
Chapter 6. MAXIMIZING THE RATE OF RETURN.

In stopping rule problems that are repeated in time, it is often appropriate to maximize
the average return per unit of time. This leads to the problem of choosing a stopping rule N
to maximize the ratio EYN/EN . The reason we wish to maximize this ratio rather than the
true expected average per stage, E(YN/N), is that if the problem is repeated independently
n times with a fixed stopping rule leading to i.i.d. stopping times N1, . . . , Nn and i.i.d.
returns YN1, . . . , YNn , the total return is YN1+· · ·+YNn and the total time is N1+· · ·+Nn ,
so that the average return per unit time is the ratio (YN1 + · · ·+YNn)/(N1 + · · ·+Nn). If
both sides of this ratio are divided by n and if the corresponding expectations exist, then
this ratio converges to EYN/EN by the law of large numbers. We call this ratio the rate
of return. We wish to maximize the rate of return.

In the first section of this chapter, we describe a method of solving the problem of
maximizing the rate of return by solving a sequence of related stopping rule problems as
developed in the earlier chapters. There are a number of applications that are treated in
subsequent sections and in the exercises. In Section 6.2, the main ideas are illustrated
using the house-selling problem. In Section 6.3, application is made to problems where the
payoff is a sum of discounted returns. This provides a background for the treatment of
bandit problems in Chapter 7. In Section 6.4, a simple maintenance model is considered
to illustrate the general method of computation. Finally in Section 6.5, a simple inventory
model is treated.

§6.1 Relation to Stopping Rule Problems. We set up the problem more generally
by allowing different stages to take different amounts of time. There are observations
X1,X2, . . . as before, but now there are two sequences of payoffs, Y1, Y2, . . . and T1, T2, . . .
with both Yn and Tn assumed to be Fn -measurable, where Fn is the sigma-field generated
by X1, . . . ,Xn . In this formulation, Yn represents the return for stopping at stage n and
Tn represents the total time spent to reach stage n . Throughout this chapter, we assume
that the Tn are positive and nondecreasing almost surely,

(1) 0 < T1 ≤ T2 ≤ . . . a.s.

We restrict attention to stopping rules that take at least one observation and note that
E(TN ) ≥ E(T1) > 0 for every stopping rule N ≥ 1. Thus, in forming the ratio EYN/ETN ,
we avoid the problem of dealing with 0/0. To avoid the troublesome ±∞/ + ∞ , we
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restrict attention to stopping rules such that ETN < ∞ . Thus, we let C denote the class
of stopping rules,

(2) C = {N : N ≥ 1,ETN < ∞}

and we seek a stopping rule N ∈ C to maximize the rate of return, EYN/ETN .

Without entering into the question of the existence of a stopping rule that attains a
finite supremum of the above ratio, we can relate the solution of the problem of maximizing
the rate of return to the solution of an ordinary stopping rule problem with return Yn−λTn

for some λ .

Theorem 1. (a) If for some λ , supN∈C E(YN −λTN ) = 0 , then supN∈C E(YN )/E(TN ) =
λ . Moreover, if supN∈C E(YN − λTN ) = 0 is attained at N∗ ∈ C , then N∗ is optimal for
maximizing supN∈C E(YN )/E(TN ) .
(b) Conversely, if supN∈C E(YN )/E(TN ) = λ and if the supremum is attained at N∗ ∈ C ,
then supN∈C E(YN − λTN ) = 0 and the supremum is attained at N∗ .

Proof. If supN∈C E(YN −λTN ) = 0, then for all stopping rules N ∈ C , E(YN −λTN) ≤ 0
so that E(YN )/E(TN ) ≤ λ . If, for some ε ≥ 0, the rule N∗ ∈ C is ε-optimal, so that
E(YN∗ − λTN∗) ≥ −ε , then

E(YN∗)/E(TN∗) ≥ λ − ε/E(TN∗) ≥ λ − ε/E(T1),

so that N∗ is (ε/E(T1))-optimal for maximizing E(YN )/E(TN ).

Conversely, suppose supN∈C E(YN )/E(TN ) = λ , and suppose the supremum is at-
tained at N∗ ∈ C . Then, EYN∗ − λETN∗ = 0 and for all stopping rules N ∈ C ,
EYN − λETN ≤ 0.

The optimal rate of return, λ , may also be considered as the “shadow” cost of time
measured in the same units as the payoffs. This is because, when λ is the optimal rate
of return, we search for the stopping rule that maximizes E(YN − λTN ). It is as if we
are being charged λ for each time unit. This is the mathematical analog of the aphorism,
“Time is money”.

Sometimes an extra argument may be provided to show that the limiting average
payoff cannot be improved using rules for which ETN = ∞ . (See §6.2.)

COMPUTATION. Many of the good applications require heavy computation to reach
the solution and so we mention a fairly effective method suggested by G. Michaelides.
We use part (a) of Theorem 1 to approximate the solution to the problem of computing
the optimal rate of return. To use this theorem, we first solve the ordinary stopping rule
problem for stopping Yn −λTn with arbitrary λ , and find the value. Ordinarily, this value
will be a decreasing function of λ going from +∞ at λ = −∞ to −∞ at λ = ∞ . We
then search for that λ that makes the value equal to zero.
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To be more specific, let us make the assumption that for each λ there exists a rule
N(λ) ∈ C that maximizes E(YN − λTN ), and let V (λ) denote the optimal return,

V (λ) = sup
N∈C

[E(YN ) − λETN ] = E(YN(λ)) − λE(TN(λ)).

Lemma 1. V (λ) is decreasing and convex.

Proof. Let λ1 < λ2 . Then

V (λ2) = EYN(λ2) − λ2ETN(λ2) < EYN(λ2) − λ1ETN(λ2) ≤ EYN(λ1) − λ1ETN(λ1) = V (λ1),

so V (λ) is decreasing in λ . To show convexity, let 0 < θ < 1, fix λ1 and λ2 in C , and let
λ = θλ1 + (1 − θ)λ2 . Then,

V (λ) = EYN(λ) − (θλ1 + (1 − θ)λ2)ETN(λ)

= θ(E(YN ) − λ1ETN ) + (1 − θ)(E(YN ) − λ2ETN)
≤ θV (λ1) + (1 − θ)V (λ2).

With this result, we may describe a simple iterative method of approximating the
optimal rate of return and the optimal stopping rule. This method is a variation of
Newton’s method and so converges quadratically. Let λ0 be an initial guess at the optimal
value. At λ0 , the line y = V (λ0) − ETN(λ0)(λ − λ0) is a supporting hyperplane. This
follows because V (λ0) − ETN(λ0)(λ − λ0) = EYN(λ0) − λETN(λ0) ≤ V (λ). Therefore, in
Newton’s method, λn+1 = λn − V (λn)/V ′(λn), we may replace the derivative of V (λ) at
λn with −ETN(λn) . This gives the iteration for n = 0, 1, 2, . . . ,

(3) λn+1 = λn +
V (λn)

ETN(λn)
=

EYN(λn)

ETN(λn)
.

For any initial value, λ0 , this sequence will converge quadratically to the optimal rate of
return. It is interesting to note that the convergence is quadratic even if the derivative of
V (λ) does not exist everywhere. See §6.4 for an example.

§6.2. House-Selling. Consider the problem of selling a house without recall and
with i.i.d. sequentially arriving offers of X1,X2, . . . dollars, constant cost c ≥ 0 dollars per
observation and with return Xn − cn for stopping at n . When the house is sold, you may
construct a new house to sell. Construction cost is a ≥ 0 dollars and construction time is
b ≥ 0 time units, measured in units of time between offers. Thus your return for one cycle
is Yn = Xn − a− cn , and the time of a cycle is Tn = n + b . Note that in this formulation,
the cost of living, c , is not assessed while the house is being built. We assume the cost of
living while building is included in the cost a .

To solve the problem of maximizing the rate of return, E(YN )/E(TN ), we solve the
related stopping rule problem with return for stopping at n taken to be Yn − λTn =
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Xn − a− cn−λn−λb , and then choose λ so that the optimal return is zero. If we assume
that the Xn have finite second moment, E(X2) < ∞ , this is the problem solved in §4.1
with return Xn replaced by Xn −a−λb and cost c replaced by c+λ . The solution found
there requires c + λ > 0. The optimal rule is to accept the first offer Xn ≥ V ∗ + a + λb ,
where V ∗ satisfies

(4) E(X − a − λb − V ∗)+ = c + λ.

The value of λ that gives V ∗ = 0 is then simply the solution of (4) with V ∗ = 0:

(5) E(X − a − λb)+ = c + λ.

If b > 0, the left side is a continuous decreasing function of λ from E(X − a + bc)+ at
λ = −c , to zero at λ = ∞ , and the right side is continuous increasing from 0 at λ = −c ,
to ∞ . If b = 0, the left side is constant. In either case, if E(X − a + bc)+ > 0, there is a
unique root, λ∗ , of (5) such that λ∗ > −c . The optimal rule is to accept the first offer of
a + λ∗b or greater:

(6) N∗ = min{n ≥ 1 : Xn ≥ a + λ∗b}.

This rule is optimal for maximizing the limiting average payoff out of all rules N such
that EN < ∞ , provided E(X+)2 < ∞ and E(X − a + bc)+ > 0.

If E(X − a + bc)+ = 0, then λ∗ = −c and N∗ ≡ ∞ . In other words, if P(X >
a − bc) = 0, we never sell the house and our expected rate of return is −c . This makes
sense since stopping can only make the rate of return less than −c , but since we have
not defined a limiting average payoff for continuing forever, we make the assumption that
E(X − a + bc)+ > 0.

If b = 0, then (5) has a simple solution. The optimal rule for maximizing the rate of
return is to accept the first offer greater than the construction cost, and the optimal rate
of return becomes

λ∗ = E(X − a)+ − c.

If the offers are a.s. greater than a , this means that we accept the first offer that comes
in, so that N is identically equal to 1.

Can we do better with rules N such that ETN = ∞? From §4.1, it follows that N∗

is optimal for maximizing E(YN − λ∗TN ) out of all stopping rules provided we define the
payoff for not stopping to be −∞ . We have not defined Y∞ or T∞ for this problem but we
can extend the optimality of the rule N∗ for maximizing the limiting average payoff to the
class of rules N such that P(N < ∞) = 1 as follows. Let N be such a rule. As in the first
paragraph of this chapter, we consider the problem repeated independently n times using
the same stopping rule each time. Let the i.i.d. stopping times be denoted by N1, . . . , Nn ,
the corresponding i.i.d. returns by YN1, . . . , YNn and the corresponding i.i.d. reward times
by TN1 , . . . , TNn . From §4.1, it follows that for any rule N with P(N < ∞) = 1 , we have
E(YN − λ∗TN ) ≤ 0, possibly −∞ , so that from the strong law of large numbers,

1
n

n∑
i=1

(YNi − λ∗TNi)
a.s.−→ E(YN − λ∗TN ) ≤ 0.
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Also from the strong law of large numbers,

1
n

n∑
i=1

TNi

a.s.−→ ETN > ET1 > 0,

so that

(7) lim sup
n→∞

∑n
i=1 YNi∑n
i=1 TNi

− λ∗ ≤ 0.

From the Fatou-Lebesgue Lemma, the expected value of the lim sup of the average return
is also nonpositive. This shows that N∗ achieves the optimal rate of return out of all
stopping rules for which P(N < ∞) = 1, provided E(X+)2 < ∞ and E(X −a+ bc)+ > 0.

It is interesting to note that we can now make use of the observation of Robbins
(1970) to weaken the condition E(X+)2 < ∞ to requiring only EX+ < ∞ . Under this
weaker condition, Robbins shows that the rule N∗ is optimal for stopping Yn − λTn out
of all rules N such that E(YN − λTN )− > −∞ . But one can show that when EX+ < ∞
and E(YN − λ∗TN )− = −∞ , we still have (1/n)

∑n
1 (YNi − λ∗TNi)

a.s.−→ −∞ even though
E(YN − λTN)+ = ∞ . One may conclude that if EX+ < ∞ , then N∗ is optimal for
maximizing the rate of return in the sense that if N is any stopping rule with P(N <
∞) = 1 and N1, N2, . . . are i.i.d. with the distribution of N , then (7) holds, and equality
is achieved if N = N∗ .

§6.3. Sum of Discounted Returns. Let X1,X2, . . . represent your returns for
working on days 1, 2, . . . . It is assumed that the Xj have some known joint distribution.
For example, it might be assumed that X1,X2, . . . are daily returns from some mining
operation or from studying some new mathematical problem. It may be that the returns
indicate that the mine or problem is not likely to be very profitable, and so you should
switch to a different mine or problem. The future is discounted by 0 < β < 1 so that
your total return for working n days has present value Yn =

∑n
1 βj−1Xj . In considering

time, we should also discount, so the total time used earning this reward has present value
Tn =

∑n
1 βj−1 . The problem of maximizing the rate of return is the problem of finding a

stopping rule N to achieve the supremum in

(8) V ∗ = sup
N≥1

E
∑N

1 βj−1Xj

E
∑N

1 βj−1
.

We assume that the expectations of the Xj exist and are uniformly bounded above,
supn EXn < ∞ . It may be noted that in this problem, we may allow N to assume
the value +∞ with positive probability; both sums in (8) will still be finite.

The problem given by (8) can be justified by a method similar to that used in the first
paragraph of this chapter. We assume the original problem can be repeated independently
as many times as desired. The k th repetition yields the sequence Xk1,Xk2, . . . , each
sequence being an independent sample from the original joint distribution of X1,X2, . . . .
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At any time n , after observing X11, . . . ,X1n and earning
∑n

1 βj−1X1j , you may ask to
start the problem over using the second sequence, but these returns will be discounted
by an extra βn because they start at time n + 1. Similarly for any k , while observing
sequence k , you may call for a restart and begin to observe the sequence k+1, etc. This is
called the restart problem in Katehakis and Vienott (1987). Suppose the same stopping
rule N is used in each restarted problem, yielding i.i.d. random variables N1, N2, . . . .
Then the total discounted return is

V =
N1∑
1

βj−1X1j + βN1

N2∑
1

βj−1X2j + βN1+N2

N3∑
1

βj−1X3j + · · · .

Its expected return is

EV = E
N1∑
1

βj−1X1j + EβN1E

[
N2∑
1

βj−1X2j + βN2

N3∑
1

βj−1X3j + · · ·
]

= E
N1∑
1

βj−1X1j + EβN1EV.

Solving for EV , we find

(9) EV =
E

∑N
1 βj−1Xj

1 − EβN
=

E
∑N

1 βj−1Xj

(1 − β)E
∑N

1 βj−1
.

Thus, the optimal rate of return given in (8) is equal to 1 − β times the optimal value of
the restart problem.

To take an example of the computation of (8), assume that X1,X2, . . . are i.i.d. given
a parameter θ > 0 with distribution

P(X = 0|θ) = 1/2
P(X = θ|θ) = 1/2

for all θ > 0. We assume that the prior distributin of θ on (0,∞) is such that Eθ < ∞ .
To find the supremum in (8), we first solve the associated stopping rule problem of finding
a stopping rule to maximize EYN − λETN = E(

∑N
1 βj−1(Xj − λ)). Let V ∗ = V ∗(λ)

denote this maximum value. We must take at least one observation. With probability 1/2,
X1 = 0, we lose λ and gain no information. In this case, the future looks as it did at
the initial stage (except that it is now discounted by β ), so we would continue if V ∗ > 0
and stop otherwise. With probability 1/2, X1 = θ , we receive θ − λ and we would have
complete information. In this case, if θ/2 > λ , we would continue forever and expect to
receive

∑∞
2 βj−1(θ/2 − λ) = (β/(1 − β))(θ/2 − λ), while if θ/2 ≤ λ , we would stop now

and receive nothing further. Combining this, we arrive at the following equation for V ∗ .

V ∗ = (1/2)(−λ + β max(0, V ∗)) + (1/2)(E(θ − λ) + E((θ/2 − λ)+)(β/(1 − β))).
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Therefore,

V ∗ = [−2λ + (β/(1 − β))E(θ/2 − λ)+ + Eθ]/(2 − β) if V ∗ > 0
= [−2λ + (β/(1 − β))E(θ/2 − λ)+ + Eθ]/2 if V ∗ ≤ 0.

To find the maximal rate of return, we choose λ so that V ∗ = 0. This gives the
optimal rate of return, λ∗ , as the root of the equation,

2λ = E(θ) + (β/(1 − β))E(θ/2 − λ)+.

The left side is increasing from −∞ to +∞ , and the right side is nonincreasing, so there
is a unique root. The optimal rule is: take one observation; if X1 > 2λ∗ , then continue
forever; otherwise stop.

For a specific example, suppose θ has a uniform distribution on the interval (0, 1).
Then E(θ) = 1/2 and E(θ/2 − λ)+ = λ2 − λ + 1/4, so that λ∗ is the root of 2λ =
1/2 + (β/(1 − β))(λ2 − λ + 1/4) between 1/4 and 1/2, namely

λ∗ = [2 − β −
√

2(2 − β)(1 − β)]/(2β).

§6.4. Maintenance. A machine used in production of some item will produce a
random number of items each day. As time progresses, the performance of the machine
deteriorates and it will eventually need to be overhauled entailing a cost for the service and
a loss of time for use of the machine. Suppose that if the machine has just been overhauled
it produces X1 items where X1 has a Poisson distribution with mean µ . Suppose also
that deterioration is exponential in time so that the number of items produced on the
nth day after overhaul, Xn , is Poisson with mean µqn−1 , where q is a given number,
0 < q < 1. Let c > 0 denote the cost of the overhaul and suppose that the service takes
one day. The problem of finding a time at which to stop production for overhaul in order
to maximize the return per day is then the problem of finding a stopping rule N ≥ 1 to
maximize E(SN − c)/E(N + 1), where Sn = X1 + . . . + Xn .

To solve this problem, we first consider the problem of finding a stopping rule to
maximize E(YN − λTN ), where Yn = Sn − c and Tn = n + 1. Let us see if the 1-sla is
optimal. If we stop at stage n , we gain Sn − c − λ(n + 1); if we continue one stage and
stop, we expect to gain

Sn + EXn+1 − c − λ(n + 2) = Sn + µqn − c − λ(n + 2).

Therefore, the 1-sla is

(10) N1 = min{n > 0 : λ ≥ µqn} = min{n > 0 : n ≥ log(µ/λ)/ log(1/q)}.

The problem is monotone and the 1-sla is an optimal stopping rule of a fixed sample size,
N1 = m , where m = 1 if λ ≥ µ and m = �log(µ/λ)/ log(1/q)� if λ < µ . Its expected
return is simply

(11)
V (λ) = E(Sm − c − λ(m + 1)) = µ(1 + q + . . . + qm−1) − c − λ(m + 1)

= µ(1 − qm)/(1 − q) − c − λ(m + 1).
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We set this expression to zero and solve for λ , which looks easy until we remember that
m depends on λ . We illustrate the general method of solving for λ suggested in §6.1 on
a simple numerical example.

Suppose µ = 3, q = .5, and c = 1. As an initial guess at the optimal rate of return,
let us take λ0 = 1.5. The iteration involved in (3) requires that we iterate the following
two equations in order:

m =
⌈

log(µ/λ)
log(1/q)

⌉
and λ =

µ 1−qm

1−q − c

m + 1
.

On the first iteration, we find m = �6.579� = 7 and λ1 = 1.813. Applying the iteration
again, we find m = �4.686� = 5 and λ2 = 1.881. On the third iteration we find m =
�4.431� = 5, and we must therefore have λ3 = λ2 . The iteration has converged in a finite
number of steps. We overhaul every sixth day (m = 5) and find as the average return per
day, λ∗ = 1.881.

In this problem, the iteration converges in a finite number of steps whatever be the
values of µ , q and c , because the value function, V (λ), is piecewise linear. It is only in
very simple problems that this will be the case.

§6.5. An Inventory Problem. A warehouse can hold W items of a certain stock.
Each day a random number of orders for the item are received. The items are sold up to
the number of items in stock; orders not filled are lost. Each item sold yields a net profit
of C1 > 0 (selling price of the item minus its cost). The warehouse may be restocked
to capacity at any time by paying a restocking fee of C2 > 0. On day n , orders for Xn

items are received, n = 1, 2, . . . , where X1,X2, . . . are independent and all have the same
distribution, f(x) = P (Xn = x) for x = 0, 1, 2, . . . . The problem is to find a restocking
time N (a stopping rule) to maximize the rate of return,

(12) E(min(SN ,W )C1 − C2)/E(N),

where Sn = X1 + . . . + Xn .

If C2 were zero, we would restock every day (N = 1) and have a rate of return equal
to E(min(X1,W ))C1 . Since C2 > 0, it may be worthwhile to wait until the number of
items on stock gets low before reordering.

To find the optimal restocking time, we first solve the stopping rule problem for
maximizing the return

Yn = min(Sn,W )C1 −C2 − nλ

= (W − (W − Sn)+)C1 − C2 − nλ.

The one-stage look-ahead rule is

(13)
N1 = min{n ≥ 1|Yn ≥ E(Yn+1|Fn)}

= min{n ≥ 1|(W − Sn)+ − E((W − Sn − Xn+1)+|Fn) ≤ λ/C1}
= min{n ≥ 1|W − Sn ≤ z},
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where,

(14) z = max{u|u − E(u − X)+ ≤ λ/C1}.

The 1-sla is monotone and the theorems of Chapter 5 show that it is optimal. Thus, the
optimal restocking rule has the form: restock the warehouse as soon as the inventory has
z items or less. The optimal value of z may be found from (14) when λ is chosen to make
E(YN1) = 0. In this problem, it may be simpler to calculate the ratio (12) for all stopping
rules N(z) of the form N(z) = min{n ≥ 1|W − Sn ≤ z} and find z that makes this ratio
largest.

We carry out the computations when f is the geometric distribution,

f(x) = (1 − p)px for x = 0, 1, . . . .

First, we compute the numerator of (12) using N(z). The distribution of SN(z)− (W − z)
is the same geometric distribution, f , so that

Emin(SN(z),W ) = W − z + Emin(X, z)

= W − z + (1 − pz)p/(1 − p).

Second, to compute the denominator of (12), note that the geometric random variable Xn

may be considered as the number of heads in a sequence of tosses of a coin with probability
p of heads tossed until the first tail occurs. Therefore, N(z) − 1 represents the number of
tails observed before W − z heads, and so N(z) − 1 has a negative binomial distribution
with probability of success 1 − p and W − z fixed failures. Hence,

E(N(z)) = 1 + (W − z)(1 − p)/p.

Combining these two expectations and letting λ(z) represent the ratio (1) when N = N(z),
we find,

λ(z) = [W − z + (1 − pz)p/(1 − p) −C2]/[1 + (W − z)(1 − p)/p],

where without loss of generality we have taken C1 = 1, since the optimal rule depends
only on the ratio C2/C1 . After some wonderfully exciting and beautiful algebraic manip-
ulations, we find that

λ(z − 1) > λ(z) if and only if C2 > pz(W − z).

Since the right side of this inequality is decreasing in z , we find that the maximum of λ(z)
occurs at z = 0 if C2 ≥ p(W − 1) and at z = n if

pn+1(W − n − 1) ≤ C2 ≤ pn(W − n) for n = 1, . . . ,W − 1.

As a numerical example, suppose that C1 = 1, W = 10, and p = 2/3. Then if
C2 > 6, we have z = 0; we wait until we run out completely before reordering. (If
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C2 > 10, we are operating at a loss.) If 3.555 < C2 < 6, we have z = 1; we reorder when
there is at most one left. Similarly down to: if 0 < C2 < .026, we have z = 9; we reorder
as soon as at least one item is sold.

§6.6 Exercises.

1. Selling an asset. You can buy an item at a constant cost c > 0 and sell it when you
like. Bids for the item come in one each day, X1,X2, . . . i.i.d. F (x) and although it does
not cost anything to observe these, it takes d days to obtain a new item. The problem is
to find a stopping rule to maximize E(XN − c)/E(N + d). Assume that P(X > c) > 0,
and that E(X2) < ∞ . Find an optimal rule and the optimal rate of return. Specialize to
the case where F is the uniform distribution on (0, 1).

2. Maintenance. (Taylor (1975), Posner and Zuckerman (1986), and Aven and Gaard-
ner (1987)) A machine accumulates observable damage at discrete times through a series of
shocks. Shocks occur independently at times t = 1, 2, . . . , with probability, q , 0 < q < 1,
independent of time. When a shock occurs, the machine will accrue a certain amount
of damage, assumed to be exponentially distributed with mean µ . If Xn denotes the
damage accrued at time n , it is thus assumed that the Xn are i.i.d. with distribution
P(Xn > x) = q exp{−x/µ} for x > 0, and P(Xn = 0) = 1− q . The total damage accrued
to the machine by time n is Sn =

∑n
1 Xj . The machine breaks down at time n if Sn ex-

ceeds a given number, M > 0. The time of breakdown is thus T = min{n ≥ 1 : Sn > M} .
A machine overhaul costs an amount C > 0. If the machine breaks down, the machine
must be overhauled and there is an additional cost of K > 0. The problem is to decide
when to overhaul the machine. The cost of overhauling the machine at stage n is thus
Yn = C + KI(n = T ). To enforce stopping at T , we may put Yn = ∞ on {n > T} .
We want to choose a stopping rule, N , to minimize the cost per unit time, E(YN )/E(N).
This reduces to seeking a stopping rule to minimize E(YN − λN), for some λ > 0.
(a) Find the 1-sla for the latter problem and show it is optimal.
(b) Show how to solve the original problem. (Choose λ as the root of λ[M−µ log(Kq/λ)] =
Cqµ .)

3. Foraging. Consider an animal that forages for food in spacially separated patches
of prey. He feeds at one patch for awhile and then moves on to another. The problem of
when to move to a new patch in order to maximize the rate of energy intake is addressed
in the papers of Allan Oaten (1977), and Richard Green (1984, 1987). As an example,
take the fisherman who moves from waterhole to waterhole catching fish. Suppose that in
each waterhole there are initially n fish, where n is known. Assume that each fish has an
exponential catch time at rate 1, and captures are independent events. This problem is
treated in Example 5 of §5.4. Suppose that the expected time it takes to move from one
waterhole to another is a known constant, τ > 0. The problem is to find a stopping rule
N to maximize the rate of return, E(N)/E(XN + τ ), where Xj is the j th order statistic
of a sample of size n from the exponential distribution. Find an optimal rule and the
optimal rate of return. As a numerical example, take n = 10 and τ = 1.

4. Attaining a goal. Let X1,X2, . . . be independent Bernoulli trials with probability
1/2 of success, and let Sn denote the sum,

∑n
1 Xj . Your goal is to achieve Sn = a ,
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where a is a fixed positive integer. If you attain your goal you win c1 > 0, but the cost
is 1 per trial. You may give up at any time by paying an additional amount, c2 . The
real problem, however, is to choose a stopping rule, N , to maximize the rate of return,
c1P(N ≥ a)/E(N + c2). Find the optimal rule and the optimal rate of return. (Refer to
Exercise 4.8.)


