
The Canadian Journal of Statistics

Vol. 28, No. ?, 2000, Pages ???-???

La revue canadienne de statistique

Kendall’s tau for Serial Dependence

Thomas S. FERGUSON, Christian GENEST and Marc HALLIN

Key words and phrases: Asymptotic relative efficiency; autocorrelation; Kendall’s
tau; rank procedures; Spearman’s rho; tests of independence; time series.
AMS 1991 subject classifications: Primary 62M10, 90A20; secondary 62G10, 60F05.

ABSTRACT

The authors show how Kendall’s tau can be adapted to test against serial dependence

in a univariate time series context. They provide formulas for the mean and variance of

circular and non-circular versions of this statistic and they prove its asymptotic normality

under the hypothesis of independence. They present also a Monte Carlo study comparing

the power and size of a test based on Kendall’s tau to that of competing procedures

based on alternative parametric and nonparametric measures of serial dependence. In

particular, their simulations indicate that Kendall’s tau outperforms Spearman’s rho in

detecting first-order autoregressive dependence, despite the fact that these two statistics

are asymptotically equivalent under the null hypothesis.

RÉSUMÉ

Les auteurs montrent comment le tau de Kendall peut être adapté pour tester la présence

de dépendance sérielle dans une série chronologique univariée. Ils déterminent l’espérance

et la variance de versions circulaire et non-circulaire de cette statistique et en démontrent

la normalité asymptotique sous l’hypothèse d’indépendance. Une étude de Monte-Carlo

leur permet aussi de comparer le seuil et la puissance d’un test fondé sur cette statis-

tique à celle de tests concurrents s’appuyant sur d’autres mesures paramétriques et non

paramétriques de dépendance sérielle. Leurs simulations indiquent entre autres que le tau

de Kendall détecte plus facilement la présence de dépendance autorégressive de premier

ordre que le rho de Spearman, bien que ces deux statistiques soient asymptotiquement

équivalentes sous l’hypothèse d’indépendance.

1. INTRODUCTION

Testing for randomness against serial dependence is a fundamental problem in time
series analysis. To determine whether stock prices or exchange rates form a random
walk, for instance, statistical procedures must be used to see whether successive
changes are mutually independent. Correlogram-based methods are traditionally
used for this purpose, but while they remain valid under fairly general distributional
assumptions, these techniques typically do not allow for locally and asymptotically
optimal inference beyond Gaussian linear processes.
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In the absence of any information on the distribution of the series under study,
rank-based methods offer an obvious alternative to traditional correlograms. Their
robustness and excellent performance in small and large samples have been recog-
nized by a number of authors; the surveys by Hallin & Puri (1992) and Hallin &
Werker (1999) provide fairly complete introductions to the subject.

Given a sequence X1, . . . , Xn of n ≥ 3 continuous random variables and their as-
sociated ranks R1, . . . , Rn, nonparametric measures of first-order serial dependence
are generally based on the pairs

(R1, R2), (R2, R3), . . . , (Rn−1, Rn), (1)

possibly augmented with (Rn, R1), in which case the statistic is termed circular.
Variants of the Spearman-Wald-Wolfowitz autocorrelation statistic, for example,
involve the sample correlation of these pairs or the sample correlation of adequate
functions thereof. Such is also the case, among others, for the van der Waerden,
the Wilcoxon, and the Laplace or median test-score autocorrelation coefficients
(Hallin & Puri 1988).

The purpose of this paper is to investigate a serial version of Kendall’s tau as
an alternative to these rank-based measures of serial dependence. For the sake of
simplicity, the presentation concentrates on the first-order case or lag-one serial
dependence, though higher-order versions are considered in the final section.

Taking the subscripts to be written modulo n, so that Rn+1 ≡ R1, a serial
version of Kendall’s tau may be defined, in the circular case, as

τn = 1− 2N
/(

n

2

)
= 1− 4N

n(n− 1)
, (2)

where N is the number of discordances, that is, the number of pairs (Ri, Ri+1)
and (Rj, Rj+1) that satisfy either Ri < Rj and Ri+1 > Rj+1, or Ri > Rj and
Ri+1 < Rj+1. More specifically, one has

N =
n−1∑
i=1

n∑
j=i+1

{I(Ri < Rj, Ri+1 > Rj+1) + I(Ri > Rj, Ri+1 < Rj+1)} (3)

=
n∑

i=1

n∑
j=1

I(Ri < Rj, Ri+1 > Rj+1), (4)

where I(A) represents the indicator function of the set A. Substituting n− 1 for n
in expressions (2) and (4) yields the non-circular version of τ and N .

A test against first-order serial dependence based on (2) is introduced in Sec-
tion 2, where finite-sample expressions for the mean and variance of the circular
and non-circular versions of τn are given under the null hypothesis of randomness.
Asymptotic normality of these statistics is also proved, and the quality of the limit-
ing approximation is then investigated in Section 3. The simulation results reported
in Section 4 illustrate the excellent performance of the new test, both in terms of
size and power. In particular, Kendall’s tau is seen to outperform Spearman’s rho
in detecting first-order autoregressive dependence, despite the fact, established in
Section 5, that these two statistics are asymptotically equivalent under the null
hypothesis, and hence also under local alternatives of serial dependence. Higher-
order extensions are briefly described in Section 6. All proofs are relegated to a
series of appendices.
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2. A TEST OF RANDOMNESS BASED ON KENDALL’S TAU

Consider a series X1, . . . , Xn of n ≥ 3 observations, and suppose that one wished to
test for randomness against first-order serial dependence, using the nonparametric
statistic τn defined in (2). As is traditional in the time series literature, the term
randomness refers here to mutual independence between the Xi’s, which are also
assumed throughout to arise from the same continuous distribution, so that the
probability of tied ranks is zero. It should be noted, however, that the present
developments would remain equally valid under the more general assumption of
exchangeability.

If positive dependence were suspected, an exact one-sided test based on the se-
rial version of Kendall’s tau would reject the null hypothesis of randomness when-
ever Tn = {τn−E(τn)}/

√
Var(τn) is larger than some critical value tn,α such that,

under H0, P (Tn > tn,α) = α, a predetermined level. If the series were sufficiently
long, or if one had confidence that the asymptotic distribution of Tn is an appro-
priate approximation, one could also reject the null hypothesis for Tn > tα, where
tα is such that limn→∞ P (Tn > tα) = α. The case of an alternative of negative
serial dependence can be treated mutatis mutandis.

To carry out the above procedure, it is necessary to derive the mean and the
variance of τn under the null hypothesis of randomness, and to determine its asymp-
totic distribution. This information is summarized in the following propositions,
whose proofs are given in Appendices A and B, respectively. The results cover both
the circular and the non-circular versions of τn. Although time series applications
of the test would typically be based on the non-circular statistic, the other version
could be considered in situations when the process is defined on the circle; cf., e.g.,
Roy & Dufour (1974) or Dufour & Roy (1976).

Proposition 1. Under the null hypothesis of randomness of a series of length
n ≥ 3, the circular and non-circular versions of τn have the same mean, viz.,

E(τn) = − 2
3(n− 1)

= O(1/n),

but different variances. In the circular case, Var(τn) = 0 when n = 3 and

Var(τn) =
20n3 − 14n2 − 98
45n2(n − 1)2

=
4
9n

+ o(1/n),

for n ≥ 4. In the non-circular case, Var(τn) = 8/9 when n = 3 and

Var(τn) =
20n3 − 74n2 + 54n+ 148

45(n− 1)2(n − 2)2
=

4
9n

+ o(1/n),

for n ≥ 4.

Proposition 2. Under the null hypothesis of randomness, the circular and non-
circular versions of

√
nτn are asymptotically distributed as normal random variables

with mean zero and variance 4/9.

As shown in the following section, the quality of this approximation is excellent
for all samples of size n > 10, so that the asymptotic critical values tα of the one-
sided described above can be taken as the (1−α)-quantile of the standard normal
distribution.
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3. DISTRIBUTION OF τn FOR SMALL n AND QUALITY OF THE ASYMPTOTIC
APPROXIMATION

It is of interest to know when a series is sufficiently long that the asymptotic null
distribution of τn or N may be used in testing against first-order serial dependence.
To investigate this issue, the exact distribution of the number N of discordances
was computed for series of length n ranging from 3 to 11 under the assumption of
mutual independence between the observations. The results are given in Tables 1
and 2 for the non-circular and circular versions of N , respectively.

Table 1: Table of distribution of the number N of discordances for non-circular
autocorrelation. Tabled is Pn(N ≤ x). The last column provides a normal

approximation to P10(N ≤ x) using the mean and variance given in
Proposition 1, with continuity correction.

x\n 3 4 5 6 7 8 9 10 approx.

0 0.333 0.083 0.017 0.003 0.000 0.000 0.000 0.000 0.000
1 1.000 0.250 0.050 0.008 0.001 0.000 0.000 0.000 0.000
2 0.833 0.167 0.031 0.005 0.001 0.000 0.000 0.000
3 1.000 0.193 0.086 0.013 0.002 0.000 0.000 0.000
4 0.767 0.275 0.040 0.006 0.001 0.000 0.000
5 0.967 0.447 0.116 0.015 0.002 0.000 0.001
6 1.000 0.697 0.212 0.043 0.006 0.001 0.001
7 0.831 0.375 0.083 0.796 0.002 0.003
8 0.961 0.512 0.162 0.903 0.004 0.006
9 0.994 0.702 0.244 0.963 0.009 0.011
10 1.000 0.813 0.380 0.096 0.018 0.020
11 0.917 0.490 0.161 0.032 0.034
12 0.966 0.641 0.229 0.057 0.056
13 0.994 0.742 0.332 0.087 0.087
14 0.999 0.848 0.424 0.137 0.130
15 1.000 0.907 0.543 0.188 0.186
16 0.960 0.636 0.265 0.255
17 0.982 0.742 0.336 0.335
18 0.996 0.814 0.432 0.423
19 0.999 0.885 0.511 0.515
20 1.000 0.927 0.610 0.607
21 1.000 0.963 0.684 0.693
22 0.981 0.768 0.769
23 0.993 0.826 0.834
24 0.997 0.884 0.885
25 1.000 0.920 0.924
26 1.000 0.953 0.952
27 1.000 0.971 0.971
28 1.000 0.986 0.984
29 0.993 0.991
30 0.997 0.995
31 0.999 0.998
32 1.000 0.999
33 1.000 1.000
34 1.000 1.000
35 1.000 1.000
36 1.000 1.000

Both tables include a column which shows that for n > 10, the probabilities
derived from the asymptotic distribution with continuity correction are sufficiently
precise for practical purposes. Reliance on Tables 1 and 2 is recommended for
series of length 10 or less, however.

Note that no information is lost in Table 2 by reporting Pn(N ≤ x+ n− 1) for
even values of x only. This is because it may be verified that in the circular case,
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(i) N assumes only even values if n is odd, and vice versa;

(ii) n− 1 ≤ N ≤ [n2/2]− n+ 1, where [x] denotes the integer part of x.

It may actually be seen that the lower bound in (ii) is attained when the Xi’s
are monotone increasing (i.e., Ri = i for 1 ≤ i ≤ n), while the upper bound obtains
when R1 = 1, R2 = n, R3 = 2, R4 = n − 1, . . ., Rn = [n/2] + 1. Compare with
Hallin et al. (1992).

Table 2: Table of distribution of the number N of discordances for circular
autocorrelation. Tabled is Pn(N ≤ x+ n− 1). The last column provides a normal

approximation to P11(N ≤ x+ n− 1) using the mean and variance given in
Proposition 1, with continuity correction.

x\n 3 4 5 6 7 8 9 10 11 approx.

0 1.000 0.667 0.333 0.133 0.044 0.012 0.003 0.001 0.000 0.001
2 1.000 0.750 0.400 0.167 0.057 0.017 0.004 0.001 0.002
4 1.000 0.767 0.411 0.169 0.057 0.016 0.004 0.006
6 0.950 0.692 0.360 0.144 0.047 0.013 0.016
8 1.000 0.878 0.579 0.283 0.108 0.034 0.036
10 0.975 0.775 0.457 0.206 0.074 0.074
12 1.000 0.907 0.637 0.336 0.139 0.136
14 0.976 0.796 0.489 0.231 0.226
16 0.996 0.903 0.644 0.348 0.343
18 1.000 0.963 0.777 0.480 0.477
20 0.990 0.877 0.614 0.614
22 0.999 0.942 0.735 0.738
24 1.000 0.977 0.834 0.838
26 0.993 0.906 0.909
28 0.998 0.953 0.953
30 1.000 0.980 0.979
32 1.000 0.993 0.991
34 0.998 0.997
36 1.000 0.999
38 1.000 1.000
40 1.000 1.000

4. SIMULATION STUDY OF τn’S PERFORMANCE IN SMALL SAMPLES

Monte Carlo experiments comparing the performance of several parametric and
nonparametric tests of first-order serial dependence have already been reported by
Hallin & Mélard (1988). The same protocol was used here to compare, at the
α = 5% nominal level, the power of the τn-based one-sided test of independence
to that of

(a) four alternative rank-based procedures, namely the nonrandomized van der
Waerden, Wilcoxon, Laplace and Spearman-Wald-Wolfowitz (or ρn) tests;

(b) three versions of the traditional parametric test based on the classical first-
order autocorrelation coefficient, namely those of Moran (1948), Ljung & Box
(1978), and Dufour & Roy (1985).

The readers may refer to the paper by Hallin and Mélard for a precise description
of these procedures.
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Table 3: Percentage of rejection of the null hypothesis of randomness under
first-order autoregressive dependence Xi − θXi−1 = εi for one-sided tests at the

5% level applied to series of length n = 20 when the innovations εi form a random
sample from the normal, the logistic, the Laplace or the Cauchy distribution.

Density Statistic θ = 1/4 θ = 1/8 θ = 1/16 θ = 1/32 θ = 0

Normal
van der Waerden 23.9 11.7 7.8 6.0 4.7
Wilcoxon 23.7 11.5 7.9 6.0 4.8
Laplace 18.7 9.9 7.2 6.3 5.2
ρn 19.1 10.4 6.9 5.6 4.6
τn 23.5 12.0 7.9 6.2 5.1
Ljung-Box 18.3 7.8 4.7 3.7 2.8
Moran 26.1 12.8 8.2 6.3 4.9
Dufour-Roy 23.3 11.1 6.7 5.2 4.1

Logistic
van der Waerden 25.0 12.0 8.0 6.1 4.7
Wilcoxon 25.3 12.1 8.0 6.1 4.8
Laplace 20.9 10.7 7.5 6.4 5.2
ρn 19.9 10.7 6.9 5.6 4.6
τn 24.5 12.5 8.0 6.2 5.1
Ljung-Box 18.3 7.5 4.4 3.5 2.6
Moran 25.8 12.5 7.6 6.0 4.6
Dufour-Roy 22.9 10.9 6.5 4.9 3.8

Laplace
van der Waerden 27.2 13.2 8.5 6.3 4.7
Wilcoxon 28.6 14.0 8.8 6.4 4.8
Laplace 26.2 13.4 8.6 6.7 5.2
ρn 21.5 11.6 7.3 5.8 4.6
τn 27.7 13.8 8.7 6.5 5.1
Ljung-Box 17.5 7.0 4.1 3.0 2.4
Moran 25.4 11.7 7.2 5.6 4.4
Dufour-Roy 22.6 9.9 5.9 4.6 3.5

Cauchy
van der Waerden 48.7 25.7 15.3 9.7 4.7
Wilcoxon 53.3 28.3 16.5 10.7 4.7
Laplace 47.6 26.2 15.9 10.2 5.2
ρn 38.4 19.5 12.2 8.5 4.6
τn 51.9 26.6 15.7 10.2 5.1
Ljung-Box 10.1 3.4 2.1 1.6 1.4
Moran 15.9 5.7 3.5 2.8 2.1
Dufour-Roy 13.3 4.7 2.9 2.3 1.8

In total, 5,000 pseudo-random, white noise series of length n = 20, 50, and
100 were generated from the normal, the logistic, the Laplace (or double exponen-
tial), and the Cauchy distributions. Using these 5, 000× 4 × 3 = 60, 000 series of
innovations εi, a corresponding number of AR(1) series were constructed by setting

X1 = (1− θ2)−1/2ε1, Xi = θXi−1 + εi, i = 2, . . . , n.

As in Hallin & Mélard (1988), the powers of the tests were compared under
alternative hypotheses of the form θ = 2−j, with j = 2, . . . , 5. The results are
summarized in Tables 3–5, whose last column gives the observed level of the tests
under the null hypothesis θ = 0. Except for the power figures involving Kendall’s
statistic or the Cauchy density, which are new, the results closely match the figures
already reported by Dufour & Roy (1985) and Hallin & Mélard (1988). As in the
latter study, the standard error is no larger than 0.7% throughout.
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Table 4: Percentage of rejection of the null hypothesis of randomness under
first-order autoregressive dependence Xi − θXi−1 = εi for one-sided tests at the

5% level applied to series of length n = 50 when the innovations εi form a random
sample from the normal, the logistic, the Laplace or the Cauchy distribution.

Density Statistic θ = 1/4 θ = 1/8 θ = 1/16 θ = 1/32 θ = 0

Normal
van der Waerden 50.4 20.8 10.9 7.2 4.7
Wilcoxon 49.7 20.0 10.7 7.2 4.7
Laplace 37.0 16.3 9.2 6.4 4.6
ρn 44.9 18.5 9.9 7.1 4.9
τn 48.5 19.7 10.4 6.9 4.6
Ljung-Box 46.1 17.4 8.4 5.3 3.6
Moran 51.7 21.2 11.4 7.4 4.9
Dufour-Roy 50.5 20.2 10.8 6.9 4.6

Logistic
van der Waerden 52.4 21.3 11.1 7.1 4.7
Wilcoxon 53.7 21.8 11.1 7.3 4.7
Laplace 42.5 18.2 10.0 6.8 4.6
ρn 47.3 19.3 10.1 7.3 4.9
τn 51.3 20.7 10.8 7.0 4.7
Ljung-Box 46.4 17.1 8.2 5.1 3.5
Moran 52.0 21.0 11.0 7.0 4.6
Dufour-Roy 50.6 20.1 10.4 6.5 4.4

Laplace
van der Waerden 57.3 23.4 12.2 7.4 4.7
Wilcoxon 61.0 25.3 12.4 7.8 4.7
Laplace 55.9 25.7 13.0 8.1 4.6
ρn 53.0 21.8 11.2 7.6 4.9
τn 58.3 23.4 11.6 7.5 4.6
Ljung-Box 46.2 16.5 7.7 5.0 3.2
Moran 52.4 20.9 10.2 6.9 4.6
Dufour-Roy 51.2 19.9 9.6 6.5 4.2

Cauchy
van der Waerden 88.1 54.4 28.2 15.5 4.7
Wilcoxon 91.5 61.4 32.7 16.9 4.7
Laplace 88.1 56.7 30.7 16.9 4.6
ρn 83.7 48.2 23.6 13.1 4.9
τn 88.8 53.9 26.5 13.8 4.6
Ljung-Box 44.6 6.8 3.4 2.5 1.7
Moran 62.9 8.7 4.3 3.2 2.3
Dufour-Roy 60.0 8.2 4.1 3.1 2.1

A glaring observation is that while all rank-based tests hold their nominal level
quite well under the various distributional scenarios, such is not the case for the
parametric tests, even under normality. This difficulty, which persists for all distri-
butions and sample sizes in the case of the Ljung-Box test, reiterates the already
well documented reliability and robustness of rank-based tests, thereby providing
strong motivation for favouring them over classical competitors.

Bearing in mind that the van der Waerden, Wilcoxon and Laplace statistics
are locally and asymptotically optimal for the normal, logistic and Laplace den-
sities, the omnibus test based on Kendall’s statistic is seen to be close to best
in most circumstances. Furthermore, it dominates systematically the Spearman-
Wald-Wolfowitz test, often by a wide margin. This is more surprising, in view of
the local asymptotic equivalence between these two statistics, as established in the
following section. This phenomenon is due, most probably, to the non-local nature
of the alternatives considered.
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Table 5: Percentage of rejection of the null hypothesis of randomness under
first-order autoregressive dependence Xi − θXi−1 = εi for one-sided tests at the
5% level applied to series of length n = 100 when the innovations εi form a
random sample from the normal, the logistic, the Laplace or the Cauchy

distribution.

Density Statistic θ = 1/4 θ = 1/8 θ = 1/16 θ = 1/32 θ = 0

Normal
van der Waerden 79.2 33.9 15.0 9.4 5.2
Wilcoxon 77.0 33.3 15.2 9.2 5.4
Laplace 61.5 25.8 12.6 8.5 5.6
ρn 73.3 30.5 15.0 8.9 5.1
τn 75.7 32.2 15.4 9.3 5.3
Ljung-Box 76.7 31.0 13.1 7.8 4.4
Moran 79.7 34.8 15.1 9.2 5.5
Dufour-Roy 79.3 34.2 14.7 8.9 5.3

Logistic
van der Waerden 80.8 34.8 15.4 9.5 5.2
Wilcoxon 81.6 35.8 16.1 9.5 5.4
Laplace 69.3 29.4 13.8 9.1 5.6
ρn 76.5 32.1 15.4 9.0 5.1
τn 79.1 34.0 15.9 9.6 5.3
Ljung-Box 77.1 30.8 12.8 7.7 4.5
Moran 80.3 34.8 15.2 8.9 5.5
Dufour-Roy 79.8 34.0 14.8 8.7 5.2

Laplace
van der Waerden 84.5 38.4 16.6 10.1 5.2
Wilcoxon 88.0 42.4 18.5 10.3 5.4
Laplace 84.3 42.6 19.9 11.1 5.6
ρn 82.9 36.4 17.3 9.8 5.1
τn 85.0 38.8 17.5 10.3 5.3
Ljung-Box 77.4 29.7 12.4 7.2 4.1
Moran 80.6 34.3 14.7 8.6 5.0
Dufour-Roy 80.0 33.6 14.2 8.3 4.8

Cauchy
van der Waerden 99.1 82.2 47.7 24.7 5.2
Wilcoxon 99.5 87.4 55.6 29.2 5.4
Laplace 99.3 85.6 53.8 28.6 5.6
ρn 98.6 76.9 41.0 21.1 5.1
τn 99.1 79.9 43.7 22.3 5.3
Ljung-Box 90.3 13.3 4.5 3.1 2.2
Moran 91.8 16.6 5.4 3.4 2.5
Dufour-Roy 91.6 15.7 5.3 3.4 2.4

5. ASYMPTOTIC EQUIVALENCE BETWEEN τn AND ρn

It has been known since the work of Daniels (1944) that Spearman’s rho and
Kendall’s tau are asymptotically equivalent, when computed from a random sample
of bivariate data. The following proposition, whose proof is given in Appendix C,
extends this finding to the serial context.

Proposition 3. Under the null hypothesis of randomness, the difference between
3τn/2 and ρn is oP (n−1/2).

To illustrate this result, consider testing for randomness against the local se-
quence of AR(1) alternatives as defined by

Xi = n−1/2aXi−1 + εi (5)
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in terms of an arbitrary real a and mutually independent innovations εi from a
common density f with zero mean. Since Hallin et al. (1985) have shown under
mild assumptions on f that alternatives of this form are contiguous to the null
hypothesis of randomness (Hájek & Šidák 1967, Chapter 6), Proposition 3 implies
that

√
n(3τn − 2ρn) is oP (1) whenever the data arise from (5), whether a = 0 or

not.
Following Hallin et al. (1985), one then has

√
n3τn/2 ≈

√
nρn

L−→ N
(
a
√
ef , 1

)
,

with

ef = 144
{∫ 1

0

xF−1(x)dx
}2 {∫ 1

0

x
f ′{F−1(x)}
f{F−1(x)} dx

}2

, (6)

where F stands for the distribution function associated with f . Since the tradi-
tional first-order autocorrelation coefficient, duly multiplied by

√
n, converges in

distribution to a N(a, 1), one can conclude that the circular and non-circular ver-
sions of τn and ρn have the same asymptotic relative efficiency, ef , with respect to
classical correlogram methods. As is well known, formula (6) yields 9/π2 ≈ 0.912,
1 and (9/8)2 ≈ 1.266 when f is normal, logistic and Laplace, respectively. More
recently, Hallin & Tribel (1999) have shown that

inf
f
(ef ) = 3π2/32 ≈ 0.856,

thereby providing a serial analogue to the celebrated 0.864 lower bound given by
Hodges & Lehmann (1956) for the asymptotic relative efficiency of Wilcoxon’s
statistic with respect to Student’s test statistic.

6. HIGHER-ORDER EXTENSIONS

While the serial version of Kendall’s tau considered in (2) provides an adequate
tool for testing against first-order serial dependence, it is unfit in situations where
a dependence of higher order is suspected. To test against dependence at lag
k = 2, . . . , n− 1, an obvious extension of the circular statistic would be defined as
in (2), but with

Nk =
n∑

i=1

n∑
j=1

I (Ri < Rj, Ri+k > Rj+k) .

In the non-circular case, one would have

τk,n = 1− 2N
/(

n− k

2

)
= 1− 4Nk

(n− k)(n− k − 1)
,

but with n replaced by n− k in the above formula for Nk.
As might be expected, the distributions of the resulting statistics depend on k.

It is easy to check, for instance, that under the null hypothesis of randomness, the
expected value of the circular version of Nk is still given by

E (Nk) =
n(3n− 1)

12
,

except when k = n/2, in which case the appropriate formula is simply n2/4. In the
non-circular case, one finds

E (Nk) =
(3n− 3k − 1)(n− k)

12
− k

6
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for 1 ≤ k < n/2 and

E (Nk) =
(n− k)(n− k − 1)

4
for n/2 ≤ k < n.

Arguing as in Appendix A, an explicit value for the variance of τk,n could
also be obtained for arbitrary 1 < k < n, but the derivation would be extremely
tedious. The arguments developed in Appendices B and C could easily be adapted
as well to show that 3

√
nτk,n/2 is asymptotically equivalent to the k-lag version of

Spearman’s rho and that, under the null hypothesis of randomness, any K-tuple of
the form 3

√
n (τ1,n . . . , τK,n) /2 is asymptotically multinormal, with mean zero and

unit covariance matrix. Such K-tuples thus have the same asymptotic behaviour,
and admit the same intuitive interpretation as the traditional or the rank-based
correlograms (van der Waerden, Wilcoxon, etc.).

APPENDIX A: PROOF OF PROPOSITION 1

Proposition 1 is a direct consequence of the following result, which pertains to
the number N of discordances in the set (1), possibly augmented with the pair
(Rn, R1). The case n = 3 need not be considered in the following lemma because
the circular version of N is then identically equal to 2, while the non-circular ver-
sion is distributed as a Bernoulli random variable with parameter P (N = 1) = 2/3.

Lemma. Under the null hypothesis of randomness, the mean and variance of the
circular version of N are

E(N) =
n(3n− 1)

12
and Var(N) =

10n3 − 7n2 − 49
360

, n ≥ 4.

For the non-circular version of N , one has

E(N) =
(n− 2)(3n− 1)

12
and Var(N) =

10n3 − 37n2 + 27n+ 74
360

, n ≥ 4.

To check the formula for E(N) in the circular case, it suffices to observe that

E(N) =
n∑

i=1

n∑
j=1

P (Ri < Rj, Ri+1 > Rj+1)

=
n∑

i=1

{2P (R1 < R2, R2 > R3) + (n − 3)P (R1 < R2, R3 > R4)}

= n{2/3 + (n − 3)/4} = n(3n− 1)/12. (7)

In the non-circular case, one has

E(N) =
n−2∑
i=1

n−1∑
j=i+1

{P (Ri < Rj, Ri+1 > Rj+1) + P (Ri > Rj, Ri+1 < Rj+1)}

=
n−2∑
i=1

{2P (R1 < R2, R2 > R3) + (n− 3)P (R1 < R2, R3 > R4)}

= (n − 2){2/3 + (n− 3)/4} = (n− 2)(3n− 1)/12. (8)

10



Note that these formulas give the right answer even in the case n = 3.
The computation of the second moment of N , viz.,

E
(
N2

)
=

∑
i

∑
j

∑
k

∑
�

P (Ri < Rj, Ri+1 > Rj+1, Rk < R�, Rk+1 > R�+1)

for n ≥ 4 is somewhat more involved. It is presented here in the circular case, but
the changes required to handle the non-circular case are indicated along the way.

The above formula may be decomposed as the sum of four terms, the first when
both i = k and j = #, the second when exactly one of i = k and j = #, the third
when i �= k and j �= # but exactly one of i = # and k = j, and the fourth when all
of i, j, k, and # are distinct. (The term with both i = # and k = j is zero.) This
yields

E
(
N2

)
=

∑
i

∑
j

P (Ri < Rj, Ri+1 > Rj+1) (9)

+ 2
∑

i

∑
j

∑
� �=j

P (Ri < Rj, Ri+1 > Rj+1, Ri < R�, Ri+1 > R�+1) (10)

+ 2
∑

i

∑
k �=i

∑
j �=k

P (Ri < Rj, Ri+1 > Rj+1, Rk < Ri, Rk+1 > Ri+1) (11)

+
∑ ∑ ∑ ∑
i, j, k, � distinct

P (Ri < Rj, Ri+1 > Rj+1, Rk < R�, Rk+1 > R�+1) . (12)

Term (9) is exactly E(N), which was already computed in (7) for the circular
case and in (8) for the non-circular case. The evaluation of the three other terms
is treated separately.

Evaluation of term (10). Fix i and consider five cases, according as (a) j and # are
next to i with i on the end; (b) j and # are next to i with i in the middle; (c) one
of j and # is next to i and the other is at least two away; (d) j and # are next to
each other and i at least two away; or (e) all of i, j and # at least two away from
each other.

Term (10) may then be written as

2
∑

i

{
4P (R1 < R2, R2 > R3, R1 < R3, R2 > R4)

+ 2P (R2 < R1, R3 > R2, R2 < R3, R3 > R4)
+ 4(n− 4)P (R1 < R2, R2 > R3, R1 < R4, R2 > R5)
+ 2(n− 4)P (R1 < R3, R2 > R4, R1 < R4, R2 > R5)

+ (n− 5)(n− 4)P (R1 < R3, R2 > R4, R1 < R5, R2 > R6)
}

with the sum over i running from 1 to n in the circular case, and from 1 to n − 3
in the non-circular case. Therefore, term (10) reduces to

2n
{
4

3
24

+ 2
5
24

+ 4(n− 4)
18
120

+ 2(n− 4)
11
120

+ (n − 5)(n− 4)
1
9

}

= n

{
11
6

+
47
30

(n− 4) +
2
9
(n − 4)(n− 5)

}
(13)
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in the circular case, the front factor of n being replaced by n−3 in the non-circular
case.

Evaluation of term (11). Of the six cases in which i, j and k are consecutive (in
some order), there are exactly four nonempty cases, which yield

P (R1 < R2, R2 > R3, R2 < R4, R3 > R1) = 1/24,
P (R1 < R3, R2 > R4, R3 < R2, R4 > R3) = 1/24,
P (R1 < R3, R2 > R4, R3 < R4, R4 > R1) = 1/24,
P (R1 < R4, R2 > R1, R4 < R2, R1 > R3) = 1/24.

Term (11) is the sum of this, plus the three cases with exactly two next to each
other, plus the case of all separated. This is

2
∑

i

{
4/24 + 2(n− 4)P (R1 < R4, R2 > R5, R2 < R1, R3 > R2)

+ 2(n− 4)P (R1 < R2, R2 > R3, R4 < R1, R5 > R2)
+ (n− 4)P (R1 < R3, R2 > R4, R4 < R1, R5 > R2)
+ (n− 4)P (R1 < R4, R2 > R5, R3 < R1, R4 > R2)

+ (n− 4)(n− 5)P (R1 < R3, R2 > R4, R5 < R1, R6 > R2)
}

(14)

with the sum on i running from 1 to n in the circular case, and from 1 to n− 3 in
the non-circular case. Therefore, term (11) reduces to

2n
{
1
6
+ 2(n− 4)

3
120

+ 2(n− 4)
3

120
+ 2(n− 4)

6
120

+ (n − 4)(n− 5)
1
36

}

= n

{
1
3
+ (n− 4)

2
5
+ (n− 4)(n− 5)

1
18

}

in the circular case, the front factor of n being replaced by n−3 in the non-circular
case.

Evaluation of term (12). First suppose n = 4. When all of i, j, k and # are distinct,
one must consider three cases circularly arranged in the orders ik#j, ijk#, and i#jk.
These lead to

P (R1 < R4, R2 > R1, R2 < R3, R3 > R4) = 2/24,
P (R1 < R2, R2 > R3, R3 < R4, R4 > R1) = 4/24,
P (R1 < R3, R2 > R4, R4 < R2, R1 > R3) = 0.

The contribution of term (12) is the sum multiplied by 8, namely 2. This com-
bined with 11/3 from term (9), 22/3 from term (10) and 4/3 from term (11) gives
E(N2) = 43/3 in the circular case when n = 4. In the non-circular case, the con-
tributions are 11/6 for term (9), 1/3 for term (10), 1/3 for term (11), and there is
no contribution from term (12), so that E(N2) = 4 in the non-circular case when
n = 4.

To evaluate term (12) for n ≥ 5, one must first determine the contribution of
those terms with i, j, k and # next to each other. This may be done by evaluating

12



those terms with i to the left of both j and k. There are six such terms, namely
ijk#, ij#k, ikj#, i#jk, ik#j, and i#kj. This leads in order to

P (R1 < R2, R2 > R3, R3 < R4, R4 > R5) = 16/120,
P (R1 < R2, R2 > R3, R4 < R3, R5 > R4) = 11/120,
P (R1 < R3, R2 > R4, R2 < R4, R3 > R5) = 0,
P (R1 < R3, R2 > R4, R4 < R2, R5 > R3) = 10/120,
P (R1 < R4, R2 > R5, R2 < R3, R3 > R4) = 6/120,
P (R1 < R4, R2 > R5, R3 < R2, R4 > R3) = 16/120,

whose sum is 59/120. This contribution must then be multiplied by 4n in the
circular case, and by 4(n− 4) in the non-circular case. In both cases, the factor 4
coming from the fact that the value is the same if one simultaneously interchanges
i with k and j with #, and also if one interchanges i with j and k with #. This
yields 59n/30 in the circular case and 59(n − 4)/30 in the non-circular case. For
n = 5, this contribution — call it piece I — is 59/6 in the circular case, which
combined with 35/6 from term (9), 17 from term (10) and 11/3 from term (11),
gives E(N2) = 109/3 as the final answer when n = 5 in the circular case. Similarly,
E(N2) = 206/15 when n = 5 in the non-circular case.

When n ≥ 6, there are further contributions. One of them comes from those
terms with exactly three of i, j, k and # in neighbouring positions. This may be
done by evaluating those terms with i, j and k in positions 1, 2 and 3 and # in
position 5, and by multiplying the result by 4n(n − 5) in the circular case, or by
4(n− 4)(n − 5) in the non-circular case. The evaluation of the six terms ijk, ikj,
jik, kij, jki and kji yields in order to

P (R1 < R2, R2 > R3, R3 < R5, R4 > R6) = 5/48,
P (R1 < R3, R2 > R4, R2 < R5, R3 > R6) = 1/18,
P (R2 < R1, R3 > R2, R3 < R5, R4 > R6) = 1/16,
P (R2 < R3, R3 > R4, R1 < R5, R2 > R6) = 1/16,
P (R3 < R1, R4 > R2, R2 < R5, R3 > R6) = 1/18,
P (R3 < R2, R4 > R3, R1 < R5, R2 > R6) = 5/48.

The sum is 4/9, and hence piece II equals 16n(n − 5)/9 in the circular case, and
16(n− 4)(n− 5)/9 in the non-circular case.

Another contribution which arises when n ≥ 6 comes from the terms with two
pairs of i, j, k and # in neighbouring positions separated by at least one space.
It requires the evaluation of the six terms with i in position 1 and j, k and # in
positions 2, 4 and 6, whose sum must then be multiplied by 2n(n−5) in the circular
case, and by 2(n− 4)(n− 5) in the non-circular case. Using the order ij-k#, ij-#k,
ik-j#, ik-#j, i#-kj and i#-jk, one gets

P (R1 < R2, R2 > R3, R4 < R5, R5 > R6) = 1/9,
P (R1 < R2, R2 > R3, R5 < R4, R6 > R5) = 1/9,
P (R1 < R4, R2 > R5, R2 < R5, R3 > R6) = 0,
P (R1 < R5, R2 > R6, R2 < R4, R3 > R5) = 1/36,
P (R1 < R5, R2 > R6, R4 < R2, R5 > R3) = 1/9,
P (R1 < R4, R2 > R5, R5 < R2, R6 > R3) = 1/8.
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Accordingly, the contribution of piece III is 35n(n− 5)/36 in the circular case and
35(n− 4)(n− 5)/36 in the non-circular case.

Together, pieces I, II and III total 59n/30 + 11n(n − 5)/4 in the circular case
and 59(n − 4)/30 + 11(n − 4)(n − 5)/4 in the non-circular case. For n = 6, this
is 59/5 + 33/2 in the circular case, which combined with 17/2 from term (9),
29 + 4/5 + 4/9 from term (10) and 6 + 4/5 + 2/3 from term (11), gives E(N2) =
76+ 11/15 as the final answer in the circular case when n = 6. In the non-circular
case, the answer works out to E(N2) = 526/15.

In situations where n ≥ 7, additional contributions must still be accounted for.
One of them, say piece IV, corresponds to those terms with exactly two of i, j, k
and # in neighbouring positions. In the circular case, this amounts to

4n(n− 5)(n− 6)
{
P (R1 < R2, R2 > R3, R4 < R6, R5 > R7)

+ P (R1 < R6, R2 > R7, R2 < R4, R3 > R5)

+ P (R1 < R6, R2 > R7, R4 < R2, R5 > R3)
}

= 4n(n− 5)(n− 6)
(

1
12

+
1
24

+
1
12

)
=

5
6
n(n − 5)(n− 6),

while in the non-circular case one gets 5(n− 4)(n− 5)(n− 6)/6 for piece IV.
The final contribution, piece V, comes from terms with no two of i, j, k or

# are next to each other. In the circular case, there are n(n − 5)(n − 6)(n − 7)
such terms, each having probability P (R1 < R3, R2 > R4, R5 < R7, R6 > R7) =
1/16. In the non-circular case, however, the contribution of piece V is reduced to
(n− 4)(n− 5)(n − 6)(n− 7)/16.

When n ≥ 7, therefore, the total contribution of term (12) is

59
30
n+

11
4
n(n− 5) +

5
6
n(n− 5)(n− 6) +

1
16
n(n− 5)(n − 6)(n− 7) (15)

in the circular case, with the common factor of n being replaced by n − 4 in the
non-circular case.

Finally, E(N2) is then the sum of (7), (13), (14) and (15) in the circular case,
which reduces to

E(N2) =
1
16
n4 − 1

72
n3 − 1

80
n2 − 49

360
n,

whence
Var(N) =

1
36
n3 − 7

360
n2 − 49

360
n.

Similar expressions are available in the non-circular case, as given in the state-
ment of the lemma.

APPENDIX B: PROOF OF PROPOSITION 2

Proposition 2 will be established if one can show that the limiting distributions,
as n → ∞, of the standardized version of the circular and non-circular versions of
N are Gaussian under the null hypothesis of randomness. For this, one needs only
check the conditions of a theorem of Sen (1972) on the asymptotic normality of
U-statistics. In the non-circular case, the key observation is that since Ri < Rj if
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and only if Xi < Xj , the expression (3) for N based on a series of length n+1 may
be written as

N =
n−1∑
i=1

n∑
j=i+1

{I(Xi < Xj , Xi+1 > Xj+1) + I(Xi > Xj , Xi+1 < Xj+1)}

with Xn+1 distributed as X1 but taken independent of X1, . . . , Xn, rather than
equal to X1. Since the null distribution of N does not depend on the common con-
tinuous distribution of the mutually independent Xi’s, the latter may be assumed
to arise from the uniform density on the interval (−1/2, 1/2).

Now let Yi = (Xi, Xi+1) for 1 ≤ i ≤ n and define Un as

Un = N
/(

n

2

)
=

n−1∑
i=1

n∑
j=i+1

g(Yi,Yj)
/(

n

2

)
,

where g is the symmetric function

g(Yi,Yj) = I(Xi < Xj , Xi+1 > Xj+1) + I(Xi > Xj , Xi+1 < Xj+1).

Then Un is a U-statistic for the sequence Y1,Y2, . . . ,Yn which is one-dependent
and hence *-mixing. Since g is an indicator random variable, its moments of all
orders exist and one may conclude from Theorem 1 of Sen (1972) that

√
n(Un − θ) L−→ N (0, 4σ2),

where
θ = E {g(Y,Y′)}

with Y and Y′ two independent copies of Y1, and

σ2 = Var{g1(Y1)} + 2Cov{g1(Y1), g1(Y2)} ,

where, writing y as (x1, x2),

g1(y) = E {g(y,Y1)} = P (x1 < X1, x2 > X2) + P (x1 > X1, x2 < X2)
= 1/2− 2x1x2.

Simple calculations yield

θ = E {g1(Y)} = E(1/2− 2X1X2) = 1/2,

Var {g1(Y)} = Var(1/2− 2X1X2) = 4E
(
X2

1X
2
2

)
= 1/36

and

Cov{g1(Y1), g1(Y2)} = Cov(1/2− 2X1X2, 1/2− 2X2X3)
= 4Cov(X1X2, X2X3) = 0.

As a result, √
n(Un − 1/2) L−→ N (0, 1/9)

which implies that

√
n

{
N

n(n− 1)
− 1/4

}
L−→ N (0, 1/36)
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or √
n τn

L−→ N (0, 4/9).

The asymptotic normality of the circular version of N can be obtained from
this. For, if Ũn denotes the circular version of Un, then Ũn is actually obtained
from Un by running the summation over i from one through n, and substituting
Ỹn = (Xn, X1) for Yn. Then

|Un − Ũn| ≤
n−1∑
i=1

∣∣∣g(Yj ,Yn)− g(Yj , Ỹn)
∣∣∣ /(

n

2

)
≤ 2/n.

Therefore,
√
n(Un − 1/2) and

√
n(Ũn − 1/2) are asymptotically equivalent and so

have the same limiting distribution.

APPENDIX C: PROOF OF PROPOSITION 3

In view of Proposition 2 and earlier work (cf., e.g., Hallin et al. 1985), the marginal
asymptotic distribution of the serial versions of Kendall’s tau and Spearman’s rho
are actually known to be normal with the appropriate parameters under the null
hypothesis of randomness. Since it was seen in Appendix B that (in the non-circular
case) τn = 1−2Un is a linear function of a U-statistic of order 2, Proposition 3 will
follow from the Central Limit Theorem for *-mixing sequences and an application
of the Cramér-Wold device if one can show that under the null, the non-circular
version of ρn is asymptotically equivalent to the U-statistic of degree 3 defined by

Wn =
n∑

i=1

n∑
j=i+1

n∑
k=j+1

h(Yi,Yj,Yk)
/(

n

3

)

in terms of

h(Yi,Yj,Yk) = (aijk + aikj + ajik + ajki + akij + akji) /6

and
aijk = I(Xi > Xj , Xi+1 > Xk+1), 1 ≤ i, j, k ≤ n. (16)

Indeed, the asymptotic correlation between
√
nτn and

√
nρn will then be equal

to −Corr{g1(Y), h1(Y)}, where h1(y) = E{h(y,Y2,Y3)}. Due to distribution-
freeness, the latter may be computed under the assumption that the components
of all Yi = (Xi, Xi+1) are mutually independent observations from a uniform
distribution on the interval (−1/2, 1/2). Writing y = (x1, x2) as before, one finds

h1(y) =
1
3
{P (x1 > X1, x2 > X4)+P (X1 > x1, X2 > X4)+P (X3 > X1, X4 > x2)}

i.e., h1(y) = x1x2/3 + 1/4. As a result, E{h1(Y)} = 1/4 and

Var{h1(Y)} = E
(
X2

1X
2
2

)
/9 = 1/1296.

Since it is known that E{g1(Y)} = 1/2 and Var{g1(Y)} = 1/36 from earlier
calculations, one finds also

Cov{g1(Y), h1(Y)} = E [{g1(Y)− 1/2}h(Y)] = −2E
(
X2

1X
2
2

)
/3 = −1/226,
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and hence Corr{g1(Y), h1(Y)} = −1. Thus, the joint distribution of
√
nτn and√

nρn is asymptotically normal with degenerate covariance matrix, so that the
difference

√
n(3τn/2−ρn) between their asymptotic standardized versions is oP (1).

To show the relation between Wn and ρn, note that the latter is a normalized
version of the statistic

∑n
i=1 RiRi+1 with Ri = 1 +

∑n+1
j=1 I(Xi > Xj). Up to a

change of location and scale, ρn is thus equivalent to the V-statistic

Vn =
1
n3

n∑
i=1

RiRi+1 =
1
n3

n∑
i=1

n∑
j=1

n∑
k=1

aijk + O(1/n)

defined in terms of the indicators aijk defined in (16). But Wn is the U-statistic
corresponding to Vn and standard arguments show that, as n → ∞,

√
n (Wn −

Vn) → 0 in probability, thereby completing the proof of Proposition 3.
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graciously provided the research facilities. The authors are grateful to Professor
Bruno Rémillard, the Substitute Editor and the referees for many helpful sugges-
tions. Financial assistance in support of this work was provided by the Francqui
Foundation, the Natural Sciences and Engineering Research Council of Canada, le
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