Xk given Rk = r is the beta distribution with parameters r and n − r + 1, so that

E(Xk|Rk = r) =
r

n + 1
. (1.6)

Similarly, the other regression function is

E(Rk|Xk = x) = 1 + (n − 1)x. (1.7)

Moreover, the correlation between Xk and Rk tends to one as n → ∞ : E Xk = 1/2,

Var Xk = 1/12, E Rk = (n + 1)/2, Var Rk = (n + 1)(n − 1)/12, and Cov(Xk, Rk) =

(n − 1)/12, so that

Corr(Xk , Rk) =

√
n − 1
n + 1

→ 1. (1.8)

The regressions of Xk on Rk , and of Rk on Xk , are both linear and the correlation tends

to one.

Thus, it would seem that if we replace the payoff, Xk , by Rk/(n + 1) in Moser’s

problem, we have not changed the problem much if n is large. That is, the problem of

minimizing E XN and of minimizing E RN/(n + 1) should be asymptotically equivalent.

Since the former has N̂ as the optimal rule and value approximately 2/n , we expect that

the problem of minimizing E RN should have N̂ as an asymptotically optimal rule and a

value asymptotically equal to 2.

Surprisingly, this is not true. In Section 2, we investigate the class of memoryless

rules. These are rules for which the decision to stop at stage k depends only on Xk and
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not on the values of any previously observed Xi . We restrict attention to memoryless rules

of the form,

N = N(p) = min{k ≥ 1 : Xk ≤ pk}, (1.9)

where p = (p1, . . . , pn) is a given sequence of numbers in the interval [0, 1] with pn = 1

(to guarantee N ≤ n). We derive a formula for the expected rank of the object chosen by

such a rule, and we apply the formula to the rule,

Ñ = min{k ≥ 1 : Xk ≤ 2
n − k + 2

}, (1.10)

which is asymptotically optimal for Moser’s problem, and show that it has asymptotic

value 7/3. This formula is also useful for finding the optimal rule of the form (1.9). In

Section 3, we report briefly on the results of a numerical investigation of the optimal value

and the optimal rule within this class.

In Section 4, we look at lower bounds for the value, Vn , of Robbins’ problem. We

identify a sequence of problems, indexed by m , whose values, V
(m)
n , are always less than

Vn . We define the asymptotic values as V (m) = limn→∞ V
(m)
n and V = limn→∞ Vn and

show that these asymptotic values exist and that V (m) → V as m → ∞ . Then we

investigate numerically the asymptotic values of these problems for small m .

§2. Upper Bounds on the Value of Robbins’ Problem.

Theorem 1. If N(p) is the rule (1.9) with pn = 1 , then, denoting qk = 1 − pk and

(x)+ = max(0, x) ,

E RN(p) = 1 +
1
2

n∑
k=1

(
k−1∏
i=1

qi

)(n − k)p2
k +

k−1∑
j=1

((pk − pj)+)2

qj


 . (2.1)

Proof. We first find the distribution of the stopping time of the rule N = N(p), given

by (1.9).

P(N = k) =

(
k−1∏
i=1

qi

)
pk for k = 1, . . . , n. (2.2)
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To compute the expected rank using N ,

E RN =
n∑

k=1

E(Rk|N = k)P(N = k), (2.3)

we need to compute

E(Rk|N = k) = 1 +
k−1∑
j=1

P(Xj < Xk|N = k) +
n∑

j=k+1

P(Xj < Xk|N = k). (2.4)

For j > k ,

P(Xj < Xk|N = k) =
∫ pk

0

x

pk
dx =

pk

2
, (2.5)

while for j < k , this quantity is zero if pj ≥ pk , and

P(Xj < Xk|N = k) =
∫ pk

pj

x − pj

(1 − pj)pk
dx =

(pk − pj)2

2(1 − pj)pk
(2.6)

if pj < pk . Combining this into the formulas above, we find

E(Rk|N = k) = 1 +
(n − k)pk

2
+

k−1∑
j=1

((pk − pj)+)2

2qjpk
, (2.7)

and substituting this and (2.2) into (2.3) completes the proof.

As an example of the use of this formula, let us evaluate E RÑ where Ñ is the rule

given in (1.10). The distribution of Ñ telescopes from (2.2) into the simple form,

P(Ñ = k) =
2(n − k + 1)

n(n + 1)
. (2.8)

The conditional expected rank simplifies to

E(Rk|Ñ = k) = 1 +
n − k

n − k + 2
+

k−1∑
j=1

(k − j)2

(n − k + 2)(n − j + 2)(n − j)
, (2.9)

so that the expected rank becomes

E RÑ = 1 +
n∑

k=1

2(n − k + 1)(n − k)
n(n + 1)(n − k + 2)

+
n∑

k=1

2(n − k + 1)
n(n + 1)

k−1∑
j=1

(k − j)2

(n − k + 2)(n − j + 2)(n − j)

(2.10)
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The first summation above is the contribution to the expected rank, E RÑ , given by those

observations that come after Ñ , and the second summation is the contribution of those

observations that come before Ñ .

The first summation above is a Riemann approximation for large n to the integral,∫ 1

0

2(1 − x) dx = 1. (2.11)

Thus, the contribution of those observations that appear after Ñ already push the ex-

pected rank up to 2 as n → ∞ . The second summation above is similarly a Riemann

approximation to the double integral,∫ 1

0

2(1 − x)
∫ x

0

(x − y)2

(1 − x)(1 − y)2
dy dx =

1
3
. (2.12)

Thus, the expected rank using Ñ converges to 7/3 as n → ∞ .

We may use (2.10) to find simple upper bounds for E RÑ , and hence for E RN∗ of

Robbins’ problem. Let Vn denote the minimum expected rank, (1.2), for for finite n and

let V = limn→∞ Vn .

Corollary 1. For all finite n ,

Vn ≤ 1 +
4(n − 1)
3(n + 1)

, (2.13)

and hence V ≤ 7/3 .

Proof. The first summation in (2.10) is

2
n(n + 1)

n∑
k=1

(n − k + 1)(n − k)
n − k + 2

≤ 2
n(n + 1)

n∑
k=1

(n − k) =
n − 1
n + 1

. (2.14)

and the second summation is

2
n(n + 1)

n∑
k=1

n − k + 1
n − k + 2

k−1∑
j=1

(k − j)2

(n − j + 2)(n − j)
≤ 2

n(n + 1)

n−1∑
j=1

n∑
k=j+1

(k − j)2

(n − j + 2)(n − j)

=
2

n(n + 1)

n−1∑
j=1

(n − j + 1)(2n − 2j + 1)
6(n − j + 2)

≤ 2
3n(n + 1)

n−1∑
j=1

(n − j) =
n − 1

3(n + 1)
.

(2.15)
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Hence, we have the bound, valid for all finite n , E RÑ ≤ 1 + 4(n − 1)/(3(n + 1)), which

implies (2.13).

The minimum expected rank for the no-information problem (where rules must be

based only on the relative ranks of the observations), was found by Chow et al (1964) to

be 3.8695 . . . . By allowing the rule to depend on the actual values of the Xj , we can thus

reduce the expected rank by at least 1.5362 . . . .

Assaf and Samuel-Cahn (1991) study memoryless rules of the form

(2.16) Nc = min{k ≥ 1 : Xk ≤ c/(n − k + c)}.

and find that the limiting value exists for all c > 1 and is minimized by c = 1.9469 · · ·

giving a value of 2.3318 · · · for the expected rank.

§3. Numerical Investigation of Memoryless Rules. Formula (2.1) is quite useful

for numerical evaluation of the optimal rule within the class of memoryless rules of the

form (1.9) with nondecreasing pk . For computational purposes, it is important to notice

that it is multiquadratic; that is, it is quadratic in each variable with the others held fixed.

This is easily observed if we write it as a function of the qk in the following form.

E RN(p) = 1 +
1
2

n∑
k=1

(
k−1∏
i=1

qi

)
(n − k)(1 − qk)2 +

k−1∑
j=1

qj − 2(k − 1)qk




+
1
2

n∑
k=1

q2
k

k−1∑
j=1


k−1∏

i=1
i�=j

qi


 .

(3.1)

It may also be noticed that the coefficient of each q2
k is positive so that (3.1) is convex in

each variable with the others held fixed. For a given p , E RN(p) can be made smaller by

moving any pk toward its argminimum of (3.1) with the other pi , i �= k , held fixed.

We report briefly on the results of a numerical investigation of the optimal value

and the optimal rule within the class of memoryless rules. The optimal value popt of p

may be found by successive approximation as follows. An initial estimate of p is chosen,

(Moser’s rule is a reasonable choice), and an improved choice of p is found by successively
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Table 1. Values of Certain Rules.

n E RÑ E RN̂ E RN(popt)

5 1.644629 1.589185 1.586131

10 1.875204 1.815253 1.810876

20 2.044858 1.994183 1.989000

50 2.185534 2.154156 2.148230

100 2.246813 2.227616 2.221327

200 2.283601 2.272676 2.266170

400 2.305174 2.299233 2.292611

800 2.317578 2.314449 2.307768

evaluating the partial derivatives with respect to the qm for m = 1, . . . , n− 1, solving the

resulting linear equation for qm and moving qm to this root, or at least as far as possible

without violating monotonicity. This is repeated until no significant change is observed.

In Table 1, we compare the returns of the rules N̂ , Ñ , and N(popt). The value of the

optimal rule within the class (1.9) seems to be approaching again a value close to 7/3. In

Table 2, selected values of the optimal rule within the class (1.9) are displayed. The rule

N(popt) seems to be approaching Moser’s rule, N̂ , as n → ∞ .

Extrapolation techniques allow us to estimate the limit of the sequence E RN(popt)

to be 2.32659 · · · . Assaf and Samuel-Cahn (1991) succeed in giving an explicit rule with

the value 2.3267 already very close to this. In the terminology of our paper their rule

Table 2. Certain Values of popt .

n pn−1 pn−2 pn−3 p1 Moser

5 .535825 .391809 .302076 .238507 .258270

10 .528306 .397852 .320840 .134065 .150178

20 .517963 .391693 .319302 .073283 .083608

50 .508435 .383362 .312630 .031612 .036522

100 .504479 .379518 .309072 .016392 .018972

200 .502314 .377351 .306989 .008373 .009704

Moser .500000 .375000 .304688
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corresponds to (2.16) with c being replaced by a polynomial in the (limiting) argument

z = (n − k)/n . (See also Kennedy and Kertz (1990) Section 2.)

§4. Lower Bounds on the Value. We have been unsuccessful at finding any

upper bounds on the values Vn and V for Robbins’ problem other than those given by

E RN(popt) . In this section, we consider a sequence of lower bounds to these values, denoted

by V
(m)
n , and show that V (m) = limn→∞ V

(m)
n converges to V as m → ∞ .

There is a simple argument that gives a lower bound to V of about 1.42 . . . as follows.

Suppose we modify the problem in favor of the decision maker by changing the payoff for

stopping at k to be 1 if Rk = 1 and 2 if Rk > 1. The problem then becomes one of

finding a stopping rule N to minimize P(RN = 1) + 2P(RN > 1) = 2 − P(RN = 1),

or, equivalently, to maximize P(RN = 1). This is just the full-information best-choice

problem solved by Gilbert and Mosteller (1966) and seen to have an asymptotic value of

θ = .580164 . . . . Using the same rule for the modified problem, we have an expected payoff

of 2 − θ = 1.419836 . . .. Since this is the best that can be done in the modified problem,

in the original problem we cannot do better either; that is,

V ≥ 1.419836 . . . . (4.1)

We extend this idea as follows. To make it harder for the decision maker, we count

ranks 1 to m at their value and any higher rank as m + 1. This gives an increasing

sequence of modified payoffs indexed by m , converging monotonically to the actual rank,

Rk(n), as m → n . Specifically, the payoff for stopping at k is

Rk(n,m) = min{m + 1,
n∑

i=1

I(Xi ≤ Xk)}. (4.2)

The decision maker would now only stop at a relative rank less than or equal to m , except

at the very last stage when he must stop.

Let V
(m)
n = infN E RN(n,m) denote the value of this problem. We first show that

V
(m)
n and Vn are monotone in n .
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Theorem 2. The sequences V
(m)
n and Vn are monotone nondecreasing in n .

Proof. We give the proof for Vn , the proof for V
(m)
n being similar. The method

we use compares Vn with how well we can do knowing X(n) , the largest order statis-

tic of X1, . . . ,Xn from the start. For this purpose, let Fk denote the σ -field gener-

ated by X1, . . . ,Xk , and let F (n)
k denote the σ -field generated by X(n),X1, . . . ,Xk for

k = 0, 1, . . . , n , so that both {Fk} and {F (n)
k } are increasing in k , and Fk ⊂ F (n)

k . Let

Cn denote the class of stopping rules, N ≤ n , adapted to {Fk} , and let C′
n denote the

larger class of stopping rules stopping adapted to {F (n)
k } . Then,

Vn = inf
N∈Cn

E RN (n)

≥ inf
N∈C′

n

E RN (n)

= inf
N∈C′

n

E{E{R(n)
N |F (n)

0 }}

(4.3)

In the problem of minimizing E{R(n)
N |F (n)

0 } using N ∈ C′
n , we are given the value of

X(n) , so the optimal rule will never stop on it. Moreover, conditioned on X(n) , the other

Xj are i.i.d. from a uniform distribution on (0,X(n)). This is the original problem with

sample size reduced to n − 1 and distribution changed to the uniform on (0,X(n)). It

has value Vn−1 for all X(n) , and optimal strategy that may be obtained by scaling the

optimal strategy for X(n) = 1, i.e. replacing Xk by Xk/X(n) . Thus, a measurable rule,

N∗ ∈ C′
n may be constructed that achieves the minimum value of Vn−1 = E{R(n)

N∗|F (n)
0 }

for all X(n) . Substitution of this value into (4.3) completes the proof.

From this theorem, we have that V (m) = limn→∞ V
(m)
n exists for all m and that

V = limn→∞ Vn exists.

Theorem 3. V (m) → V as m → ∞ .

Proof. V
(m)
n is monotone nondecreasing in m for each n since Rk(n,m) is a.s. nonde-

creasing in m for each n and k . Then, since V
(n)
n = Vn ,

V (m) = lim
n→∞

V (m)
n ≤ lim

n→∞
V (n)

n = lim
n→∞

Vn = V
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This shows that lim supm→∞ V (m) ≤ V . From Theorem 2, V
(m)
n is monotone nondecreas-

ing in n for each m , so that

V (m) ≥ V (m)
m = Vm → V as m → ∞

so that lim infm→∞ V (m) ≥ V .

We describe briefly the computational problems involved in evaluating V
(m)

n . First we

make a simple modification that improves the lower bound. We count against the decision

maker all better observations that arrive after he has made his choice. This amounts to

replacing the payoff (4.2) by

Yk = 1 + min{m,

k−1∑
i=1

I(Xi < Xk)} + (n − k)Xk. (4.4)

We have replaced the future payoff by its expectation given X1, . . . ,Xk without loss of

generality as far as the decision maker is concerned. (The prophet would object though.)

Let W
(m)
n denote the minimum expected return for this problem, and let W (m) denote

limn→∞ W
(m)
n . We have automatically V

(m)
n < W

(m)
n . When m = 1, this change only

increases the lower bound from V (1) = 1.420 in (4.1) to W (1) = 1.462. With this modifi-

cation too, the decision maker stops only at a relative rank less than or equal to m .

The value function for this problem depends only on the smallest m observations

seen so far, and on k , the number of observations to go. Let Vk(y1, . . . , ym) denote the

minimum expected payoff, minus 1, using (4.4) when there are k observations to go and

m smallest order statistics of the Xj seen so far are 0 < y1 ≤ . . . ≤ ym ≤ 1. It satisfies

the equation

Vk+1(y1, . . . , ym) =
m−1∑
j=0

∫ yj+1

yj

min{kx + j, Vk(y1, . . . , yj , x, yj+1 , . . . , ym−1)} dx

+ (1 − ym)Vk(y1, . . . , ym),

(4.5)

with boundary condition V0 ≡ m or V1(y1, . . . , ym) = m−y1−· · ·−ym , where y0 denotes

0. At the initial stages of the problem when there are not yet m observations, we obtain the
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value by replacing the unobserved order statistics by 1. Thus we seek W
(m)
n = Vn(1, . . . , 1)

+ 1.

Although (4.5) represents a considerable simplification over the original problem, the

computational aspects involved with this approach are still severe. Both the time and

storage requirements for the computations increase exponentially in m . Table 3 contains

the results of some calculations that were carried out for m = 1 through m = 5. We

are indebted to Janis Hardwick and Nicholas Schork of the University of Michigan for the

computations for m = 4 and m = 5. The results for the column of W (m) are extrapolated

from the table.

This pushes the lower bound up from 1.462 when m = 1, to 1.658 for m = 2, to 1.782

for m = 3, to 1.860 at m = 4 and to 1.908 at m = 5.

REMARKS: What does the optimal limiting strategy look like? Is it a memoryless thresh-

old rule? We do not know. For fixed n , the instantaneous reward by selecting a point is a

function of both its relative rank and its magnitude. All other information is redundant.

But the future reward under optimal behavior depends also on the pattern of the previously

observed points especially those close to zero. For example, suppose n = 100, and we have

just observed X20 = .025 which is of relative rank 2. If the best observation is has value

.024, we would be more inclined to continue than if it were .011, say. Similarly, if the next

best three observations were .026, .028, and .029, we would be more inclined to stop than

Table 3. Certain Values of W
(m)
n .

m n = 2 3 5 9 17 W (m)

1 1.2500 1.3242 1.3803 1.4171 1.4385 1.462

2 - 1.3915 1.4991 1.5689 1.6092 1.658

3 - - 1.5509 1.6490 1.7070 1.782

4 - - 1.5710 1.6956 1.7668 1.860

5 - - - 1.7260 1.8090 1.908

Vn 1.2500 1.3915 1.5710
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if the next best observation were .101, say. The question is whether and how the relevant

information can be packed into tractable limiting threshold functions. Being able to do

so would then open the way to the extremal type theorems for threshold-stopped random

variables derived by Kennedy and Kertz (1991, Section 3). Unfortunately, exchangeability

does not seem to be enough to reveal the shape of the optimal threshold function.
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