
Chapter 5. MONOTONE STOPPING RULE PROBLEMS.

The ease with which the various problems of Chapter 4 were solved may be mislead-
ing. In general, stopping rule problems do not have closed form solutions and methods of
finding approximate solutions must be used. Indeed, most problems without some form of
Markovian structure are essentially intractable due to the high dimension of the observa-
tions involved.

In principle, it is possible to approximate a stopping rule problem by considering
a truncated version of the problem. We choose a large truncation integer, T , and re-
quire stopping by stage T . More generally, for those problems for which continuing
forever is a useful possibility, we would require that at stage T , the decision maker
must choose between stopping at T and continuing forever, that is, between receiving
YT and receiving E(Y∞|FT ). Essentially, we replace the payoff for stopping at T by
Y

(T )
T = max{YT ,E(Y∞|FT )} , and we require stopping if stage T is reached. This is a

finite horizon problem which in principle can be solved by the method of backward induc-
tion of Chapter 2. In this chapter, we find conditions under which the infinite problem may
be approximated to any desired degree of accuracy by truncated problems with sufficiently
large truncation points.

From a practical point of view, this method of approximating a solution by truncation
is not a very good one. Solving the problem truncated at T requires computation and
storage of the truncated values, V

(T )
j (x1 , . . . , xj) for j = T, T − 1, . . . , 0 as defined by

equation (1) of Chapter 2. If each xi is allowed to assume 10 values and T = 20 say, this
is already too large a problem for today’s computers. Even if the problem can be reduced
by sufficient statistics or by taking advantage of a Markovian structure, there are better
methods of approximation. We consider in Section 5.1 the k -stage look-ahead rules as
a simple but powerful improvement on the method of truncation. We also consider the
k -time look-ahead rules.

The main topic of this chapter appears in Section 5.2. The 1- stage look-ahead rules are
generally quite good; sometimes they are optimal. Under the condition that the problem
be monotone, the 1-stage look-ahead rule is optimal for finite horizon problems. The
extension of this result to infinite horizon problems requires some new conditions, detailed
in Section 5.3. Essentially, these conditions are needed so that the infinite problem can be
approximated by truncated problems in the sense that the limiting value of the truncated
problems is the value of the original problem, limT→∞ V

(T )
0 = V ∗ . Then, if the problem
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is monotone, the 1-stage look-ahead rule is optimal for the truncated problems, and by
extension for the infinite problem as well. These ideas provide a second general method for
finding simple solutions to many complex problems. (The first is the method of Chapter
4.) There are numerous applications contained in Section 5.4 and the Exercises.

§5.1 The k -stage look-ahead rules. For stopping rule problems, the k -stage look-
ahead rule (k -sla) is described by the stopping time,

Nk = min{n ≥ 0 : Yn ≥ V (n+k)
n } = min{n ≥ 0 : Yn ≥ E(V (n+k)

n+1 |Fn)}. (1)

The k -sla is the rule which at each stage stops or continues according to whether the rule
optimal among those truncated k stages ahead stops or continues. Thus at stage n , if the
optimal rule among those truncated at n + k continues, the k -sla continues; otherwise,
the k -sla stops.

The simplest of these rules is the 1-stage look-ahead rule,

N1 = min{n ≥ 0 : Yn ≥ E(Yn+1|Fn)}, (2)

In words, N1 calls for stopping at the first n for which the return for stopping is at least
as great as the expected return of continuing one stage and then stopping.

The one-stage look-ahead rule, sometimes called the myopic rule, is reasonably good,
and the two- and three-stage look-ahead rules are often quite good. An important property
of these rules is that if an optimal rule exists, and if the k -sla tells you to continue, then it is
optimal to continue, for then there is at least one rule that continues and gives you at least
as great an expected return as stopping at once. This property suggests a simplification
of the 2-sla. Use the 1-sla until it tells you to stop, and then use the 2-sla. Similarly, the
3-sla is equivalent to : Use the 1-sla until it tells you to stop, then the 2-sla until it tells
you to stop, and then use the 3-sla.

On the other hand, sometimes the 1-sla will tell you to stop, while the 2-sla, and hence
the optimal rule, will tell you to continue, as examples given later will show. Therefore,
it would be good to know how close to optimal the 1-sla is when it calls for stopping.
Theorem 2 in Section 5.2 gives a sufficient condition for the one-stage look-ahead rule to
be optimal. This theorem may be described as follows. Suppose V

(T )
0 → V ∗ as T → ∞ .

If at some stage the 1-sla calls for stopping, and if no matter what happens in the future
the 1-sla will continue to call for stopping at all future stages, then stopping immediately
is optimal. This result is true also if “1-sla” is replaced by “k -sla”.

SEQUENTIAL STATISTICAL ESTIMATION. As an illustration of the computation of
the 1-sla and the 2-sla, we specialize the Bayes sequential decision problems of Example
3 of Chapter 1 to the problem of statistical estimation of an unknown parameter with
squared error loss. The problem is to estimate a parameter θ based on a sequentially
observed sequence of random variables, X1,X2, . . . , known to be independent and identi-
cally distributed from a distribution F (x|θ). It is assumed that θ is a real parameter and
that the loss incurred when θ is estimated by a real number a is the square of the error,



Monotone Stopping Rule Problems 5.3

L(θ, a) = (θ − a)2 . One may observe X1,X2, . . . for as long as desired before estimating θ
at a cost of c per observation. In the Bayes approach to this problem, the prior distribution,
τ , of θ is assumed known. If after observing X1, . . . ,Xn , it is decided to stop and esti-
mate θ , the estimate that minimizes the conditional expected loss, E{(θ−a)2 |X1, . . . ,Xn} ,
i.e. the Bayes estimate, is the mean of the posterior distribution of θ given X1, . . . ,Xn ,
namely, a = θ̂n = E(θ|X1 , . . . ,Xn). The minimum expected loss is then just the con-
ditional variance of θ , ρn(X1, . . . ,Xn) = Var (θ|X1 , . . . ,Xn) = E{(θ − θ̂n)2|X1, . . . ,Xn} .
Therefore, the total loss plus cost of stopping at stage n is

Yn = Var (θ|X1 , . . . ,Xn) + nc. (3)

As n increases, the posterior variance ordinarily decreases almost surely to zero, while the
cost of sampling increases to ∞ . The problem is to choose a stopping rule N to minimize
EYN .

As an example, consider estimating the mean θ of a Poisson distribution

f(x|θ) = e−θθx/x! for x = 0, 1, 2, . . . ,

based on a sequential sample, X1,X2, . . . , with constant cost c per observation and squared
error loss. Let the prior distribution of θ be gamma, G(α, 1/λ), with density

g(θ) =
λα

Γ(α)
e−λθθα−1 on (0,∞).

It is assumed that the prior parameters, α and λ , are known. The joint density of
X1, . . . ,Xn and θ is the product g(θ)

∏n
1 f(xi|θ), and the posterior distribution of θ given

X1, . . . ,Xn is proportional to this, namely, f(θ|x1 , . . . , xn) ∝ e−(λ+n)θθα+x1+···+xn−1 ,
which is G(α + Sn, 1/(λ + n)) where Sn =

∑n
1 Xi . Thus, past information furnished by

the observations may be summarized by “up-dating” the parameters of the prior from
(α, λ) to (α + Sn, λ + n). Since the mean of G(α, 1/λ) is α/λ , the Bayes estimate of θ

based on X1, . . . ,Xn is θ̂n = (α + Sn)/(λ + n). Since the variance of G(α, 1/λ) is α/λ2 ,
equation (3) becomes

Yn =
α + Sn

(λ + n)2
+ nc.

At stage 0, the 1-sla compares the expected loss of stopping now, Y0 = α/λ2 , with
the expected loss plus cost of taking one observation and stopping, EY1 , where, since
EX1 = E(E(X1|θ)) = E(θ) = α/λ ,

EY1 = E(α + X1)/(λ + 1)2 + c

= α/(λ(λ + 1)) + c.

The 1-sla calls for stopping without taking any observations if α/λ2 ≤ α/(λ(λ+1))+ c or
equivalently if

α

λ2(λ + 1)
≤ c. (4)
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The general 1-sla may be obtained from this by replacing (α, λ) by the the updated
parameters (α + Sn, λ + n). Hence, the 1-sla of equation (2) with the inequality reversed
since we are dealing with a cost rather than a return becomes is

N1 = min{n ≥ 0 :
α + Sn

(λ + n)2(λ + n + 1)
≤ c}.

To compute the 2-sla at stage 0, we compare the expected loss of stopping without
any observations, Y0 = α/λ2 , with the expected loss plus cost of observing X1 and then
using the optimal 1-stage procedure, namely,

(5) c + Emin{(α + X1)/(λ + 1)2, (α + X1)/((λ + 1)(λ + 2)) + c},

The 2-sla calls for stopping without taking any observations if the former is no greater
than the latter. We can simplify this expression and make the comparison of the 1-sla and
the 2-sla easier by subtracting (α + X1)/(λ + 1)2 from both terms in the minimum of (5)
to rewrite it as

(6)
c + Emin{0, − α + X1

(λ + 1)2(λ + 2)
+ c} + E(α + X1)/(λ + 1)2

= c − E(
α + X1

(λ + 1)2(λ + 2)
− c)+ + α/(λ(λ + 1)).

from this, it follows that the 2-sla, N2 , calls for stopping at stage 0 if

(7)
α

λ2(λ + 1)
≤ c − E(

α + X1

(λ + 1)2(λ + 2)
− c)+

The 2-sla at stage n can be obtained from this by replacing (α, λ) by (α + Sn, λ + n)
where the expectation must also be taken with the updated parameters. For a problem in
which the 2-sla can be found in closed form, see Exercise 1.

THE TWO-TIMER. A simple improvement on the k -stage look-ahead rule, called the
k -time look-ahead rule, has been suggested by A. Biesterfeld (1996). The one-time
look-ahead rule, which is an improvement over both the myopic rule (the 1-sla) and the
hypermetropic rule of Exercise 3.2, is the rule that calls for stopping at stage n if Yn ≥
supt>n E(Yt|Fn). In other words, if at stage n there is some fixed future time t > n
(possibly t = ∞) such that the conditional expected return of continuing to stage t and
stopping is greater than the return of stopping immediately, then the one-time look-ahead
rule continues at least to stage n + 1. Otherwise, it stops immediately. We denote the
one-time look-ahead rule by T1 . Thus,

T1 = min{n ≥ 0 : Yn ≥ sup
t>n

E(Yt|Fn)}. (8)

Like the one-stage look-ahead rule, N1 , if T1 calls for continuing it is optimal to
continue (provided an optimal rule exists). In addition, if N1 calls for continuing, so
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does T1 . From Exercise 3.3, T1 is at least as good as N1 . It is easy to see it can be
better. For example, when the Yn are degenerate with Y0 = 1, Y1 = 0, Y2 = 2, and
Y3 = Y4 = · · · = Y∞ = 0, then N1 = 0 with a return of 1, and T1 = 2 with a return of 2.

Let us see how well T1 does in the example of statistical sequential estimation of the
mean of a Poisson distribution. The observations, X1,X2, . . . , are i.i.d. Poisson with mean
θ , and the prior distribution of θ is G(α, 1/λ). To find T1 , let us find the conditions under
which T1 stops at stage zero. We compute

E(Yt) = E(
α + St

(λ + t)2
+ tc) =

α

λ(λ + t)
+ tc

since E(St) = E(E(St|θ)) = E(tθ) = tE(θ) = tα/λ . To find T1 , we find the t at which

E(Yt) is a minimum. (You may check that this occurs at t = {
√

α
cλ + 1

2 − λ} , where {x}
represents the integer closest to x .) Clearly, for some α , c and λ , this can be greater
than one. So is T1 different from N1 ?

Surprisingly, the answer is no. Here is why. As noted before, if N1 says continue,
then T1 also says continue. Suppose N1 says stop. Then α ≤ cλ2(λ + 1) from (4). This
implies that for t ≥ 1, tα ≤ tcλ2(λ + t), or equivalently,

α

λ2
≤ α

λ(λ + t)
+ tc.

Thus T1 calls for stopping also.

It is somewhat disappointing that the one-time look-ahead rule does not improve upon
the one-stage look-ahead rule for this example. Moreover, this holds true for rather general
distributions. It holds whenever E(Var (θ|X1, . . . ,Xn)) is a convex function of n .

Therefore, to get an improvement we must look at the k -time look-ahead rule for
k > 1. This rule may be described as follows. At stage n , choose k fixed times, n <
t1 < · · · < tk , and consider the best sequential rule among those that stop only at these
times. If there exists a set of t1, . . . , tk for which this rule gives smaller expected loss than
stopping at n then continue; otherwise stop.

Consider the two-time rule (called simply the two-timer) at stage n = 0. We choose
two times, 0 < t1 < t2 . Then we consider the sequential rule that looks first at X1, . . . ,Xt1

and decides whether to stop or to continue to t2 and stop. If we stop, we pay Yt1 , and
if we continue we expect to pay E(Yt2 |Ft1). We stop at t1 if the former is less than the
latter. The expected loss using such a rule is E(min{Yt1 ,E(Yt2 |Ft1)}). Therefore, the
two-timer stops without taking any observations if

Y0 ≤ E(min{Yt1 ,E(Yt2 |Ft1)}) for all 0 < t1 < t2 . (9)

Let us compute the expectation on the right side of (9) in our example. From

E(Yt2 |Ft1) =
α + St1

(λ + t1)(λ + t2)
+ t2c,
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we find

min{Yt1 ,E(Yt2 |Ft1)} = min{ α + St1

(λ + t1)2
+ t1c,

α + St1

(λ + t1)(λ + t2)
+ t2c}

=
α + St1

(λ + t1)2
+ t1c + min{0,− (t2 − t1)(α + St1)

(λ + t1)2(λ + t2)
+ (t2 − t1)c}

=
α + St1

(λ + t1)2
+ t1c − (t2 − t1)

(
α + St1

(λ + t1)2(λ + t2)
− c

)+

,

from which we may compute the expectation in (9) as

E(min{Yt1 ,E(Yt2 |Ft1)}) =
α

λ(λ + t1)
+ t1c − (t2 − t1)E

(
α + St1

(λ + t1)2(λ + t2)
− c

)+

.

Thus the two-timer stops without taking observations if for all 0 < t1 < t2 , Y0 = α/λ2 is
less than or equal to this, that is, if

αt1
λ2(λ + t1)

≤ t1c − (t2 − t1)E
(

α + St1

(λ + t1)2(λ + t2)
− c

)+

or, equivalently,

α

λ2
≤ c(λ + t1) −

(t2 − t1)
t1(λ + t1)(λ + t2)

E
(
α + St1 − (λ + t1)2(λ + t2)c

)+
. (10)

for all 0 < t1 < t2 . To compute the expectation on the right, note that the marginal
distribution of St1 is negative binomial:

P(St = x) = E(P(St = x|θ)) = E(
1
x!

e−tθ(tθ)x)

=
tx

x!
λα

Γ(α)

∫ ∞

0

e−(λ+t)θθα+x−1 dθ

=
tx

x!
λα

Γ(α)
Γ(α + x)

(λ + t)α+x

for x = 0, 1, 2, . . . .

For α = 1, this is the geometric distribution, G(t/(λ + t)). If X ∈ G(p), it is easy to
compute E(X − k)+ for k > −1 as follows.

E(X − k)+ =
∞∑

x=�k�
(x − k)px(1 − p) = p�k�

∞∑
x=�k�

(x − k)px−�k�(1 − p)

= p�k�
∞∑

y=0

(y + �k� − k)py(1 − p) = p�k�(
p

1 − p
+ �k� − k).

(11)
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Now assume α = 1 in (10) and put p = t1/(λ + t1) and k = (λ + t1)2(λ + t2)c − 1 into
(11). We find that the two-timer calls for stopping at stage 0 if for all 0 < t1 < t2 ,

1
λ2

≤ c(λ + t1) −
(t2 − t1)

t1(λ + t1)(λ + t2)

(
t1

λ + t1

)�k�
(
t1
λ

+ �k� − k).

Now suppose λ is large, say λ = 100, and c is small, say c = .000001. Then 1/(λ2(λ +
1)) < c , so the 1-sla and the one-timer call for stopping. Then for small values of t1 and
t2 such that �k� = 1 (i.e., (1 + .01t1)2(1 + .01t2) < 2), the above inequality becomes

1
λ2

≤ c(λ + t1) −
(t2 − t1)

(λ + t1)2(λ + t2)
(
t1
λ

+ 1 − k)

= c(λ + t2) −
(t2 − t1)

(λ + t1)2(λ + t2)
(
t1
λ

+ 2).

For fixed t2 , the right side is increasing in t1 , and so the inequality is sharpest when t1 is
smallest, namely t1 = 1. At t1 = 1, the inequality becomes

1 ≤ c(λ + t2)λ2 − (t2 − 1)λ
(λ + 1)2(λ + t2)

(1 + 2λ).

At t2 = 2, this inequality is 1 ≤ 1.00068, so the 2-sla also calls for stopping. Yet the right
side of this inequality decreases in t2 until t2 = 41 (value there = .851023), and then
increases. Therefore the two-timer calls for taking the first observation.

In this example, the two-timer provides an improvement over the 2-stage look-ahead
rule with no real increase in the cost of computation. But in continuous-time problems
the k -time look-ahead rule plays a more fundamental role. In such problems, stopping can
occur at any real time, not just at integer times; stopping does not occur in stages so the
k -stage look-ahead approximations to the optimal rule are not available. The analog of
the one-stage look-ahead rule in continuous-time problems is the infinitesimal look-ahead
rule of Ross (1971). (See Example 5 in Section 5.4.) Although analogs to the k -stage
look-ahead rules are not meaningful, the analogs to the k -time look-ahead rules exist and
generally provide improvements over the infinitesimal look-ahead rule. The two-timer will
generally look infinitesimally ahead as well as at a second time a positive amount into the
future. See Biesterfeld (1996) for an example.

§5.2 Monotone Stopping Rule Problems. We seek conditions under which it is
optimal to stop when the 1-sla calls for stopping. The basic condition is that the problem
be monotone, a notion due to Chow and Robbins (1961). In finite horizon monotone
stopping rule problems, the 1-sla is optimal.

Definition. Let An denote the event {Yn ≥ E(Yn+1|Fn)} . We say that the stopping rule
problem is monotone if

A0 ⊂ A1 ⊂ A2 ⊂ . . . a.s. (12)
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Monotone problems may be described as follows. The set An is the set on which the
1-sla calls for stopping at stage n (given that stage is reached). The condition An ⊂ An+1

means that if the 1-sla calls for stopping at stage n , then it will also call for stopping at
stage n+1 no matter what Xn+1 happens to be (a.s.). Similarly, An ⊂ An+1 ⊂ An+2 ⊂ . . .
means that if the 1-sla calls for stopping at stage n , then it will call for stopping at all
future stages no matter what the future observations turn out to be (a.s.).

Theorem 1. In a finite horizon monotone stopping rule problem, the one-stage look-ahead
rule is optimal.

Proof. Suppose the horizon is J . One optimal rule is

N∗ = min{n ≥ 0 : Yn ≥ E(V (J)
n+1|Fn)}

where V
(J)
J+1 = −∞, V

(J)
J = YJ , and by backward induction,

V (J)
n = max{Yn,E(V (J)

n+1|Fn)} for n = 0, 1, . . . , J − 1.

Fix n < J . If N1 calls for continuing at n , then, since V
(J)
n+1 ≥ Yn+1 a.s., N∗ calls for

continuing at n also. Suppose N1 calls for stopping at n , that is, suppose An holds.
Then, since the problem is monotone An+1, . . . , AJ−1 also hold. Thus

YJ−1 ≥ E(YJ |FJ−1) = E(V (J)
J |FJ−1). Hence V

(J)
J−1 = YJ−1.

YJ−2 ≥ E(YJ−1|FJ−2) = E(V (J)
J−1|FJ−2). Hence V

(J)
J−2 = YJ−2.

...

Yn ≥ E(Yn+1|Fn) = E(V (J)
n+1|Fn). Hence V (J)

n = Yn.

Thus, N∗ also calls for stopping.

In particular, for a monotone stopping rule problem, the k -sla is no better than the
1-sla for any k > 1.

Corollary 1. For a monotone stopping rule problem, for all k > 1 , the k -stage look-ahead
rule is equivalent to the 1 -stage look-ahead rule.

There are various problems associated with the extension of Theorem 1 to the infinite
horizon case. Consider Examples 1 and 2 of Chapter 3. In both of these examples the
problem is monotone because the 1-sla always tells you to continue. Yet the 1-sla is not
optimal; in fact it is the worst of all stopping rules since it has you continue forever and
receive nothing. Even if we assume A1 and A2, the 1-sla still might not be optimal for a
monotone problem as the following two counterexamples show.

Counterexample 1. If Yn = 1/(n + 1) for n = 0, 1, . . . , and Y∞ = 2, then the unique
optimal stopping rule is N = ∞ with return V = 2. The 1-sla always calls for stopping
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so the problem is monotone. But stopping at stage 0 has return V = 1 so the 1-sla is not
optimal.

Clearly, it is suboptimal to stop if continuing forever gives a greater expected return,
that is, if the hypermetropic rule calls for continuing. In other words, any stopping rule is
improved by replacing any decision to stop by the decision to continue forever if that gives
a greater expected payoff. Hence, we may replace Yn by max{Yn,E(Y∞|Fn)} without
changing the problem; this merely rules out some suboptimal stopping rules. Thus, we
may assume

Yn ≥ E(Y∞|Fn) a.s.

without loss of generality. Given that A1 and A2 hold, we then would have the following
strengthened form of A2,

A3: limn→∞ Yn = Y∞ a.s. (13)

since by the martingale convergence theorem E(Y∞|Fn) → E(Y∞|F∞) = Y∞ a.s. (See,
for example, Chow Robbins and Siegmund (1971), p. 18.) We have assumed that Y∞ is
F∞ -measurable; that is, we have replaced Y∞ by its expectation given F∞ .

Counterexample 2. Let K have a geometric distribution P(K = k) = 1/2k for k =
1, 2, . . . and define Xn = I(n 
= K) for n = 1, 2, . . . . For a fixed ε , 0 < ε < 1, let
Y0 = −1 + ε , Yn = (−2n + ε)Xn for n = 1, 2, . . . and Y∞ = −∞ . Then A1 and A3
are satisfied and the optimal rule is obviously N = min{n ≥ 0 : Xn = 0} having return
0. However, at stage n with K > n , if we continue one stage and stop, we expect
(1/2)0 + (1/2)(−2n+1 + ε) = −2n + ε/2 compared with −2n + ε for stopping immediately.
Hence, the 1-sla always calls for stopping so the problem is monotone. The 1-sla stops
without taking any observations and has the return −1 + ε .

In spite of these counterexamples, it is usually true that the 1-sla is optimal for
monotone infinite horizon problems. What is needed is a condition to ensure that the
infinite horizon problem can be approximated well by finite horizon problems in the sense
that V

(J)
0 → V

(∞)
0 as J → ∞ , where V

(J)
0 denotes the optimal return for the problem

truncated at J , and V
(∞)
0 denotes V ∗ , the optimal return for the infinite horizon problem.

The following theorem states this formally. A similar approach is used in Bayes sequential
statistical problems. (See, for example, Theorem 7.2.5 in Ferguson (1967).)

Theorem 2. Suppose A1 and A2 are satisfied and suppose the problem is monotone. If

V
(J)
0 → V

(∞)
0 as J → ∞ , then the one-stage look-ahead rule is optimal.

Proof. Let N∗ denote the 1-sla and let Nj be the 1-sla truncated at j , Nj = min{N∗, j} .
Then Nj is the 1-sla for the problem truncated at j and so by Theorem 1, Nj is optimal
for the problem truncated at j , so that EYNj = V

(j)
0 . Note that Nj is an increasing

sequence of stopping rules converging to N∗ . Thus, as in the proof of Theorem 3.1,

V
(∞)
0 = lim EYNj ≤ E lim supYNj ≤ EYN∗ ,

showing that N∗ is optimal.
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§5.3 Approximation of the Infinite Problem by Finite Horizon Problems.
This brings up the problem of the approximation of optimal rules by truncated rules.
Counterexample 2 indicates that we need some sort of lower bounds for the Yn . Under the
extra condition that Tn = supj≥n(Yj − Yn) be uniformly integrable, the infinite horizon
problem can be approximated by the finite horizon problems.

Definition. A set of random variables {Tn} is said to be uniformly integrable (u.i.) if

sup
n

E{|Tn|I(|Tn| > a)} → 0 as a → ∞. (14)

Note 1. If E(|Tn|) → 0 as n → ∞ , then Tn is u.i.
(Proof. Let ε > 0. Find N such that n > N implies E(|Tn|) < ε . For each n , find an

such that E{|Tn|I(|Tn| > an)} < ε . Let A = max1≤n≤N an . Then a > A implies that
E{|Tn|I(|Tn| > a)} < ε , for all n , so that supn E{|Tn|I(|Tn| > a)} ≤ ε .)

Note 2. If lim supE(|Tn|) = ∞ , then Tn is not u.i.
(Proof. Fix a . E(|Tn|) = E{|Tn|I(|Tn| ≤ a)} + E{|Tn|I(|Tn| > a)} ≤ a + E{|Tn|I(|Tn| >
a)} , so supn E{|Tn|I(|Tn| > a)} ≥ supn E(|Tn|) − a = ∞ .)

Note 3. If E(|Tn|) stays bounded away from zero and infinity, then Tn may or may
not be u.i. For example, if Tn is i.i.d. with E(|Tn|) = 1, then Tn is u.i., but if Tn = n
w.p. 1/n and Tn = 0 otherwise, then E(|Tn|) = 1 for all n , yet Tn is not u.i.

Lemma 1. If {Tn} is uniformly integrable and if An are any events such that P(An) → 0
as n → ∞ , then EI(An)|Tn| → 0 as n → ∞ .

Proof.
EI(An)|Tn| = EI(An)I(|Tn| ≤ a)|Tn| + EI(An)I(|Tn| > a)|Tn|

≤ aP(An) + EI(|Tn| > a)|Tn|.
From uniform integrability, for fixed ε > 0 there exists an a such that the second term is
less than ε for all n . Now let n → ∞ and the first term tends to zero.

Theorem 3. Assume A1 and A3 and let Tn = supj≥n{Yj −Yn} . If the Tn are uniformly

integrable, then V
(n)
0 → V

(∞)
0 as n → ∞ .

Proof. Let N denote an optimal stopping rule, and let N(n) = min{N,n} for n =
1, 2, . . . . Then,

0 ≤ V
(∞)
0 − V

(n)
0 ≤ EYN − EYN(n)

= EI(n < N < ∞)(YN − Yn) + EI(N = ∞)(Y∞ − Yn)
≤ EI(n < N < ∞)Tn + E(Y∞ − Yn)+.

The first term tends to zero by Lemma 1. If we let ε be an arbitrary positive number, the
second term may be written as

EI((Y∞ − Yn) ≤ ε)(Y∞ − Yn)+ + EI((Y∞ − Yn) > ε)(Y∞ − Yn)+

≤ ε + EI((Y∞ − Yn) > ε)Tn.
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Since P((Y∞ − Yn)+ > ε) → 0 as n → ∞ by A3, the final expectation tends to zero from
Lemma 1, so the whole can be made less than 2ε for n sufficiently large.

The proof of this theorem shows more. Namely, under the conditions of that theo-
rem, we have EYN(n) → V

(∞)
0 , i.e., one loses very little in truncating an optimal rule at

sufficiently large n . In addition, it follows from this theorem that EYNk → V
(∞)
0 , where

Nk is the k-stage look-ahead rule.

The following corollary gives a simple sufficient condition for the uniform integrability
of {Tn} that is easily checked in many cases in which the payoff is a reward depending on
the observations minus a constant cost per observation.

Corollary 2. Assume A3 and suppose that Yn = Zn − Wn where E supn |Zn| < ∞ and

Wn is nonnegative and nondecreasing a.s. Then, A1 holds and V
(J)
0 → V

(∞)
0 as J → ∞ .

Proof. A1 is satisfied since Yn ≤ Zn is bounded above by an integrable function. More-
over, for j > n , Yj − Yn ≤ Zj − Zn so that 0 ≤ Tn = supj≥n(Yj − Yn) ≤ 2 supn |Zn| =
Z ′ , say, which has finite expectation. This implies uniform integrability since for all n
EI(|Tn| > a)|Tn| ≤ EI(|Z ′| > a)Z ′ → 0 as a → ∞ .

In particular, putting Wn ≡ 0, we see that the strengthened form of A1, E(supn |Yn|)
< ∞ , together with A3 implies that V

(J)
0 → V

(∞)
0 . It is worth remarking that for a cost

problem, where we are trying to minimize EYN , the only change required in Corollary 2
is to replace Yn = Zn −Wn by Yn = Zn + Wn .

Consider Counterexample 2. One finds that Tn = (2n − ε)I(K > n). The Tn cannot
be u.i. since otherwise the 1-sla would be optimal. Indeed, one can check directly that the
Tn are not u.i. For fixed a , just find n such that 2n − ε > a ; then E|Tn|I(|Tn| > a) =
(2n − ε)P(K > n) = 1 − (ε/2n).

If ε in Counterexample 2 were negative, then the 1-sla continues until n = K and so
is optimal. However, its optimality is not implied by the theorems of this section. First of
all, the problem is not monotone since if you continue beyond n = K , the 1-sla will again
have you continue. But even if we modify the problem to make it monotone by changing
Xn to be I(n < K), the {Tn} are still as in the previous paragraph and so are not u.i.
This provides an example of a monotone problem in which the 1-sla is optimal even though
V

(J)
0 does not converge to V

(∞)
0 ; that is, it provides a counterexample to the converse of

Theorem 2.

§5.4 Examples. 1. THE BURGLAR PROBLEM. Suppose that the returns from the
burglaries are i.i.d. non-negative random variables, X1,X2, . . . with known distribution
having finite mean, µ . Let Z1, Z2, . . . be the random variables that indicate whether the
burglar is caught, with Zn = 1 denoting that the nth burglary is successful and Zn = 0
indicating that he is caught during the nth burglary, and assume that the Zn are i.i.d. with
P(Zn = 1) = β and P(Zn = 0) = 1 − β where β is known and 0 < β < 1. The payoff for
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stopping after the nth burglary is

Yn = (
n∏
1

Zi)
n∑
1

Xi,

for n = 0, 1, . . . , and we take Y∞ = 0 so that A3 is satisfied. Letting Fn denote the
σ -field generated by both X1, . . . ,Xn and Z1, . . . , Zn , we compute on {

∏n
1 Zi = 1} ,

E(Yn+1|Fn) = E(Zn+1

n+1∑
1

Xi|Fn) = β(
n∑
1

Xi + µ).

Hence, the one-stage look-ahead rule is

N1 = min{n ≥ 0 :
n∑
1

Xi ≥ β(
n∑
1

Xi + µ)}

= min{n ≥ 0 :
n∑
1

Xi ≥ βµ/(1 − β)},

that is, stop at the first n at which your accumulated gain is at least βµ/(1−β). Because
the Xi are assumed to be non-negative, one sees that the problem is monotone. To check
optimality, we note that the Yn are bounded below by 0 and above by supn Yn =

∑M
1 Xi ,

where M is the number of successful burglaries, M = max{n ≥ 0 :
∏n

1 Zi = 1} . Since
E(

∑M
1 Xi) = µE(M) = µ/(1−β), the conditions of Corollary 2, with Wn ≡ 0, are satisfied

and so N1 is optimal.

This problem is just a version of the discounted stopping of a sum problem of Dubins
and Teicher where the returns are nonnegative. Instead of a discount β , there is a prob-
ability β that your fortune is set forever to zero. Since you have no control over the Zn

and they are independent of everything else in the problem, you may as well replace them
by their expected values. When you do, you find that Yn = βn

∑n
1 Xi , as in the problem

of Dubins and Teicher.

In §4.2, this problem was seen to have an optimal rule of the simple form, N =
min{n > 0 : Sn ≥ s0} for some s0 , whether or not the Xi are assumed to be non-negative.
If the Xi may assume negative values, then the problem is not monotone and the methods
of the present chapter are not capable of finding the solution directly. However, if the
Xi are non-negative, then these methods may sometimes be used to solve more general
problems where the Xi are dependent. (See Exercises 2 and 3.)

2. SELLING AN ASSET. Let X1,X2, . . . (with Xn representing the n -th offer)
be i.i.d. with known distribution F having finite variance, and consider the problem of
selling an asset with constant cost c > 0 and with recall so that Yn = Mn − nc , where
Mn = max{X1, . . . ,Xn} , Y0 = −∞ and Y∞ = −∞ . Since

E(Yn+1|Fn) − Yn = E(max{Mn,Xn+1}|Fn) − Mn − c

= E((Xn+1 −Mn)+|Fn) − c

=
∫

(x − Mn)+ dF (x) − c,
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the 1-sla may be written

N1 = min{n ≥ 1 :
∫

(x − Mn)+dF (x) ≤ c}

Since
∫
(x − v)+ dF (x) is a nonincreasing function of v , this reduces to N1 = min{n ≥

1 : Mn ≥ v} , where v satisfies
∫
(x − v)+ dF (x) = c , the stopping rule already seen to be

optimal in §4.1. Let us check optimality using the theorems of this section. The problem
is clearly monotone. Note that Corollary 2 does not apply, since supn Mn = ∞ if the
distribution of X is unbounded. We check the condition of Theorem 3. Write

Tn = sup
j≥n

(Yj − Yn) = sup
j≥n

(Mj − Mn − (j − n)c)

and note that conditional on Mn , the right side of this equality has the same distribution
as supj>0(M

′
j − jc) where M ′

j is the maximum of a sample of size j from the distribution
of (X − Mn)+ . Thus, the E(Tn|Mn) are a.s. decreasing to zero, and since they have
finite mean by Theorem 4.1, E(Tn) → 0 by monotone convergence, and thus the Tn are
uniformly integrable.

We point out that the problem of selling an asset without recall, Yn = Xn − nc , is
not monotone. This is because the 1-sla can call for stopping at a very high value of Xn ,
but if you continue and observe a very low value of Xn+1 , the 1-sla would certainly call
for continuing. The 1-sla is

N ′
1 = min{n ≥ 0 : Xn > EX − c},

quite different from N1 above. In fact, as noted in Chapter 4, N1 is optimal for sampling
without recall as well, since for all n , Xn ≤ Mn , and this implies that for all stopping
rules, N ,

E(XN − Nc) ≤ E(MN − Nc) ≤ E(MN1 − N1c) = E(XN1 − N1c).

3. THE PARKING PROBLEM. The formulation of the parking problem given in
Chapter 2 does not produce a monotone stopping rule problem. This is because if the 1-
sla calls for stopping at some open parking place before your destination and you continue
one step, the next parking place may be filled so the 1-sla would call for continuing. This
is somewhat artificial since you are not allowed to stop if the parking place is filled; a
different formulation does lead to a monotone problem. We describe this formulation and
at the same time give an extension due to Tamaki (1982) to the case where the destination
is not known precisely. This problem does not have a finite horizon and so is not amenable
to the methods of Chapter 2.

You are at the origin driving to a target destination T > 0. The distribution of T is
known and has finite mean but the value of T is not known until you reach it. Parking
places occur at random along the street at points Z1, Z2, . . . chosen according to a Poisson
process independent of T with intensity λ > 0; that is, Z1, Z2 − Z1, Z3 − Z2, . . . are
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i.i.d. with an exponential distribution of mean 1/λ . Your loss is the distance you have to
walk to your destination,

Yn = |T − Zn| for n = 0, 1, 2, . . . and Y∞ = ∞,

where Z0 is defined to be 0 and Y0 = |T | represents the loss if you walk all the way.

The information available at stage n is the set of values of Z1, . . . , Zn and the infor-
mation as to whether Zn < T or Zn ≥ T , and in the latter case the exact value of T . On
{Zn < T} , Yn may be replaced by

E{Yn|Fn} = E{T |Zn, Zn < T} − Zn.

If Zn ≥ T , it is clearly optimal to stop; so let us assume Zn < T and look at the
1-sla. To compute the 1-sla, we find on {Zn < T}

E{Yn+1|Fn} = E{|T − Zn − Z||Zn, Zn < T},

where Z is exponential with mean 1/λ . For arbitrary u > 0,

E|u − Z| = E(u − Z) + 2E(Z − u)+

= (u − 1/λ) + 2P (Z > u)E{Z − u|Z > u}
= (u − 1/λ) + 2e−λu(1/λ),

so that on {Zn < T}

E{|T − Zn − Z||Fn} = E{(T − Zn) − 1/λ + (2/λ)e−λ(T−Zn)|Fn}.

Comparing with Yn and letting g(x) = E{e−λ(T−x)|T > x} , we see that the 1-sla is

N1 = min{n ≥ 0 : g(Zn) ≥ 1/2}.

It is evident from this that the problem is monotone if g(x) is monotonically non-
decreasing, since the Zn are a.s. increasing. To check the conditions of Corollary 2, mod-
ified to reflect the fact that this is a minimum problem, write Yn = Z ′

n + W ′
n where

Z ′
n = (T − Zn)+ is bounded below by zero and above by T and W ′

n = (Zn − T )+ is
non-decreasing a.s. Thus, the conditions of Corollary 2 are satisfied, so that the 1-sla is
optimal if g(x) is nondecreasing.

Consider the case where T has an exponential distribution. The lack of memory
property of the exponential distribution implies that g(x) is a constant, and hence nonde-
creasing. Thus, the exponential distribution is the borderline case. For distributions with
thinner tails than the exponential, i.e. distributions with increasing failure rate, g(x) will
be nondecreasing; for distributions with decreasing failure rates, g(x) will be nonincreas-
ing.
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4. PROOFREADING. Let us find the 1-stage look-ahead rule for Example 1.4, the
proofreading problem. For this problem, the number of misprints M and the numbers
of misprints detected on subsequent consecutive proofreadings X1,X2, . . . have a known
joint distribution such that Xj ≥ 0 and

∑
Xj ≤ M a.s. and EM < ∞ . The cost for

stopping after n proofreadings is

Yn = nc1 + (M −
n∑
1

Xj)c2 and Y∞ = ∞,

where c1 > 0 is the cost of each proofreading, and c2 > 0 is the cost of each undetected
misprint.

If you stop at stage n you expect to lose

E{Yn|X1, . . . ,Xn} = nc1 + [E{M |X1, . . . ,Xn} −
n∑
1

Xj ]c2.

If you continue one stage and stop, you expect to lose

E{Yn+1|X1, . . . ,Xn} = (n+1)c1 + [E{M |X1, . . . ,Xn}−
n∑
1

Xj −E{Xn+1|X1, . . . ,Xn}]c2.

The 1-sla calls for stopping if the former is not greater than the latter,

N1 = min(n ≥ 0 : E{Xn+1|X1, . . . ,Xn} ≤ c1/c2).

Clearly, the problem is monotone if and only if E{Xn+1|X1, . . . ,Xn} is nonincreasing a.s.
Assuming the problem is monotone let us check Corollary 2 for optimality of the 1-sla.
Y∞ was chosen so that A3 is satisfied. Moreover, Yn = Zn + Wn , where Wn = nc1 is
nondecreasing and Zn = (M −

∑n
1 Xj)c2 is bounded in absolute value by Mc2 which has

finite expectation by assumption. Hence, the 1-sla is optimal if the problem is monotone.

One case which leads to a monotone problem is mentioned in Yang, Wackerly and
Rosalsky (1982). (See also the correction in Chow and Schechner (1985).) Let M have
a Poisson distribution with known mean λ > 0 and for n = 0, 1, . . . let Xn+1 have the
binomial distribution with sample size M −

∑n
1 Xj and known success probability p ,

0 < p < 1. Let Mn = M −
∑n

1 Xj denote the number of misprints remaining after n
proofreadings. Then the posterior distribution of Mn given X1, . . . ,Xn is Poisson with
mean λ(1 − p)n independent of X1, . . . ,Xn as is easily checked. Since

E{Xn+1|X1, . . . ,Xn} = E{Mnp|X1, . . . ,Xn}
= λ(1 − p)np

is a decreasing function of n , the problem is monotone. The corresponding optimal rule,

N1 = min{n ≥ 0 : λp(1 − p)n ≤ c1/c2},
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is a fixed sample size rule, i.e. a rule that stops at a fixed predetermined number of
observations.

5. FISHING. (Starr, Wardrop and Woodroofe (1976)) Consider a lake with n fish
and let T1, . . . , Tn denote the capture times, assumed to be i.i.d. according to a given
distribution function F (t) on (0, t). For t > 0, let X(t) denote the number of fish caught
by time t , i.e. X(t) is the number of Tj less than or equal to t . The payoff if you stop at
time t is Y (t) = X(t) − ct , where c > 0 is the cost of time. If stopping is allowed at all
times, it may be optimal to stop between catches. However, as mentioned in Exercise 2 of
Chapter 1, Starr and Woodroofe (1974) have shown that if F has increasing failure rate,
then there is an optimal rule that stops only at catch times. In spite of this, the easy case
turns out to be the case of decreasing failure rate! If F has decreasing failure rate, then
it may be optimal to stop between catch times, but there is an analogue of the 1-sla for
continuous time problems that is easy to compute and is optimal for this problem, namely,
the infinitesimal look-ahead rule. The theory for this rule is developed by Ross (1971)
based on the theory of Markov processes. Here, we find an approximation by discretizing
the time axis, finding the ordinary 1-sla and passing to the limit.

Let F (t) be an absolutely continuous distribution function with density f(t) on the
interval (0,∞). The failure rate (or hazard rate) of F at t is defined to be h(t) = f(t)/(1−
F (t)), and may be interpreted as the instantaneous death rate of those individuals who
have reached age t . Conversely, from the failure rate, h(t), one can obtain the distribution
function by the formula, 1 − F (t) = exp{−

∫ t

0
h(s)ds} . The distribution with a constant

failure rate equal to λ on (0,∞) is the exponential distribution, F (t) = 1 − exp{−λt} .

We say that F has decreasing failure rate (DFR) if the failure rate, h(t), is nonin-
creasing, and increasing failure rate (IFR) if h(t) is nondecreasing. Monotone failure rate
distributions may be characterized in terms of the stochastic order of the residual lifetimes
at t . Specifically, if F has DFR (resp. IFR), then the distribution of the residual life time
at t ,

P (T < t + ε|T > t) = 1 − exp{−
∫ t+ε

t

h(s)ds},

is a nonincreasing (resp. nondecreasing) function of t , for every ε > 0.

Let ε be a small fixed positive number, and consider the return of stopping at time
t , Y (t) = X(t) − tc , compared to the conditional expected return of continuing to time
t + ε and stopping, namely

E(Y (t + ε)|Ft) = X(t) + (n − X(t))P(T < t + ε|T > t) − (t + ε)c.

The former is greater than or equal to the latter if and only if

(n − X(t))P (T < t + ε|T > t) ≤ cε.

The first factor on the left, n−X(t), is nonnegative and nonincreasing a.s., and the second
is nonincreasing in t , provided F has DFR. Thus, in the DFR case, once this inequality
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becomes satisfied at some time t , it stays satisfied at all future times. This is a version of
the monotonicity property.

Suppose that stopping is allowed only at times t = kε , for k = 0, 1, 2, . . . . The 1-sla
would be

N1 = min{kε ≥ 0 : (n − X(kε))P(T < (k + 1)ε|T > kε) ≤ cε}.

As argued above, if the distribution of T has DFR, then the problem is monotone,
and so from Corollary 2, with Zk = X(kε) bounded and Wk = kεc nondecreasing, the
1-sla is optimal. This is true for all ε > 0.

Now, noting that P(T < t+ ε|T > t)/ε → h(t) as ε → 0, we find as an approximation
to the 1-sla when ε is small,

N∗ = min{t ≥ 0 : (n − X(t))h(t) ≤ c}.

This is the infinitesimal look-ahead rule. This problem is treated in Starr, Wardrop and
Woodroofe (1976), where the payoff is extended to be of the form Y (t) = g(X(t)) − c(t),
where g(k+1)−g(k) is nonincreasing in k , and c is a convex function. The corresponding
optimal rule is N∗ = min{t ≥ 0 : (n − X(t))(g(X(t) + 1) − g(X(t)))h(t) ≤ c′(t)} .

As a simple numerical example, consider the Pareto distribution, F (t) = 1−λ/t , with
decreasing hazard function, h(t) = λ/t . It is optimal to stop as soon as the number of fish
left, n − X(t), is less than ct/λ . For exponential distributions, F (x) = 1 − exp{−λx} ,
the only distributions that have both DFR and IFR, h(t) is the constant λ so that the
optimal rule is to stop as soon as n−X(t) ≤ c/λ . This is a fixed sample size rule; we stop
as soon as we catch n − c/λ fish. For the Rayleigh distribution, F (t) = 1 − exp{−t2/2} ,
with increasing hazard function, h(t) = t , the problem becomes harder because the 1-sla
is not optimal. But since we will only stop at catch times, the problem has a finite horizon
and can be solved in principle by the method of backward induction of Chapter 2.

A related model, allowing an unknown number of fish of differing sizes with the catch
time of a fish, T , being dependent on its size, Z , is due to Cozzolino (1972). The number
of fish, M , has a prior Poisson distribution, P(λ), for a known λ > 0. Given M = m ,
the catch times and sizes of the fish, (T1, Z1), . . . , (Tm, Zm), are i.i.d. with common known
distribution function, F (t, z), independent of m . (Cozzolino takes Z to be have a gamma
distribution and T given Z = z to have an exponential distribution with rate γz .) At time
s > 0, the known data are the catch times and sizes of those fish, if any, whose catch times
are less than or equal to s . The payoff for stopping at time s is the sum of the sizes of
the fish caught by time s minus a constant cost per unit time: Ys =

∑
j ZjI(Tj ≤ s)− cs .

See Exercise 13.

The most interesting feature of this model is that if by time s , k fish of sizes z1, . . . , zk

have been caught at times t1, . . . , tk respectively, then the posterior distribution of future
catch times and sizes is independent of this information and may be described as follows.
The number of fish remaining, N − k , at time s is P(λS(s)), where S(s) = P(T > s) is
the survival function. Given the number of fish remaining, their catch times and sizes are
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i.i.d. with distribution function, (F (t, z)−F (s, z))/S(s), on the half-plane {(t, z) : t > s} .
The conclusion to be drawn from this is that if there is an optimal stopping rule, then
there is an optimal fixed time stopping rule. This conclusion is independent of the payoff
function.

6. A BEST-CHOICE PROBLEM — SUM-THE-ODDS. Here we consider a far-
reaching generalization of the secretary problem due to Hill and Krengel (1992) and
Thomas Bruss (2000). In this generalization, the observations are independent random
variables, X1,X2, . . . , taking values 0 or 1, with 0 representing failure and 1 representing
success. Our goal is to stop on the last success. Let the success probabilities be denoted
by pn = P (Xn = 1) = 1−P (Xn = 0) for n = 1, 2, . . . . Since we would never stop at stage
n if there is an i > n such that pi = 1, we assume that all pi are strictly less than 1 for
all i > 1, but allow an initial success with probability 1. If we stop at stage n , our payoff,
the probability of stopping at the last success, is for n = 1, 2, . . . ,

Yn = Xn

∞∏
i=n+1

(1 − pi) =
{∏∞

i=n+1(1 − pi) if Xn = 1
0 if Xn = 0

(15)

and we take Y0 = Y∞ = 0. Of course, if there are an infinite number of successes, then no
stopping rule can achieve the goal of stopping on the last success. By the Borel-Cantelli
Lemma, there will be a finite number of successes almost surely if and only if

∑∞
1 pi < ∞ ,

or equivalently,
∏∞

i=2(1 − pi) > 0.

Therefore, to avoid the trivial case where every rule is optimal and gives payoff 0, we
assume

∑∞
1 pi < ∞ .

The secretary problem is a finite horizon problem. In the formulation above, a problem
is said to have finite horizon n if pi = 0 for all i > n . The secretary problem is obtained
from this by taking Xi as the indicator function of the event that the ith object is relatively
best, for i = 1, . . . , n . A result of Rényi (1962) states that these events are independent
and the probability that the ith object is best out of the first i is 1/i . (For a generalization
of this result, see Exercise 17.) Thus the classical secretary problem is obtained in this
formulation if we put

pi =
{

1/i for i = 1, . . . , n
0 for i > n.

(16)

The secretary problem is not monotone and the optimal rule is not the one-stage
look-ahead rule. But this is only because if one continues from a relatively best option,
the next option may not be relatively best, in which case stopping at the next stage is
obviously bad. In one of the early treatments of the secretary problem, Dynkin (1963)
shows that the problem can be interpreted so that it is monotone simply by not allowing
stopping on an observation that is not relatively best. With this restriction, the problem
becomes monotone and the optimal rule is the one-stage look-ahead rule.

In the structure for the theory of optimal stopping as treated in Chapter 3, stopping is
allowed after each observation. So to change the above problem so that stopping is allowed
only after a success is observed, we change the definition of an observation. We pretend
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that the observations are the times at which successes occur, say T1, T2, . . . , where Tk is
the time at which the k th success occurs. Let K denote the time at which the last success
occurs, with K = ∞ if no successes occur. We put Tj = ∞ if Tn = K and j > n . With
this change, the 1-sla may be computed as follows. The payoff if we stop at Tn = t is 1 if
K = Tn and 0 otherwise. So the expected payoff at the time of the nth success is

Yn = P (K = t|Tn = t) =
{ ∏∞

i=t+1(1 − pi) if t < ∞
0 if t = ∞,

(17)

and we take Y∞ = 0. If we continue from Tn = t < ∞ and stop at Tn+1 , we expect to
receive

P (K = Tn+1|T1, . . . , Tn = t) = pt+1

∞∏
t+2

(1 − pi) + (1 − pt+1)pt+2

∞∏
t+3

(1 − pi) + · · ·

= [
∞∏

i=t+1

(1 − pi)]
∞∑

i=t+1

pi

1 − pi

(18)

Therefore, the one-stage look-ahead rule is

N1 = min{n ≥ 0 :
∞∑

i=Tn+1

pi

1 − pi
≤ 1}

= min{t ≥ 1 : Xt = 1 and
∞∑

i=t+1

pi

1 − pi
≤ 1}.

(19)

This is the rule that stops on a success at time t if the sum of the odds, pi/(1− pi), from
i = t + 1 to infinity is is less than or equal to 1.

We now show that the rule N1 is optimal. Let ri = pi/(1−pi) be odds of success on the
ith trial. First, the problem is monotone because

∑∞
i=Tn+1 ri ≤ 1 implies

∑∞
i=Tn+1+1 ri ≤

1. A3 is satisfied because Yn → 0 = Y∞ a.s. as n → ∞ and we are assuming that∑∞
1 pi < ∞ . Finally, the conditions of Corollary 2 hold with Wn = 0 since |Yn| ≤ 1.

As an example, consider the secretary problem with the pi given by (16). The stopping
rule (19) reduces to

N1 = min{t ≥ 1 : Xt = 1 and
n∑

i=t+1

(1/i)
1 − (1/i)

≤ 1}.

This is the rule that stops at time t if the tth object is relatively best, and if∑n
i=t+1 1/(i − 1) ≤ 1. This agrees with the rule found in equation (4) of Chapter 2.
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§5.5 Exercises.

1. Bayesian Estimation of the mean of an exponential distribution. Consider the
problem of sequential statistical estimation of a real parameter θ with squared error loss
and constant cost c > 0 per observation, so that the loss for stopping at n is given by
(3). For given θ > 0, let X1,X2, . . . be i.i.d. according to an exponential distribution with
mean θ and density f(x|θ) = (1/θ) exp{−x/θ} for x > 0. Let the prior density of θ be
the reciprocal gamma distribution with density

g(θ) =
λα

Γ(α)
exp{−λ/θ}θ−(α+1), θ > 0,

denoted by G−1(α, λ). Suppose that α > 2.
(a) Show that the posterior distribution of θ given X1, . . . ,Xn , is reciprocal gamma,
G−1(α + n, λ + Sn), where Sn =

∑n
1 Xi .

(b) Show Y0 = Var (θ) = λ2/((α − 1)2(α − 2)).
(c) Show that the 1-sla calls for stopping without taking any observations if and only if

λ2/(α(α − 1)2(α − 2)) ≤ c.

(d) Show that the 2-sla calls for stopping without taking any observations if and only if

λ2/(α(α − 1)2(α − 2)) ≤ c − (2c/(α − 2))(λ2/(c(α + 1)α2(α − 1)))α/2 .

2. The adaptive burglar. A burglar moves to a new city where he does not know
precisely the distribution of the rewards he might expect from his burglaries, X1,X2, . . . ,
but he is willing to assume that they are i.i.d. with an exponential density f(x|θ) =
θe−θxI(x > 0) for some unknown θ , whose distribution in turn he is willing to approximate
by the gamma, G(1, 1/λ), with density g(θ) = λe−λθI(θ > 0) for some known λ . Let β
denote the probability he is caught, 0 < β < 1, and write his reward for stopping at n in
the Dubins/Teicher form, Yn = βnSn for n = 0, 1, 2, . . . , where Sn = X1 + . . . + Xn , and
Yk = 0.
(a) Show that the problem is monotone.
(b) Note that EX1 = ∞ so that A1 is not satisfied. But since the burglar should be
especially eager to take the first observation anyway, let us suppose that he has done so
and that X1 = x1 is known. Show that the 1-sla is optimal in this conditional problem.

3. Vingt-et-un. The burglar problem may also be generalized to allow capture times to
be dependent on the rewards. (See Taylor (1975).) We also generalize to a concave utility
of the accumulated payoff. Let the returns for the burglaries, X1,X2, . . . , be nonnegative
i.i.d. random variables with known distribution function, F , and finite mean, µ > 0, and
let Sn = X1 + · · · + Xn . Let T denote the random integer-valued time of capture and
assume that for n = 0, 1, . . . ,

P(T = n + 1|X1,X2, . . . , T > n) = 1 − r(Sn),
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where 0 ≤ r(z) ≤ 1 is a known nonincreasing function on [0,∞) not identically 1. (In the
casino games vingt-et-un and blackjack, one loses when one’s total card count exceeds 21.
Such games may be modeled as this burglar problem with r(z) = P(z + X ≤ 21).)
(a) Maximizing utility of reward. Let u(z) denote the burglar’s utility of retiring with an
accumulated gain of z , where u is assumed to be a concave nondecreasing function on
[0,∞), normalized so that u(0) = 0. Thus,

Yn = u(Sn)I(T > n) for n = 0, 1, . . .

Y∞ = 0.

Find the 1-sla and show it is optimal.
(b) Maximizing the duration of operation. Suppose instead that

Yn = u(n)I(T > n) for n = 0, 1, . . .

Y∞ = 0,

where u(n) is such that u(0) = 0 and u(n)/u(n + 1) is nondecreasing. We also need
a condition to make E(u(T )) < ∞ , for example, u(n)/u(n + 1) → 1. (The function
u(n) = n , where we are trying to maximize the duration of operation, satisfies these
conditions.) Find the 1-sla and show it is optimal.

4. Adaptively selling an asset with recall. (Ferguson (1974) and Rothschild (1974))
Offers X1,X2, . . . for an asset you own come in, independently drawn from a distribution
F that you do not know exactly, but for which you have a Dirichlet process prior D(α)
with some parameter α = MF0 . (All you need to know about the Dirichlet process
to, solve this problem is that the expectation of F (x) is F0(x) and that the posterior
distribution of F given X1, . . . ,Xn is also Dirichlet but with parameter αn = (M + n)Fn

where Fn = pnF0 + (1 − pn)F ∗
n and pn = M/(M + n) and F ∗

n is the sample distribution
function.) Assume that F0 has a finite second moment.
(a) Assume a cost model Yn = Mn − nc , find the 1-sla and show it is optimal.
(b) Assume a discount model Yn = βnMn , find the 1-sla and show it is optimal.

5. Selling several assets. (MacQueen and Miller (1960).) A company desires to hire
r persons. Interviews at a cost of c > 0 each yield applicants with expected worths to
the company of X1,X2, . . . , an i.i.d. sequence with known distribution function F with
finite variance. Hiring is done with recall so that Yn = X

(n)
1 + X

(n)
2 + . . . + X

(n)
r − nc for

n = r, r + 1, . . . and Y0 = . . . = Yr−1 = Y∞ = −∞ , where X
(n)
1 ≥ X

(n)
2 ≥ . . . ≥ X

(n)
n are

the order statistics of X1, . . . ,Xn . Find the 1-sla and show it is optimal.

6. The parking problem. Suppose the target destination t > 0 is known, and that
the points X1,X2, . . . at which parking is available form a random walk; more precisely,
we assume that the differences X1,X2 − X1,X3 − X2, . . . are independent identically
distributed positive random variables. The cost of stopping at stage n is taken to be

Yn = g(Xn) for n = 1, 2, . . . (Y0 = g(0), Y∞ = ∞),
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where g is a nonnegative convex function with minimum 0 at t : g(t) = 0. Assume that
g(x) → ∞ as x → ∞ , so that A3 is satisfied.
(a) Show that the problem is monotone.
(b) Show that the 1-sla is optimal.

7. Finding the parking place closest to the destination. (Boneh (1989)) Consider the
parking problem with parking places occurring at sites S1, S2, . . . chosen according to a
Poisson process with intensity λ . This time you want to find the parking place closest to
the target t , assumed to be known. That is, you win if and only if you stop at the Sn

closest to t . Thus,

Yn =

⎧⎨
⎩

1 if Sn > t and Sn − t < |Sn−1 − t|
0 if Sn > t and Sn − t > |Sn−1 − t|
exp{−2λ(t − Sn)} if Sn < t.

(a) Find the 1-sla.
(b) Show it is optimal.

8. Proofreading. (Ferguson and Hardwick (1989)) (a) Consider the proofreading
problem of the text with M ∈ P(λ), but with the change that the success probability
on the nth proofreading depends on n and is denoted by pn . Find conditions on the
pn , assumed known, under which the problem is still monotone. Note that if the pn are
decreasing, as they well might be in practice, the 1-sla is still optimal, but that even if the
1-sla is not optimal, it is still easy to find the optimal rule because it is a fixed sample size
rule.
(b) Consider a manuscript with a known number of words, W , each of which has a known
probability π of being a misprint, so that M , the number of misprints, has a binomial
distribution with sample size W and success probability π . Assume that the conditional
distribution of the number of misprints found is as in part (a). Show that the posterior
distribution of Mn given X1, . . . ,Xn is binomial. Find conditions on the pn under which
the problem is monotone. Note that the 1-sla is optimal if the pn are nonincreasing.

9. A search problem. (Chew (1967)) An object is placed in a box with known proba-
bility π , 0 < π < 1. You may search for it there as many times as you like. If it is there,
the probability that you find it in any given search is p , 0 < p < 1, independent of how
many times you have already searched. Each search costs c > 0 and you win 1 if and only
if you find the object.
(a) Find the 1-sla and show it is optimal.
(b) Generalize to the case where π and p are unknown with an arbitrary prior distribution.
(c) Extend to k objects placed in the box independently with probabilities πj , j = 1, . . . , k .
Searches may find many objects, the objects being found independently with probabilities
pj , j = 1, . . . , k , independent of the number of times you have searched and the number
of objects found so far. Object j is worth xj , j = 1, . . . , k .

10. Search for new species. (Rasmussen and Starr (1979)) Independent observations
may be drawn from a population Π consisting of finitely many species, Π1, . . . ,Πs , with
probability pj of observing a member of Πj for j = 1, . . . , s where pj ≥ 0 and

∑
pj = 1.
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There is a cost c > 0 for each observation, and a reward for each new species discovered. If
we stop after n observations for some n = 0, 1, . . . , our payoff is Yn = h(Kn) − nc , where
Kn is the number of distinct species observed by time n , and h(k) ≥ 0 is the reward
for having observed k distinct species. (Y∞ = −∞ .) Assume that h(k + 1) − h(k) is
nonincreasing in k .
(a) Suppose the pj are known numbers. Find the 1-sla and show it is optimal.
(b) Suppose the pj are unknown, but have a Dirichlet prior distribution, D(α1, . . . , αs),
where αj > 0 for all j . Find the 1-sla and show it is optimal.
(c) Show by an example that for a general prior distribution for the pj , the 1-sla may not
be optimal.

11. Dispatching. (See Ross (1969)) Passengers arrive randomly in the time interval
(0,1) at a bus depot and wait for the next bus to leave. One bus is scheduled to leave
at time 1; the problem is to choose the time t , 0 < t < 1, at which an unscheduled
bus should be dispatched in order to minimize the total expected waiting time of all the
passengers. Discretize the interval (0,1) into T intervals of length δ = 1/T , and let
Xj ≥ 0 denote the number of passengers who arrive in the time interval (j − 1)δ to jδ ,
for j = 1, . . . , T . The total waiting time if the unscheduled bus leaves at time t = nδ is
Wn = δ[

∑n
j=1(n− j)Xj +

∑T
j=n+1(T − j)Xj ] . Assume that the Xj are independent with

means λj (e.g. Xj ∈ P(λj)) for j = 1, . . . , T .
(a) Find the 1-sla stopping rule N1 for minimizing E(WN ) and show it is optimal provided
that λj(T − j) is nonincreasing in j .
(b) Suppose the λj are constant, equal to λ , unknown, but that λ has a known gamma
prior distribution. Find the 1-sla and show it is optimal.

12. Detecting a change-point. (Shiryaev (1963)) The change-point K is unobservable
but has known distribution P(K = k) = πk , k = 1, 2, . . . , with finite mean. The ob-
servable quantities, X1,X2, . . . are independent given K = k , with X1, . . . ,Xk−1 having
a distribution with density f0(x) and Xk,Xk+1, . . . having a distribution with density
f1(x). If you stop at n your loss is an inspection cost c > 0 if n < K , and the length of
time since the change, n − K , if n ≥ K . Thus, Yn = cI(n < K) + (n − K)I(n ≥ K) or,
conditioned on Fn ,

Yn = cP{K > n|Fn} + E{(n − K)+|Fn} for n = 1, 2, . . . ,

and we take Y∞ = ∞ .
(a) Find the 1-sla in the form N1 = min{n ≥ 0 : Un ≥ c} .
(b) Find a recurrence to compute the Un .
(c) Take K to be geometric with parameter π , P(K = n) = (1−π)πn−1 for n = 1, 2, . . . .
Take f0(x) to be exponential with mean 1, and f1(x) to be exponential with mean µ > 1.
Show the 1-sla is optimal if cπµ ≤ 1 + c .

13. A Poisson fishing model. (Cozzolino (1972) and Ferguson (1997)) Let M ∈ P(λ)
and suppose that X1, . . . ,Xm given M = m are i.i.d. according to a probability distribu-
tion P on some space. Let A be any measurable set in the space, and let N(A) be the
random variable denoting the number of Xi ∈ A . Then, N(A) and N(Ac) are indepen-
dent with P(P(A)λ) and P(P(Ac)λ) distributions respectively. Moreover, given N(A)
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and N(Ac), the Xi ∈ A (resp. the Xi ∈ Ac ) are i.i.d. with distribution P/P(A) on A
(resp. P/P(Ac) on Ac ).
(a) Using this result, establish the following. Suppose the number, M , of fish in the
lake is Poisson, P(λ), and given M = m let the catch times and sizes of the fish,
(T1, Z1), . . . , (Tm, Zm), be i.i.d. with known distribution F (t, z). Then at time t , in-
dependent of the number of fish caught and their catch times and sizes, the number of
fish remaining in the lake is P(λS(t)), where S(t) = P(T > t) and given the num-
ber of fish remaining, their catch times and sizes are i.i.d. with distribution function,
P(T ≤ s, Z ≤ z|T > t) = (F (s, z) − F (t, z))/S(t), on the set {s > t} .
(b) Suppose the joint distribution of T and Z has density f(t, z) with finite E|Z| . Let
Yt =

∑M
j=1 ZjI(Tj ≤ t) − ct . Find EYt , the expected return of the fixed time stopping

rule, N ≡ t .
(c) Suppose T has the inverse power distribution with density, f(t) = θ/(1 + t)θ+1 on
(0,∞), and let the distribution of Z given T = t be the gamma, G(α, γ(t + 1)), where
θ > 0, α > 0, and γ > 0 are given constants. (Smaller fish are easier to catch.) Find the
optimal stopping rule.
(d) Suppose the distribution of the size Z is gamma, G(α, β) and that given Z = z the
catch time is exponential G(1, 1/(zγ)). (The larger fish are easier to catch.) Find the
optimal rule.

14. Additive Damage Model. (See Derman and Sacks (1960)) Consider a machine that
accumulates observable damage. Let Xn denote the damage accrued on day n , where
X1,X2, . . . are i.i.d. with known distribution function F (x) on [0,∞). The accumulated
damage on day n is Sn = X1 + · · · + Xn . When the accumulated damage exceeds a
known threshold L , the machine breaks down. If the machine has not broken down by
day n , it will produce a random return with mean rn(Sn) on that day. If it breaks
down on that day, a penalty of bn is assessed. Let Z denote the time of breakdown,
Z = min{n ≥ 1 : Sn > L} . Then, the return for stopping on day n is

Yn =
{ ∑n

1 rj(Sj) if n < Z∑Z
1 rj(Sj) − bZ if n ≥ Z.

(a) Find the 1-sla.
(b) Find some reasonable conditions on the rn , bn and F so that the problem is monotone.
(c) What if L is random?

15. A Win-Lose-or-Draw Sum-the-Odds Problem. Extend the Bruss sum-the-odds
result of Example 6 Section 5.4, to the win-lose-or-draw problem of Sakaguchi. Suppose
you win 1 if you stop on the last success, win nothing if you stop on a success that is
not the last, and win an amount θ if you don’t stop, where 0 < θ < 1. Assume that
successes are independent events, that the probability of success on trial n is pn and that∑∞

1 pi < ∞ . Find the 1-sla, note that it is a sum-the-odds rule, and show it is optimal.

16. The Group Interview Secretary Problem. (Hsiau and Yang (2000)) Consider the
secretary problem in which groups of applicants are interviewed together. It is possible to
select any applicant of the present group, but one may not recall applicants of previous
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groups. Suppose there are n rankable applicants arranged in a completely random order,
that are to be interviewed sequentially in m groups of sizes k1, k2, . . . , km , where

∑m
1 ki =

n . You will stop only if the present group has a relatively best applicant, and if you stop
you will select that applicant. Find the optimal rule.

17. Another Sum-the-Odds Stopping Rule. Let Z1, Z2, . . . , be independent random
variables, and suppose Zn has an exponential distribution, E(θn), with density f(z|θn) =
θne−θnz for z > 0. The θn are given numbers that satisfy the restriction,

∑∞
1 θi < ∞ .

The Zn are observed sequentially, and it is desired to choose a stopping rule that maximizes
the probability of stopping on the smallest Zn . Let Xn denote the indicator of the event
that Zn = min1≤i≤n Zi , that Zn is a relatively best observation. Thus, we want to stop
on the last Xn that is equal to 1.
(a) Show P (Xn = 1) = θn/(θ1 + · · · + θn).
(b) Show that the Xi are independent.
(c) Find the optimal stopping rule.

18. A lower bound for the value of a sum-the-odds problem. (Hill and Krengel (1992)
and Bruss (2003)) When the secretary problem first appeared, it was found surprising that
as the number of applicants tends to infinity, the probability of selecting the very best does
not tend to zero, but instead is always greater than e−1 . It is even more surprising that
this same bound, e−1 , holds for these more general problems, provided only that the sum
of the odds is at least 1. In fact, there is a simple bound for finite horizon problems as
well.
(a) Let qi = 1 − pi and ri = pi/(1 − pi). Consider the problem with finite horizon,
n , and suppose that

∑n
1 ri ≥ 1. Let s denote an integer such that

∑n
i=s ri ≥ 1 and∑n

i=s+1 ri ≤ 1. Show that the optimal probability of success is

V ∗
n =

{
[
∏n

i=s qi]
∑n

i=s ri if ps < 1∏n
i=s+1 qi if ps = 1.

(b) Show that when qs+1, . . . , qn are fixed, V ∗
n is increasing in ps and so is smallest when

ps is as small as it can be made, which is just small enough to make
∑n

i=s ri = 1.
(c) Show that

∏n
i=s qi is minimized subject to the constraint

∑n
i=s ri = 1 when all the qi

for i ≥ s are equal.
(d) Conclude that when

∑n
1 ri ≥ 1,

V ∗
n ≥

(
1 +

1
n

)−n

with equality if and only if pi = 1/(n + 1) for i = 1, . . . , n .
(e) Conclude that when

∑∞
1 ri ≥ 1 and

∑∞
1 pi < ∞ ,

V ∗
∞ ≥ e−1.


