
A Class of Symmetric Bivariate Uniform Distributions

Thomas S. Ferguson, 07/08/94

A class of symmetric bivariate uniform distributions is proposed for use in statistical
modeling. The distributions may be constructed to be absolutely continuous with
correlations as close to ±1 as desired. Expressions for the correlations, regressions and
copulas are found. An extension to three dimensions is proposed.
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1. Introduction

It is useful in statistical modeling to have tractible multivariate distributions with

given marginals in order to be able to quantify the effect of dependence of the variables

in the model. There are various ways of constructing such distributions. Usually one

maps the random variables to the unit cube using the marginal distribution functions,

and deals with the problem there. The present paper presents a simple method of

constructing bivariate distributions with uniform marginals. The distribution function

corresponding to a distribution on the unit cube with uniform marginals is called

a copula. See the proceedings of a recent conference on the subject, Dall’Aglio et

al. (1991). For various other methods and reviews, see Kimeldorf and Sampson (1975),

Cook and Johnson (1986), Marshall and Olkin (1988), Nelsen (1991) and Kotz and

Seeger (1991).

The method presented here is a variation of the convex sum of shuffles of min as

described in Mikusiński et al. (1991). Let U be a random variable on the unit interval,

[0, 1] with distribution function, G(u). The distribution of (X,Y ) is determined as

follows. First U is chosen from G(u). Then, conditional on U = u, (X,Y ) is chosen

from a uniform distribution on the four line segments that form the boundary of the



rectangle with corners (u, 0), (0, u), (1 − u, 1) and (1, 1 − u). For u = 0, this reduces

to the single line segment from (0, 0) to (1, 1), and for u = 1, this is the line segment

from (0, 1) to (1, 0).

This method provides a large class of bivariate uniform distributions, allowing

treatment of a variety of types of dependence. For example, it is easy to construct a

one-parameter subfamily of distributions indexed by the correlation coefficient ranging

from −1 to +1 with the distributions stochastically continuous in the parameter. In

addition, the method leads to distributions that are symmetric in X and Y, in the sense

that the distribution of (X,Y ) is the same as the distribution of (Y,X) (exchangeabil-

ity) and is the same as the distribution of (1−X, 1−Y ) (central symmetry). It shares

these properties with two important one-parameter families of bivariate uniform dis-

tributions, the family of Plackett (1965), see Johnson and Kotz (1972), and the family

of Frank (1979), studied further in Nelsen (1986) and Genest (1987).

Because of these properties, the distributions are particularly useful for statistical

models where the loss depends on the observations only through their ranks, as for

example in the full-information secretary problem and in some poker models, for in

such models one may assume without loss of generality that the marginal distribu-

tions are uniform. It is also advantageous for arbitrary symmetric distributions on the

plane because if X and Y are transformed by the inverses of symmetric distribution

functions, the resulting distribution is still centrally symmetric. Thus, one may obtain

distributions with normal marginals and symmetric densities that are not elliptically

symmetric.

A related method has been proposed by Marshall (1989). A random variable U on

[0, 1) is chosen, and given U = u, (X,Y ) is chosen uniformly on the union of the two

line segments from (u, 0) to (1, 1 − u) and from (0, 1 − u) to (u, 1). This is a convex

sum of shuffles of min, but since opposite edges of the unit square are identified, this

is best considered as a distribution on the torus. For example, if U gives most of its

mass close to 0 (or 1), then (X,Y ) gives most of its mass close to the diagonal x = y,

including the corners (0, 1) and (1, 0).

Other large classes of bivariate uniform distributions have been constructed. How-

ever, the weighted linear combination method of Johnson and Tenebeim (1981) gen-

erally leads to distributions that are not exchangeable. The important Archimedean

class, studied in Genest and MacKay (1986) and Genest and Rivest (1993), are, except

for the Frank family, not centrally symmetric.



2. Main Properties

If G is absolutely continuous, then the distribution of (X,Y ) as constructed is

absolutely continuous as well.

Theorem 1. Suppose that G is absolutely continuous with density g(u) for u ∈ [0, 1].

Then,

(1) fX,Y (x, y) =
1
2

[g(|x− y|) + g(1− |1− x− y|)] for 0 < x < 1 and 0 < y < 1.

is a joint density on the unit square with uniform marginal distributions.

If g is smooth on [0, 1], the joint density f(x, y) will be be smooth except perhaps

on the diagonal lines of the square. However, we only need only to require that g′(0) = 0

(resp. g′(1) = 0,) in order for f(x, y) to be smooth, i.e. have continuous first derivatives,

along the diagonal x = y (resp. x+ y = 1). (See Examples 1 and 2.) Although we can

make the joint density as smooth as desired, it cannot be made analytic in the square.

Thus, this class of distributions does not contain the families of Plackett or Frank.

For the same reasons, the Farlie-Gumbel-Morgenstern family of quadratic densities,

and the extensions to more general polynomial densities in Kimmeldorf and Sampson

(1976), Johnson and Kotz (1975, 1977) and Cambanis (1977), are also distinct from the

above class. However, with bivariate uniform polynomial densities of fixed degree on

[0, 1]2, correlations arbitrarily close to ±1 cannot be obtained (see for example Huang

and Kotz (1984)).

The correlation and regression structures are easily obtained for these distribu-

tions. For an arbitrary joint distribution of X and Y , Spearman’s coefficient ρ is

defined as 12P(X < X ′, Y < Y ′′)− 3, where (X,Y ), X ′ and Y ′′ are independent, and

X ′ has the same distribution as X and Y ′′ has the same distribution as Y . For bivari-

ate uniform distributions, Spearman’s ρ reduces to the Pearson correlation coefficient,

ρ = 12EXY − 3. Kendall’s τ is defined as τ = 4P(X < X ′, Y < Y ′)− 1, where (X,Y )

and (X ′, Y ′) are independent and identically distributed.

Theorem 2. (a) ρ = 1− 6E(U2) + 4E(U3).

(b) τ = 1− 2EU2 − 2E max(U,U ′)(1−max(U,U ′)), where U and U ′ are i.i.d. from g.

We can achieve any correlation between −1 (when U puts all its mass on 1),

through +1 (when U gives all its mass to 0.). When U has the uniform distribution

on [0, 1], then X and Y are independent, as can be seen from the joint density. If g is

symmetric about 1/2, the resulting distributions provide simple models of dependent

uncorrelated variables. (See Examples 3 and 4.)



The description of the conditional distribution of Y given X, found in the next

theorem, follows immediately from the definition of the joint distribution of X and

Y given in the second paragraph. It also suggests a simple method of Monte Carlo

sampling from this joint distribution. Namely, take X from a uniform distribution on

(0,1), choose U independently from G, and toss independently a fair coin. On heads,

let Y = |U − X|, and on tails let Y = 1 − |1 − U − X|. From this description of

the conditional distribution of Y given X, the regression is easily found. We also give

the median regression as more in keeping with the non-parametric description of these

distributions.

Theorem 3. The conditional distribution of Y given X = x is the distribution of

Vx =
{
|U − x| with probability 1/2
1− |1− U − x| with probability 1/2

.

(a) E(Y |X = x) = (1/2)(E|U − x|+ 1− E|1− U − x|).
(b) m(x) = med(Y |X = x) = med(Vx). If G(u) is continuous and increasing, then for

x ≤ 1/2, m(x) is any root of the equation, G(m+x)+G(m−x) = 1 for x ≤ m ≤ 1−x.

For x > 1/2, m(x) may be found by central symmetry: m(x) = 1−m(1− x).

The corresponding copula is as follows.

Theorem 4. The distribution function of X and Y is

FX,Y (x, y) = E med{max(0, x+ y − 1),
x+ y − U

2
,min(x, y)}

where med{a, b, c} represents the median of the three numbers, a, b and c.

One can determine g(u) from f(x, y), by g(u) = f(u, 0). This should allow us to

check if a given copula is in this class. For example, we also have for 0 ≤ x ≤ 1/2

f(x, x) = (1/2)[g(0) + g(2x)] and f(0, 0) = g(0), so that provided f(0, 0) 6=∞,

f(x, 0) = g(x) = 2f(x/2, x/2) − f(0, 0) for 0 ≤ x ≤ 1.

3. Examples.

Example 1. g(u) = 2u. The density of (X,Y ) is f(x, y) = |x− y|+ 1− |1−x− y|.
See Fig 1. Spearman’s ρ is −2/5, and Kendall’s τ is −4/15 = 2

3
ρ. The regression of Y

on X is E(Y |X = x) = (2/3)−x2 +(2/3)x3, and median regression is m(x) =
√
.5− x2

for x < 1/2, and m(x) = 1−
√
−.5 + 2x− x2 for x > 1/2. The copula is

F (x, y) =


x(y2 + 1

3x
2) if x ≤ y and x+ y ≤ 1

y(x2 + 1
3y

2) if y ≤ x and x+ y ≤ 1
xy − x(1 − x)(1 − y) + 1

3 (1− y)3 if x ≤ y and x+ y ≥ 1
xy − y(1 − x)(1 − y) + 1

3
(1− x)3 if y ≤ x and x+ y ≥ 1
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Example 2. g(u) = 6u2 − 4u3. f(x, y) = 6x(1− y) + 6y(1− x)− 2|x− y|3 − 2(1−
|1− x− y|3). See Fig 2. ρ = −17/35, τ = −34/105 = 2

3ρ.

Example 3. g(u) = 6u(1− u). See Fig 3. Correlation zero, regression constant.

Example 4. g(u) = 2−6u(1−u). See Fig 4. Correlation zero, regression constant.

4. Proofs

Since conditional on U = u, X has a uniform distribution on [0, 1], we see that U

and X are independent and that X has a uniform distribution on [0, 1]. Similarly, Y is

independent of U , and Y has a uniform distribution on [0, 1]. If g(u) denotes the density

of U , the joint density of (X,Y ) at the point (x, y) is the sum of the contributions of

the two lines through (x, y) with slopes +1 and −1. The line with slope +1 is given by



Fig 3.
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If the distribution functions are called copulas, might the densities be called cupolas?

Fig 4.
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|x− y| = u. The line with slope −1 is given by x+ y = u or x+ y = 2− u depending

on whether x+ y < 1 or x + y > 1. This is the line 1 − |1 − x − y| = u. From these

observations, the joint density (1) follows.

To find the correlation between X and Y , first note that the mean of X and Y is

1/2, and the variance is 1/12. To evaluate E(XY ), we first find E(XY |U = u).



E(XY |U = u) =
1
2

[∫ u

0

x(u− x)dx +
∫ 1

u

x(x− u)dx

+
∫ 1−u

0

x(x + u)dx+
∫ 1

1−u
x(2 − x− u)dx

]
=
u3

3
− u2

2
+

1
3

Hence, E(XY ) = E(U3)/3−E(U2)/2+1/3. The covariance of X and Y is Cov(X,Y ) =

E(XY )− E(X)E(Y ) = E(U3)/3− E(U2)/2 + 1/12, and the correlation is this divided

by the common variance, which gives Theorem 2(a).

To compute Kendall’s τ , we take U from g and (X,Y ) on the unit square as above,

and independently take U ′ from g and (X ′, Y ′) as above. Kendall’s τ is τ = 4P(X <

X ′, Y < Y ′)− 1. It is fairly easy to make the computations

P(X < X ′, Y < Y ′|U,U ′) =
1
4

[(1− U)2 + (1− U ′)2 + 2 min(U,U ′)(1 −min(U,U ′))]

Then multiplying by 4, subtracting 1 and taking the expectation over U and U ′ gives

the result.

To compute F (x, y), first assume that x ≤ y and x+y ≤ 1. From the representation

of the distribution given in Theorem 3, we have

2F (x, y) =
∫ x

0

|P (|U − z| ≤ y)dz +
∫ x

0

P(1− |1− U − z| ≤ y)dz

=
∫ x

0

P(U ≤ y + z)dz +
∫ x

0

P(U ≤ y − z)dz since z ≤ y and y + z ≤ 1

=
∫ x

0

∫ 1

0

[I(u ≤ y + z) + I(u ≤ y + z)] dG(u)dz

=
∫ 1

0

∫ x

0

[I(u ≤ y + z) + I(u ≤ y + z)] dz dG(u)

=
∫ 1

0

[med(0, x+ y − u, x) + med(0, y − u, x)] dG(u)

= E med(0, x+ y − U, 2x)

Now use exchangeability to find F (x, y) = E med(0, (x + y − U)/2, y) for y ≤ x and

x+ y ≤ 1, so that F (x, y) = E med(0, (x+ y−U)/2,min(x, y)) for x+ y ≤ 1. Now use

central symmetry to find for x+ y ≥ 1,

F (x, y) = F (1− x, 1 − y) + x+ y − 1

= E med(0,
1− x+ 1− y − U

2
,min(1 − x, 1− y)) + x+ y − 1

= E med(x+ y − 1,
x+ y − U

2
,min(y, x))



So in all cases, F (x, y) = E med(max(0, x+ y − 1), (x+ y − U)/2,min(x, y)).

5. Three dimensions

The extension to three dimensions is probably not unique, but here is one analo-

gous way to construct (X,Y,Z) with uniform marginals.

We choose an arbitrary point (u, v, 0) in the xy-plane of the unit cube, [0, 1]3. We

construct a piecewise linear path moving away from (u, v, 0) into the interior of the

cube using initial slopes (+1,+1,+1) and then bouncing off the walls of the cube with

angle of incidence equal to the angle of reflection until we return to the starting point.

This path touches each of the six faces of the cube exactly once. If a point (X,Y,Z), is

chosen at random on this path according to a uniform distribution, then the marginal

distributions of X, Y and Z are all uniform. Therefore, if we first choose (U, V ) at

random on the unit square and proceed as above, the marginal distributions of X, Y

and Z are still uniform, and each of X, Y and Z is independent of (U, V ). If (U, V )

has a density, g1(u, v), then the density of (X,Y,Z) exists and is

(2) f
(1)
X,Y,Z(x, y, z) =

1
2

[g1(|z − x|, |z − y|) + g1(1− |1− z − x|, 1− |1− z − y|)]

From this, we can obtain a density for uniform X, Y and Z that has all three correla-

tions arbitrarily close to +1, by choosing g1 to give most of its mass arbitrarily close

to (0, 0). Similarly we can obtain

Corr(X,Y ) ≈ +1 and Corr(X,Z) = Corr(Y,Z) ≈ −1

by having g1 give most of its mass near (1, 1),

Corr(Y,Z) ≈ +1 and Corr(X,Y ) = Corr(X,Z) ≈ −1

by having g1 give most of its mass near (1, 0),

Corr(X,Z) ≈ +1 and Corr(X,Y ) = Corr(Y,Z) ≈ −1

by having g1 give most of its mass near (0, 1).

However, there is a completely different path, starting at (u, v, 0) but with initial

slopes (+1,−1,+1), that hits the other five walls and returns. If we choose (U, V ) at

random according to a density g2(u, v) on the unit square, and then choose (X,Y,Z) at

random uniformly on this path, we arrive at a second, complementary, joint distribution

of (X,Y,Z) with density

(3) f
(2)
X,Y,Z(x, y, z) =

1
2

[g2(1− |1− z − x|, |z − y|) + g2(|z − x|, 1− |1− z − y|)].

This density could be obtained from (2) as the density of (X,−Y,Z).



We may mix these two densities arbitrarily to get a larger class of densities with

uniform marginals,

(4) f(x, y, z) = πf(1)(x, y, z) + (1− π)f(2)(x, y, z)

for arbitrary 0 ≤ π ≤ 1. Since all of the six-sided paths touch each face of the cube

exactly once, it does not matter which of the six faces we use as the domain of (U, V );

we get the same family of distributions.

Also, since each of the six-sided paths is centrally symmetric, all distributions of

this family are centrally symmetric; that is , (X,Y,Z) has the same distribution as

(1 − X, 1 − Y, 1 − Z), as is easily seen from the form of the distributions in (2) and

(3). However, these distributions are not necessarily exchangeable. In general, we do

not obtain exchangeability in the family of distributions given by (2). We can get

exchangeability in X and Y in (2) by assuming that g(u, v) is exchangeable. Such a

condition gives equal weight to the paths starting at (u, v, 0) and (v, u, 0). To obtain

exchangeability in X, Y and Z, we must give equal weight to the six paths starting at

(u, v, 0), (v, u, 0), (u, 0, v), (v, 0, u), (0, u, v) and (0, v, u) with initial slopes (+1,+1,+1).

Although we can get such distributions using (4), it puts complicated restrictions on

g1 and g2. It is simpler to choose points (u, v, 0) and (v, u, 0) on the xy-plane, points

(u, 0, v) and (v, 0, u) on the xz-plane and points (0, u, v) and (0, v, u) on the yz-plane

according to the same exchangeable distribution g(u, v), and use the analogue of (2)

for each of them. We arrive at the class of distributions with densities

(5)

f(x, y, z) =
1
6

[g(|z − x|, |z − y|) + g(1− |1− z − x|, 1− |1− z − y|)

+ g(|y − x|, |y − z|) + g(1− |1− y − x|, 1− |1− y − z|)

+ g(|x− z|, |x− y|) + g(1− |1− x− z|, 1 − |1− x− y|)]

where g(u, v) is a density on [0, 1]2 such that g(u, v) = g(v, u). It is easy to see directly

that such distributions are exchangeable.
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