
Chapter 4. APPLICATIONS.

MARKOV MODELS.

In this chapter, we look at some stopping rule problems for which the principle of opti-
mality provides an effective method of obtaining the solution. Each of these problems has
a structure that reduces the problem to a Markov decision problem with a one-dimensional
state space. This allows us to show that the stopping rule given by the principle of opti-
mality has a simple form. In fact, when the returns are functions of a Markov chain, then
we may restrict attention to stopping rules that are functions of the chain.

A typical form of these problems may be described as follows. Let {Zn}∞n=1 be a
sequence of random variables such that Zn is Fn -measurable, where Fn denotes the σ -
field generated by the observations X1, . . . ,Xn . We assume that {Zn} is a Markov chain
in the sense that the distribution of Zn+1 given Fn is the same as the distribution of
Zn+1 given Zn , and we suppose that the payoffs, Yn , are functions of the chain, say
Yn = un(Zn) for some functions un . Then Vn = ess supN≥nE(YN |Fn) is a function of
Zn , say Vn(Zn), and the rule given by the principle of optimality has the form

N∗ = min{n ≥ 0 : un(Zn) ≥ Vn(Zn)}. (1)

Thus, stopping at time n can be taken to depend only on Zn . In the first five problems
treated in this chapter, there is a time invariance that reduces this rule to a simpler form,
N∗ = min{n ≥ 0 : Zn ≥ c} where c is independent of n . For the general theory of Markov
stopping rule problems, see Siegmund (1967), or Chow, Robbins and Siegmund (1972), or
Shiryaev (1973).

In the first section, we solve the problem of selling an asset with and without recall.
This is the house-selling problem described in Example 1 of Section 1.2. It is an extension
to an infinite horizon of the Cayley-Moser problem treated in Section 2.4. In the second
section, we look at the problem of stopping a discounted sum. This is a version of the
burglar problem of Exercise 1 of Chapter 1. In the third section, we solve the problem
due to Darling, Liggett and Taylor (1976) of stopping a sum with a negative drift. In the
fourth section, we treat an extension of the problem of stopping a success run mentioned
in Exercise 5 of Chapter 1. The fifth section is devoted to the problem of testing simple
statistical hypotheses. This is a special case of the general Bayesian statistical problem
described in Example 3 of Section 1.2. In the final section, we discuss the problem of
maximizing the average, presented as Example 2 of Section 1.2. It is an example of a
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Markov stopping rule problem without a time invariance, and so its solution is of a higher
order of difficulty.

§4.1. Selling an asset with and without recall. The house-selling problem
or problem of selling an asset, as described in Chapter 1, is defined by the sequence of
observations and payoffs as follows. The observations are

X1,X2, . . . assumed to be i.i.d. with known distribution F (x).

The reward sequence depends on whether or not recall of past observations is allowed. If
recall is not allowed, then

Y0 = −∞, Y1 = X1 − c, . . . , Yn = Xn − nc, . . . , Y∞ = −∞,

while if recall is allowed

Y0 = −∞, Y1 = M1 − c, . . . , Yn = Mn − nc, . . . , Y∞ = −∞,

where c > 0 is the cost per observation, and Mn = max{X1, . . . ,Xn} . We arbitrarily put
Y0 = −∞ to force you to take at least one observation. Putting Y∞ = −∞ is natural as
the cost of an infinite number of observations is infinite.

The following theorem states that A1 and A2 are satisfied in problems of selling an
asset with and without recall provided X1,X2, . . . are identically distributed with finite
second moment. It is not assumed that the Xj are independent. This allows for the case
where X1,X2, . . . are independent identically distributed given some parameter θ where θ
is random with a known prior distribution. When θ is integrated out, the marginal process
X1,X2, . . . is exchangeable (every permutation of X1,X2, . . . has the same distribution).
The hypothesis of identical marginal distributions of the Xj , used in this theorem, is weaker
than that of exchangeability. Proofs of this theorem and of a converse are contained in the
appendix to this chapter.

Theorem 1. Let X,X1,X2, . . . be identically distributed, let c > 0 , and let Yn = Xn−nc
or Yn = max{X1, . . . ,Xn} − nc .
If EX+ < ∞ , then supYn < ∞ a.s. and Yn → −∞ a.s.
If E(X+)2 < ∞ , then E sup Yn < ∞ .

We first consider the problem of selling an asset without recall: Yn = Xn−nc . Suppose
that X1,X2, . . . are independent identically distributed with finite second moment. Since
A1 and A2 are satisfied, we know from Theorems 3.1 and 3.3 that an optimal stopping
rule exists and is given by the principle of optimality.

Let V ∗ denote the expected return from an optimal stopping rule. Suppose you pay
c and observe X1 = x1 . Note that if you continue from this point then the x1 is lost and
the cost c has already been paid, so it is just like starting the problem over again; that
is, the problem is invariant in time. So if you continue from this point, you can obtain
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an expected return of V ∗ but no more. Therefore, the principle of optimality says that
if x1 < V ∗ you should continue, and if x1 > V ∗ you should stop. For x1 = V ∗ it is
immaterial what you do, but let us say you stop. This argument can be made at any
stage, so the rule given by the principle of optimality is

N∗ = min{n ≥ 1 : Xn ≥ V ∗}. (2)

The problem now is to compute V ∗ . This may be done through the optimality
equation,

V ∗ = Emax{X1, V
∗} − c =

∫ V ∗

−∞
V ∗ dF (x) +

∫ ∞

V ∗
xdF (x) − c,

where F is the common distribution function of the Xi . Rearranging terms, we find
∫ ∞

V ∗
(x − V ∗)dF (x) = c or E(X − V ∗)+ = c. (3)

The left side is continuous in V ∗ and decreasing from +∞ to zero. Hence, there is a
unique solution for V ∗ for any c > 0.

As an example, suppose F is U(0, 1), the uniform distribution on the interval (0, 1).
For 0 ≤ v ≤ 1, ∫ 1

v

(x − v)dF (x) = (1 − v)2/2,

while for v < 0, ∫ 1

0

(x − v)dF (x) = 1/2 − v.

Equating to c , we find
V ∗ = 1 − (2c)1/2

V ∗ = −c + 1/2

if c ≤ 1/2
if c > 1/2.

The optimal rule N∗ calls for accepting the first offer greater than or equal to V ∗ .

Now consider the problem with recall, Y0 = Y∞ = −∞ , and Yn = Mn − nc where
Mn = max{X1, . . . ,Xn} . Again the rule given by the principle of optimality is optimal.
Suppose at some stage you have observed Mn = m and it is optimal to continue. Then
at the next stage, if Mn+1 is still m (because Xn+1 ≤ m), it is still optimal to continue
due to the invariance of the problem in time. Thus the principle of optimality will never
require you to recall an observation from an earlier stage. The best we can do among such
rules is found above for the problem without recall. Thus, the same rule is optimal for
both problems.

The Cayley-Moser problem has been extended to infinite horizon problems in a number
of ways. Above, a cost is assessed for each observation. In another method, due to Karlin
(1961), the future is discounted so that a positive return at the first stage is worth more



Applications 4.4

than the same return at later stages. These problems are treated in Exercises 2 and 3.
Another possibility is to have forced stopping at a random future time. In job processing,
this forced stopping time is modeled as a deadline. See Exercise 4 for an example.

Is A1 needed? An interesting feature of this problem was pointed out in a paper of
Robbins (1970). By an elegant direct argument based on Wald’s equation and using only
the assumption that EX+ < ∞ , Robbins shows that the rule N∗ given by (2) with V ∗

given by (3) is optimal within the class of stopping rules, N , such that EY −
N > −∞ .

This provides an extension of the optimal property of the rule N∗ that is valid even if
E(X+)2 = ∞ . Since, as is shown in the appendix, E(X+)2 < ∞ is a necessary and
sufficient condition for A1 to hold in this problem, this raises the possibility of similarly
extending the general theory of Chapter 3.

However, there are difficulties of interpretation that arise because of the restriction
to stopping rules that satisfy EY −

N > −∞ . If EX+ < ∞ and E(X+)2 = ∞ , there will
exist rules, N , such that EY −

N = −∞ and EY +
N = +∞ (see the appendix). Restricting

attention to rules such that EY −
N > −∞ seems to say that any rule, N , with E|YN | < ∞ ,

no matter how bad, is better than a rule whose expected payoff does not exist because
EY −

N = −∞ and EY +
N = +∞ . Do you prefer a payoff of −$100 (or +$100) or a gamble

giving you $X , where X is chosen from a standard Cauchy distribution? Rather than
attempting to answer such questions, we prefer the approach assuming condition A1.

§4.2. Application to stopping a discounted sum. (Dubins and Teicher (1967))
Let X1,X2, . . . be independent identically distributed random variables with EX+

i < ∞ ,
and let Sn =

∑n
1 Xi (S0 = 0). The random variable Xn represents your return at stage

n . Returns accumulate and are paid to you in a lump sum when you stop, but the future
is discounted by a factor 0 < β < 1, so your return for stopping at n is

Yn = βnSn for n = 0, 1, . . . .

If you never stop, you return is zero, Y∞ = 0, so you will never stop at n with Sn ≤ 0.
The problem is to decide how large to let Sn get before you stop.

We show that assumptions A1 and A2 are satisfied for this problem. From the strong
law of large numbers (1/n)

∑n
1 X+

j → E(X+) a.s., so that

Yn = nβn(Sn/n) ≤ nβn(1/n)
n∑
1

X+
j � nβnE(X+) → 0 a.s.,

and A2 is satisfied. To check A1, note that

sup
n

Yn = sup
n

βnSn ≤ sup
n

βn
n∑
1

X+
i

≤ sup
n

n∑
1

βiX+
i ≤

∞∑
1

βiX+
i ,
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so that

E sup
n

Yn ≤
∞∑
1

βiEX+
i = EX+

1 β/(1 − β) < ∞.

Thus, an optimal stopping rule exists and is given by the principle of optimality.

Suppose Sn = s and it is optimal to stop. Then the present return of βns is at least as
large as any expected future return Eβn+N(s+SN ). That is to say s(1−EβN ) ≥ EβNSN

for all stopping rules N . The same must be true for all s′ ≥ s so that the optimal rule
N∗ must be of the form for some number s0 ,

N∗ = min{n ≥ 0 : Sn ≥ s0}. (4)

That is, stop at the first n for which Sn ≥ s0 . To find s0 , note that if Sn = s0 , then
we must be indifferent between stopping and continuing. The payoff for stopping, namely
s0 , must be the same as the payoff for continuing using the rule that stops the first time
the sum of the future observations is positive. That is, s0 must satisfy the equation
s0 = EβT (s0 + ST ) or

s0 = EβT ST /(1 − EβT ), (5)

where T = min{n ≥ 0 : Sn > 0} is the rule: stop at the first n , if any, for which the sum
of the next n observations is positive.

When X is positive with probability 1, then T ≡ 1 and ST ≡ X1 , so that s0 has
the simple form s0 = βEX/(1 − β). This gives the optimal rule N∗ of (4) in explicit
form. The burglar problem of Exercise 1.1 may be put in this form where β represents the
probability of not getting caught on any burglary. We return to this problem in Chapters
5 and 6.

When X may take in negative values with positive probability, the right side of (5)
may difficult to evaluate in general, but in special cases the computational problems can
be reduced. Dubins and Teicher call the distribution of the Xi elementary if Xi takes
on only integer values less than or equal to one. In this special case, ST in equation (5)
becomes +1 for T < ∞ and is immaterial for T = ∞ since βT is zero; hence,

s0 = EβT /(1 − EβT ). (6)

To find s0 , it suffices to find EβT . This may be computed from knowledge of the generating
function of X , G(θ) = Eθ−X as follows. The distribution of T given X1 = x is the same
as the distribution of 1+T1 + . . .+T1−x , where T1, T2, . . . are independent with the same
distribution as T . Hence, letting φ(β) = EβT ,

φ(β) = E(E{βT |X}) = E(E{β1+T1+...+T1−X |X})
= βEφ(β)1−X = βφ(β)G(φ(β)).

(7)

Thus, φ(β) can be found by solving the equation G(φ(β)) = 1/β . (See Exercise 5.)
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When EX < 0, then Sn → −∞ a.s. and the problem is still interesting even if β = 1,
provided we keep Y∞ = 0. However, we need a stronger assumption on the distribution
of the Xi in order that A1 still hold. This problem is treated next.

§4.3. Stopping a sum with negative drift. (Darling, Liggett and Taylor (1972))
Let X1,X2, . . . be i.i.d. with negative mean µ = EX < 0, and let Sn = X1 + . . . + Xn ,
(S0 = 0). The payoff for stopping at n is taken to be

Yn = (Sn)+ for n = 0, 1, . . . , and Y∞ = 0.

The law of large numbers implies that Sn → −∞ a.s. Hence, A2 is satisfied. We expect
that an optimal rule may sometimes continue forever. In fact, it is clear that one need not
stop at any n for which Sn ≤ 0.

This model has application to the problem of exercising options in stock market trans-
actions (the American version without a deadline). The owner of an option has the privilege
of purchasing a fixed quantity of a stock at a fixed price, here normalized to zero, and then
reselling the stock at the market price which fluctuates as a classical random walk. Con-
tinuing forever may be interpreted as not exercising the option. If a cost of waiting is
taken into account, the walk can easily have negative drift. Darling, Liggett and Taylor
also treat the more realistic problem in which the logarithm of the prices form a random
walk and there is a discount 0 < β ≤ 1, so that the return function is Yn = βn(eSn − 1)+ ,
assuming EeX < β−1 .

We assume that E(X+)2 < ∞ . Then the following theorem of Kiefer and Wolfowitz
(1956, Theorem 5), shows that A1 is satisfied and there exists an optimal rule.

Theorem 2. Let X,X1,X2, . . . be i.i.d. with finite mean µ < 0 and let M = supn≥0 Sn .
Then,

EM < ∞ if, and only if, E(X+)2 < ∞.

A proof is given in the appendix.

We show below that the optimal stopping rule is

N∗ = min{n ≥ 0 : Sn ≥ EM}, (8)

and its expected return is E(M − EM)+ .

Note that V ∗
n depends on past observations only through Sn . In fact, V ∗

n = V ∗
0 (Sn),

where V ∗
0 (s) = supN≥0 E(s + SN)+ is the optimal return starting with initial fortune

S0 = s . Suppose Sn = s > 0 and it is optimal to stop. Then by the principle of
optimality, the present return s is as least as large as future expected return E(s +SN )+ .
That is to say, E{max(SN ,−s)} ≤ 0 for all stopping rules N . Since this expectation is
nonincreasing in s and independent of n , it must also be optimal to stop when Sm = s′

for any m and any s′ ≥ s . Thus, N∗ must be of the form N∗ = min{n ≥ 0 : Sn ≥ s0}
for some s0 .
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Let N = N(s) = min{n ≥ 0 : Sn ≥ s} . We find the optimal value of s by computing
the expected return EYN . First note that the distribution of M − SN given SN , where
SN ≥ s , is the same as the distribution of M , because M − SN = supn S ′

n , where
S ′

n = XN+1 + . . . + XN+n . Hence,

EYN = E{SN I(SN ≥ s)} = E{M I(SN ≥ s)} − E{(M − SN)I(SN ≥ s)}
= E{M I(SN ≥ s)} − EM · P{SN ≥ s} = E{(M − EM)I(SN ≥ s)}
= E{(M − EM)I(M ≥ s)}.

(9)

This is clearly nondecreasing in s if s ≤ EM and nonincreasing in s if s ≥ EM . The
optimal value of s is therefore s = EM and the optimal expected return is E(M −EM)+ .

§4.4. Rebounding from failures. (Ferguson (1976)) Let Z1, Z2, . . . be i.i.d. ran-
dom variables, and let ε1, ε2, . . . be i.i.d. Bernoulli random variables, independent of
Z1, Z2, . . . , with probability p of success, P(ε = 1) = p = 1 − P(ε = 0), 0 < p < 1.
In a given economic system, Zi represents your return and εi represents the indicator
function of success in time period i . As long as successes occur consecutively, your returns
accumulate, but when there is a failure, your accumulated return drops to zero. Failure
represents a failure of your enterprise due to mismanagement, or a general calamity on the
stock market, or a revolution in the country, etc. A failure does not remove you from the
system as it does the burglar. You are allowed to accumulate future returns until the next
failure drops you to zero again, and so on. If X0 = x denotes your initial fortune, then
your fortune at the end of the nth time period is Xn , where

Xn = εn(Xn−1 + Zn), for n = 1, 2, . . . . (10)

You want to retire to a safer, more comfortable environment while you are still young
enough to enjoy it. Thus, if c > 0 represents the cost of the passing of time, your return
if you stop at stage n is

Yn = Xn − nc (11)

for finite n . We take Y∞ = −∞ and note that A2 is satisfied. The problem is to choose
a stopping rule N to maximize your expected net return, EYN .

In the special case in which the Zi are identically one, this is the problem of stopping
a success run described in Exercise 5.

The following theorem states that A1 is satisfied if the distribution of the Z ’s has
finite second moment. A proof is given in the appendix.

Theorem 3. E supn(Xn − nc) < ∞ if, and only if, E(Z+)2 < ∞ .

We note that the invariance of the problem in time implies that V ∗
n depends on

X1, . . . ,Xn only through the value of Xn , and that if V ∗
0 (x) represents the optimal return

with initial fortune x , then V ∗
n (Xn) = V ∗

0 (Xn) − nc .
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Suppose it is optimal to stop with Xn = x ; then x−nc ≥ V ∗
0 (x)−nc , or equivalently

x ≥ EYN(x) for all stopping rules N , where Yn(x) represents the payoff as a function of
the initial fortune, x . For any x′ > x , the difference Yn(x′)−Yn(x) is 0 or x′−x according
to whether the first failure has or has not occurred by time n . Thus, EYN(x′)−EYN (x) =
(x′ − x)P(N < K) ≤ x′ − x , where K is the time of the first failure. This implies that for
all stopping rules N ,

x′ ≥ EYN (x′) − EYN (x) + x ≥ EYN(x′),

so that it is optimal to stop with Xm = x′ for any m and any x′ ≥ x . Hence, the optimal
rule N∗ given by the principle of optimality has the form

N(s) = min{n ≥ 0 : Xn ≥ s} (12)

for some s .

As an illustration, we take the distribution of the Z ’s to be exponential with density
f(z) = (1/µ) exp{−z/µ}I(z > 0). To find the optimal value of s , let us compute the
expected payoff for N = N(s), for s > 0 and for x = 0, namely,

EYN = E(XN − Nc) = EXN − cEN.

The lack of memory property of the exponential distribution implies that XN − s has the
same distribution as Z . Hence, EXN = s + µ . To find EN , let

N ′ = N ′(s) = min{n ≥ 0 : Sn ≥ s}

where Sn = Z1+. . .+Zn . The sequence of points, S1, S2, . . . , forms a Poisson point process
with points occurring at rate 1/µ , so that N ′ − 1, the number of points in (0, s), has a
Poisson distribution with mean λ = s/µ . Let K represent the time of the first failure, so
that K has the geometric distribution, P(K = k) = (1 − p)pk−1 for k = 1, 2, . . . . Then,

EN = ENI(N ′ < K) + ENI(N ′ ≥ K)
= EN ′I(N ′ < K) + E(K + EN)I(N ′ ≥ K)
= Emin{N ′,K}+ (EN)P(N ′ ≥ K)

so that EN = Emin{N ′,K}/P(N ′ < K). This may be computed from

P(N ′ < K) = E{P(N ′ < K|N ′)} = EpN ′
= p exp{−λ(1 − p)},

and

Emin{n,K − 1} =
n∑

k=1

k(1 − p)pk + n
∞∑

k=n+1

(1 − p)pk

=
n∑

k=1

kpk −
n∑

k=1

kpk+1 + npn+1

=
n∑

k=1

pk

= p(1 − pn)/(1 − p),
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and
Emin{N ′,K} = Emin{N ′ − 1,K − 1} + 1

= (p/(1 − p))E(1 − pN ′−1) + 1

= (p/(1 − p))(1 − e−λ(1−p)) + 1

= (1/(1 − p))[1 − pe−λ(1−p))].

We search for the value of s that maximizes

EYN = s + µ − (c/(p(1 − p)))[es(1−p)/µ − p].

Taking a derivative with respect to s , setting the result to zero and solving, gives the
optimal value of s as

s = (µ/(1 − p)) log(pµ/c).

provided pµ ≥ c . If pµ < c , then EYN is a decreasing function of s ≥ 0, and so the
optimal value of s is s = 0, that is, stop without taking any observations.

§4.5 Testing Simple Statistical Hypotheses. The Bayes approach to general
sequential statistical problems was discussed in Example 3 of Chapter 1. Here we specialize
to the problem of testing simple statistical hypotheses. In this problem, there are two
hypotheses, H0 and H1 , and one distribution corresponding to each hypothesis. In the
notation of Example 1.3, the parameter space is a two-point set, Θ = {H0,H1} , and the
observations, X1,X2, . . . , are assumed to be i.i.d. according to a density f0(x) if H0 is
true, and density f1(x) if H1 is true, where f0(x) and f1(x) are distinct as distributions.
We must decide which hypothesis to accept. Thus, the action space is also a two-point set,
A = {a0, a1} , where a0 (resp. a1 ) represents the action “accept H0” (resp. “accept H1 ”).
We lose nothing if we accept the true hypothesis , but if we accept the wrong hypothesis
we lose an amount depending on which hypothesis is true; thus,

L(Hi, aj) =
{

0 if i = j,
Li if i �= j,

where L0 and L1 are given positive numbers.

We are given the prior probability, τ0 , that H1 is the true hypothesis. After observing
X1, . . . ,Xn , the posterior probability that H1 is the true hypothesis becomes, according
to Bayes rule,

τn(X1, . . . ,Xn) =
τ0

∏n
1 f1(Xi)

τ0

∏n
1 f1(Xi) + (1 − τ0)

∏n
1 f0(Xi)

. (13)

The likelihood ratio is λ(x) = f1(x)/f0(x) with the understanding that λ(x) = 0 if
f1(x) = 0 and f0(x) > 0, λ(x) = ∞ if f1 > 0 and f0(x) = 0, and λ(x) is undefined if
f1(x) = 0 and f0(x) = 0. Using this, we may rewrite τn as

τn(X1, . . . ,Xn) =
τ0

∏n
1 λ(Xi)

τ0

∏n
1 λ(Xi) + (1 − τ0)

=
τ0λn

τ0λn + (1 − τ0)
(14)
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where λn = λn(X1, . . . ,Xn) denotes the likelihood ratio, or probability ratio of the first
n observations, λn =

∏n
i=1 f1(Xi)/f0(Xi) and λ0 ≡ 1.

Suppose it is decided to stop and the probability of H1 is τ . If H1 is accepted, the
expected loss is (1 − τ )L0 , while if H0 is accepted, the expected loss is τL1 . Thus, it
is optimal to accept H1 if (1 − τ )L0 < τL1 and to accept H0 otherwise, incurring an
expected loss of

ρ(τ ) = min{τL1, (1 − τ )L0} (15)

Therefore, if we stop at stage n having observed X1, . . . ,Xn , we would accept H1 if
τn(X1, . . . ,Xn)L1 < (1 − τn(X1, . . . ,Xn))L0 , and the expected terminal loss would then
be ρ(τn(X1, . . . ,Xn)).

There is a cost of c > 0 for each observation taken, so the total loss plus cost of
stopping at stage n after observing X1, . . . ,Xn is

Yn = ρ(τn(X1, . . . ,Xn)) + nc for n = 0, 1, 2, . . . , (16)

and Y∞ = +∞ if we never stop. The problem is to find a stopping rule N to minimize
EYN .

Now that the stopping rule problem has been defined, let us check conditions A1 and
A2. Since this is a minimization problem, A1 and A2 must be replaced by

A1. E{infn Yn} > −∞ .

A2. lim infn→∞ Yn ≥ Y∞ a.s.

We note that A1 follows from Yn ≥ 0, and A2 follows since Yn ≥ nc → ∞ = Y∞ .
Thus there is an optimal rule, N∗ , given by the principle of optimality. Let V ∗

0 (τ0) denote
the expected loss plus cost using this rule, as a function of the prior probability τ0 . There
is an invariance in time; at stage n after observing X1, . . . ,Xn , the probability distribution
of future payoffs and costs is the same as it was at stage 0 except that the prior has been
changed to τn(X1, . . . ,Xn) and the cost of the first n observations must be paid. Thus,

V ∗
n (X1, . . . ,Xn) = V ∗

0 (τn(X1, . . . ,Xn)) + nc, (17)

where V ∗
n (X1, . . . ,Xn) is the conditional minimum expected loss plus cost having observed

X1, . . . ,Xn . The rule given by the principle of optimality reduces to

N∗ = min{n ≥ 0 : Yn = V ∗
n (τn(X1, . . . ,Xn))}

= min{n ≥ 0 : ρ(τn(X1, . . . ,Xn)) = V ∗
0 (τn(X1, . . . ,Xn))}

(18)

From this it follows that the optimal decision to stop may be based on the value of
τn(X1, . . . ,Xn).

We now note that V ∗
0 (τ ) is a concave function of τ ∈ [0, 1] . Let α, τ, τ ′ ∈ [0, 1] ; we

are to show
αV ∗

0 (τ ) + (1 − α)V ∗
0 (τ ′) ≤ V ∗

0 (ατ + (1 − α)τ ′). (19)
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Suppose before stage 0 in the above decision problem, a coin with probability α of heads is
tossed and if the coin comes up heads the prior τ0 = τ is used, while if the coin comes up
tails the prior τ0 = τ ′ is used. The left side of (19) is the minimum value of this stopping
rule problem when the information on the outcome of the toss may be used. The right side
is the minimum value when this information may not be used. Since the class of stopping
rules that ignore this information is a subset of the class that may use it, the inequality
follows.

In addition, we note that V ∗
0 (0) = 0 = ρ(0) and V ∗

0 (1) = 0 = ρ(1). This together
with concavity and V ∗

0 (τ ) ≤ ρ(τ ) implies that there are numbers a and b with 0 ≤ a ≤
L∗ ≤ b ≤ 1 such that the optimal rule (18) has the form,

N∗ = min{n ≥ 0 : τn(X1, . . . ,Xn) ≤ a or τn(X1, . . . ,Xn) ≥ b}.

where L∗ = L0/(L0 + L1). Writing the inequalities in this expression in terms of the
likelihood ratio, λn =

∏n
1 f1(Xi)/f0(Xi), we find

N∗ = min{n ≥ 0 : λn ≤ (1 − τ0)a
τ0(1 − a)

or λn ≥ (1 − τ0)b
τ0(1 − b)

}.

This is the Wald sequential probability ratio test: Sample as long as the probability ratio,
λn lies between two preassigned numbers, α < λn < β ; if λn falls below α , stop and
accept H0 , if Ln rises above β , stop and accept H1 .

The problem of finding the values of a and b of the optimal rule N∗ usually requires
approximation. There are standard methods of approximation that originate with Wald.
See the book of Siegmund (1985) for general methods and applications to statistical prob-
lems. Numerical approximation on a computer may also be used. This involves evaluating
EYN for an arbitrary rule of the form Nα,β = min{n ≥ 0 : λn ≤ α or λn ≥ β} , and
then searching for α and β to minimize this quantity. In a few cases, this may be done
explicitly.

§4.6. Application to maximizing the average. Let X1,X2, . . . be i.i.d. random
variables with mean µ = EX . For n ≥ 1, let Yn = Sn/n , and let Y0 = −∞ and Y∞ = µ .
By the law of large numbers, Yn → µ a.s. so A2 is satisfied. Therefore an optimal stopping
rule will exist if A1 is satisfied; that is, if E supn(Sn/n) < ∞ . The following theorem states
that A1 holds if EX log+(X) < ∞ , where log+(x) is defined to be log(x) if x > 1, and 0
otherwise.

Theorem 4. Let X1,X2, . . . be i.i.d. with finite mean µ . Then

E sup
n

(Sn/n) < ∞ if, and only if, EX log+(X) < ∞.

The sufficiency of this condition is due essentially to Marcinkiewitz and Zygmund
(1937). The necessity is due to Burkholder (1962). See the appendix for a proof.
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The lack of a time invariance in this problem makes it more difficult than the other
problems in this chapter. The problem still has a Markov structure so the decision to stop
at stage n can be made on the basis of Sn alone. The principle of optimality may be used
to show that the optimal rule is given by a monotone sequence of constants a1 ≥ a2 ≥ · · ·
with stopping at stage n if Sn/n ≥ an . However, even in specific simple cases, such as
the Bernoulli case, the values of the optimal an are quite difficult to evaluate.

An interesting question arises: Does the optimal rule for maximizing the average
stop with probability one? Chow and Robbins (1965) show that it does in the Bernoulli
case, and Dvoretzky (1967) and Teicher and Wolfowitz (1966) show that it does provided
EX2 < ∞ . The general problem is treated in Klass (1973) where it is seen that the optimal
rule stops with probability one provided E(X+)α < ∞ for some α > 1, and examples are
given for which the optimal rule does not stop with probability one.

§4.7 Exercises.

1. Let X1,X2, . . . be a sample from the negative exponential distribution with density

f(x|σ) = σ exp{−σx}I{x > 0},

where σ > 0 is known. Find the optimal stopping rule for the problem Yn = Xn − nc (or
Yn = max{X1, . . . ,Xn} − nc).

2. Selling an asset without recall and without cost, but with discounted future. Let
X1,X2, . . . be independent identically distributed with finite first moment, let 0 < β < 1,
and let Yn = βnXn with Y0 = Y∞ = 0.
(a) Show that A1 and A2 are satisfied. (Hint: supn Yn ≤

∑
n βn|Xn| .)

(b) Show that it is optimal to stop after the first n for which Xn ≥ V ∗ , where V ∗ is the
optimal expected return and the unique solution of the equation V ∗ = βEmax{X,V ∗} .
(c) Specialize to the cases U(0, 1) and U(−1, 1).

3. Solve the discounted version of the house-selling problem for sampling with recall,
where Yn = βn max{X1, . . . ,Xn} . (Hint for (a): Yn ≤ max{β|X1|, . . . , βn|Xn|} .)

4. Job Processing. A given job must be assigned to a processor before a (continuous
time) deadline, D , which is unknown (until it occurs) but has an exponential distribution at
rate α > 0: P(D > d) = exp{−αd} for d > 0. Job processors arrive at times,T1, T2, . . . ,
given by a renewal process independent of D ; that is, the interarrival times, T1, T2 −
T1, T3 − T2, . . . are i.i.d. according to a known distribution G on the positive real line
and independent of D . As each processor arrives, its value, that is to say the return it
provides if the job is assigned to it, becomes known. These values, denoted by Z1, Z2, . . . ,
are assumed to be i.i.d. according to a known distribution, F , and independent of the
arrival times, T1, T2, . . . , and deadline, D . If the deadline occurs before the job is assigned
to a processor, the return is some constant, say µ . Therefore, the payoff, Yn , for assigning
the job to the nth processor to arrive is taken to be Y0 = µ , Y∞ = µ , and

Yn = ZnI(Tn < D) + µI(Tn ≥ D).
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Let K = min{n ≥ 1 : Tn > D} denote the index of the first processor to arrive after the
deadline, and let β = P(D > T1) = E(exp{−αT1}). Then K is independent of Z1, Z2, . . .
and has a geometric distribution, P(K ≥ k) = βk−1 for k = 1, 2, . . . . The payoff may be
written in an equivalent form,

Yn = ZnI(n < K) + µI(n ≥ K).

In this form, we see that the problem depends on α and the distribution G only through
the constant β .
(a) Assume that EZ+ < ∞ . Show that A1 and A2 are satisfied.
(b) Show that it is optimal to stop at the first n for which Zn ≥ V ∗ , where V ∗ is the
optimal expected return and the unique solution of the equation

V ∗ = µ + (β/(1 − β))E((Z − V ∗)+).

(c) Take µ = 0 and specialize to the cases U(0, 1) and U(−1, 1).

5. In the problem of Section 4.2, suppose the distribution of X gives probability p to
+1 and probability 1 − p to −1.
(a) Find the optimal stopping rule, N∗ .
(b) Find P(N∗ < ∞).
(c) For what values of p < 1/2 is it true that N∗ requires you to stop at the first time
that Sn = 1 no matter what β is?

6. In the problem of stopping a sum with negative drift, assume that the distribution
of the Xi is elementary.
(a) Show that the distribution of M is geometric with probability of success P(T < ∞)
where T = min{n ≥ 0 : Sn > 0} .
(b) Show how to find P(T < ∞) and hence EM from knowledge of the generating function,
G(θ) = Eθ−X .
(c) Specialize to the case P(X = 1) = p and P(X = −1) = 1 − p , where p < 1/2.

7. Setting a record (Ferguson and MacQueen (1992).) Let X1,X2, . . . be i.i.d. with
nonpositive mean, let Sn = X1 + · · · + Xn , and let Mn = max{M0, S1, . . . , Sn} with
M0 = 0. Let c > 0 and let Yn = Mn − nc , with Y∞ = −∞ . The problem of choosing a
stopping rule to maximize EYN is the problem of deciding when to give up trying to set
a new record, the return being the value of the record.
(a) Show that A1 and A2 are satisfied if E(X+)2 < ∞ .
(b) Show that the optimal rule has the form, N = min{n ≥ 0 : Mn − Sn ≥ γ} for some
γ ≥ 0.
(c) Suppose X1,X2, . . . are i.i.d. with P(X = 1) = P(X = −1) = 1/2. Show the stopping
rule of (b) for γ an integer has expected return, EYN = γ − γ(γ + 1)c . Find the optimal
rule.

8. Attaining a goal (Ferguson and MacQueen) Let X1,X2, . . . be i.i.d. and let Sn =
X0+X1+. . .+Xn , where X0 is a given number. Let a > 0, c > 0, let Yn = I(Sn ≥ a)−nc
and let Y∞ = −∞ . This is the problem of choosing a stopping rule to maximize the
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probability of attaining a goal when there is a cost of time.
(a) Show that A1 and A2 are satisfied.
(b) Show that the optimal rule has the form, N = min{n ≥ 0 : Sn < γ or Sn ≥ a} for
some γ .
(c) Suppose that X1,X2, . . . are i.i.d. with P(X = 1) = P(X = −1) = 1/2. Show the
stopping rule of (b) for γ an integer has expected return, for γ < X0 < a , of EYN =
(X0 − γ)/(a − γ) − c(X0 − γ)(a − X0). Find the optimal rule.

9. (Ferguson and MacQueen) Let X1,X2, . . . be i.i.d. with a distribution that is
symmetric about zero. Let Sn = X1 + . . . + Xn , let c > 0 and let Yn = |Sn| − nc for n
finite and Y∞ = −∞ .
(a) Show that A1 and A2 are satisfied if EX2 < ∞ .
(b) Show that an optimal rule has the form N = min{n ≥ 0 : |Sn| ≥ γ} for some γ ≥ 0.
(c) Suppose that X1,X2, . . . are i.i.d. with P(X = 1) = P(X = −1) = 1/2. Show that the
return of the stopping rule of (b) is EYN = γ − γ2c . Find an optimal rule.

10. A change-point repair model. (This model is due essentially to Girshick and Rubin
(1952).) Let T denote an unobservable change-point, and assume the distribution of T
is geometric with known parameter π , P(T = t) = (1 − π)πt−1 for t = 1, 2, . . . . Given
T = t , the observations, X1,X2, . . . , are independent with X1, . . . ,Xt−1 i.i.d. having
density f0(x) with mean µ0 ≥ 0, and Xt,Xt+1, . . . i.i.d. having density f1(x) with mean
µ1 < 0 and finite variance. The observations represent the daily returns from operating a
machine. Let the return for stopping at n be Yn = Sn−aI(T ≤ n)−c , where Sn =

∑n
1 Xj ,

c > 0 represents the cost of shutdown for repair, and a > 0 is the excess cost of repair
when the machine is in the poor state. Since T is unobservable, it is preferable to work
with Yn = Sn − aQn − c , where Qn = P{T ≤ n|X1, . . . ,Xn} for finite n (Q0 = 0) and
Y∞ = −∞ .
(a) Show that A1 and A2 are satisfied.
(b) Find Qn+1 as a function of Qn and λ(Xn+1), where λ(x) is the likelihood ratio,
λ(x) = f1(x)/f0(x).
(c) Show there is an optimal rule of the form, N = min{n ≥ 0 : Qn ≥ γ} for some constant
γ ≥ 0.

11. Selling two assets. (Bruss and Ferguson, (1997).) You want to buy Christmas
presents for your two children. After deciding which two presents to buy, you go to various
stores. With two presents to buy, you can be a little more choosy. If the price of one of
the gifts is clearly too high, you know you will have to go to another store anyway, so you
will reject a borderline price for the other gift.

We restate this problem as a selling problem to be able to use the formulas of
§4.1. You have two objects to sell, x and y . Offers come in daily for these objects,
(X1, Y1), (X2 , Y2), . . . , assumed i.i.d. with finite second moments. There is a cost of c > 0
to observe each vector. At each stage you may sell none, one or both of the objects. If just
one of the objects is sold, you must continue until the other object is sold. Your payoff is
the sum of the selling prices minus c times the number of vectors observed.

Once one object is sold, the problem reduces to the standard problem of §4.1. Let Vx

and Vy denote the optimal values of selling the x-object and y -object separately. These
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values are the unique solutions of the Optimality Equations

E(X − Vx)+ = c and E(Y − Vy)+ = c.

Therefore, one can consider the two-asset selling problem as a stopping rule problem in
which stopping at stage n with offers (Xn, Yn) yields payoff Wn = max{Xn + Yn,Xn +
Vy, Yn + Vx} .

(a) Find the Optimality Equation for Vxy , the value of the two-asset problem, and
describe the optimal stopping rule.

(b) Suppose the (Xn, Yn) are a sample from (X,Y ) with X and Y independent
having uniform distributions on the interval (0, 1). Take c = 1/8 (so that Vx = Vy = 1/2),
and find the optimal rule.

(c) In (b), suppose c = 1/2 (so that Vx = Vy = 0), and find the optimal rule.
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APPENDIX TO CHAPTER 4

The following proof of Theorem 1 is taken partly from DeGroot (1970) pp. 350-352,
where it is attributed to Bramblett (1965). For this theorem and the others in this ap-
pendix, the following inequalities are basic.

∞∑
n=1

P(Z > n) ≤ E(Z+) =
∫ ∞

0

P(Z > z)dz ≤
∞∑

n=0

P(Z > n)

so that
E(Z+) < ∞ if and only if

∑
n

P(Z > n) < ∞.

Similarly,

E(Z+)2 = 2
∫ ∞

0

zP(Z > z)dz < ∞ if and only if
∑

n

nP(Z > n) < ∞.

and

E(Z+)2 = 2
∫ ∞

0

∫ ∞

0

P(Z > z+u)du dz < ∞ if and only if
∑

k

∑
n

P(Z > n+k) < ∞.

Theorem 1. Let X,X1,X2, . . . be identically distributed, let c > 0 , and let Yn = Xn−nc
or Yn = Mn − nc , where Mn = max{X1, . . . ,Xn} . If E(X+) < ∞ , then supYn < ∞ a.s.
and Yn → −∞ a.s. If E(X+)2 < ∞ , then E supn≥1 Yn ≤ E(X+)2/(2c) .

Proof. Since Mn − nc = max(X1 − nc, . . . ,Xn − nc) ≤ max(X1 − c, . . . ,Xn − nc), one
sees that sup(Xn −nc) = sup(Mn −nc). This implies that in the statements about supYn

it does not matter which definition of Yn we take; so let us take Yn = Xn − nc . Suppose
E(X+) < ∞ . Then,

P(sup
n≥1

Yn > z) ≤
∞∑

n=1

P(Yn > z) =
∞∑

n=1

P(X > z + nc)

=
∞∑

n=1

P((X − z)/c > n) ≤ E((X − z)+/c) → 0

as z → ∞ . Thus, supYn < ∞ a.s. Moreover, Yn ≤ Mn − nc = (Mn − nc/2) − nc/2 ≤
U − nc/2 → −∞ , where U = sup(Mn − nc/2).
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Now assume that E(X+)2 < ∞ .

E sup
n≥1

Yn ≤
∫ ∞

0

P(sup
n≥1

Yn > z)dz

≤
∫ ∞

0

E((X − z)+/c)dz

=
∫ ∞

0

∫ ∞

z

(x − z)dF (x)dz/c

=
∫ ∞

0

∫ x

0

(x − z)dz dF (x)/c

=
∫ ∞

0

(x2/2)dF (x)/c = E(X+)2/(2c).

For the converse, the variables are required to be independent.

Theorem 1′ . If X,X1,X2, . . . are i.i.d. and if E sup(Xn −nc) < ∞ , then E(X+)2 < ∞ .

Proof. Take c = 1 without loss of generality and suppose E supn≥0(Xn − n) < ∞ .
Then,

P(sup
n

(Xn − n) > z) = 1 −
∞∏

n=1

P(Xn − n ≤ z)

= 1 −
∞∏

n=1

(1 − P(X > z + n)) ≥ 1 − exp{−
∞∑

n=1

P(X > z + n)}.

Since
∑

z P(supn(Xn − n) > z) < ∞ , we have P(supn(Xn − n) > z) → 0 as z → ∞ ,
which in turn implies that

∑∞
n=1 P(X > z + n) → 0, so that for sufficiently large z ,

P(sup
n

(Xn − n) > z) ≥
∞∑

n=1

P(X > z + n)/2

(using 1 − exp{−x} ≥ x/2 for x sufficiently small.) Hence,

∑
z

P(sup
n

(Xn − n) > z) < ∞ implies

∑
z

∑
n

P(X > z + n) < ∞ which implies

E(X+)2 < ∞.



Applications 4.18

As an alternate proof of Theorem 1′ , we show that the rule N = min{n ≥ 1 : Xn ≥
2cn} gives E(XN − Nc)+ = ∞ when EX+ < ∞ and E(X+)2 = ∞ .

E(XN − Nc)+ =
∞∑

n=1

E(Xn − nc)I(N = n)

≥
∞∑

n=1

cnP(N = n)

=
∞∑

n=1

cnP(N > n − 1)P(Xn > 2cn)

≥
∞∑

n=1

cnP(N = ∞)P(Xn > 2cn) = ∞.

since E(X+)2 = ∞ implies
∑∞

n=1 nP(Xn > 2cn) = ∞ , and

P(N = ∞) = P(Xn < 2cn for all n)

=
∞∏

n=1

P(Xn < 2nc) =
∞∏

n=1

(1 − P(Xn ≥ 2nc))

∼ exp{−
∑

P(Xn > 2cn)} ∼ exp{−EX+/2c} > 0.

The following proof of the result of Kiefer and Wolfowitz (1956) is a modification, due
to Thomas Liggett, of a computation of Kingman (1962). We assume a finite variance for
X and derive an upper bound for EM . The theorem of Section 4.3, assuming only that
E(X+)2 < ∞ , may be deduced from Theorem 2 and 2’ below by truncating the distribution
of X below at −B where B is chosen large enough so that if X ′ = max{X,−B} , then
EX ′ is still negative. Let X ′

j = max{Xj ,−B} , S ′
n =

∑n
1 X ′

j , and M ′ = supn≥0 S ′
n . Then

M ≤ M ′ , so that from Theorem 2 below, EM ≤ EM ′ ≤ Var (X ′)/(2|EX ′|) < ∞ .

Theorem 2. Let X,X1 ,X2, . . . be i.i.d. with µ = EX < 0 and σ2 = Var X < ∞ . Let
Sn =

∑n
1 Xj , S0 = 0 and M = supn≥0 Sn . Then

EM ≤ σ2/(2|µ|).

Proof. Let Mn = max0≤j≤n Sj . Note that Mn+1 = max(0,X1 + max1≤j≤n+1(Sj − X1))
so that the distribution of Mn+1 is the same as the distribution of (Mn + X)+ . Then,
writing Mn + X = (Mn + X)+ − (Mn + X)− , and noting that (Mn + X)2 = ((Mn +
X)+)2 + ((Mn + X)−)2 , we find,

E(Mn + X)− = E(Mn+1) − E(Mn) − E(X) and
E((Mn + X)−)2 = −E(M2

n+1) + E(M2
n) + 2µE(Mn) + E(X2)
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so that
0 ≤ Var ((Mn + X)−)

= 2µE(Mn+1) + σ2 − (EMn+1 − EMn)2 − (E(M2
n+1) − E(M2

n))

≤ 2µE(Mn+1) + σ2.

Hence, E(Mn+1) ≤ σ2/(2|µ|) for all n and the result now follows by passing to the limit
using monotone convergence.

The proof of the following converse to Theorem 2 is due to Michael Klass. In the
proof it is seen that if E(X+)2 = ∞ , then the simple rule T = min{n ≥ 0 : Sn > 0} has
infinite expected return, ES+

T = ∞ .

Theorem 2′ . Let X,X1,X2, . . . be i.i.d. with finite first moment µ < 0 . Then, EM < ∞
implies E(X+)2 < ∞ .

Proof. Let T = min{n ≥ 0 : Sn > 0} with T = ∞ if Sn ≤ 0 for all n . Then EM < ∞
implies that EST I(T < ∞) < ∞ . But,

EST I(T < ∞) =
∑
n

EST I(T = n)

≥
∑
n

EST I(T = n, Sn−1 > 2nµ,Xn > −3nµ)

≥
∑
n

n|µ|P(T = n, Sn−1 > 2nµ,Xn > −3nµ)

=
∑
n

n|µ|P(n ≤ T ≤ ∞, Sn−1 > 2nµ,Xn > −3nµ)

=
∑
n

n|µ|P(n ≤ T ≤ ∞, Sn−1 > 2nµ)P(Xn > −3nµ).

But P(n ≤ T ≤ ∞, Sn−1 > 2nµ) → P(T = ∞) > 0 as n → ∞ , so that

∑
n

nP(Xn > −3nµ) < ∞,

which implies that E(X+)2 < ∞ .

In the restatement of Theorem 3, we put c = 1 without loss of generality. The proof
of the “only if” part of the theorem was suggested by Thomas Liggett.

Theorem 3. Let Z,Z1, Z2, . . . be i.i.d., let ε, ε1, ε2, . . . be i.i.d. Bernoulli with p = P(ε =
1) = 1 − P(ε = 0) , with 0 < p < 1 . Let the {Zj} and {εj} be independent, and let
X0 = 0 and Xn = εn(Xn−1 + Zn) for n = 1, 2, . . . . Then,

E sup
n

(Xn − n) < ∞ if and only if E(Z+)2 < ∞.
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Proof. First, suppose that E(Z+)2 < ∞ . Since Xn is the sum of the Zj since the last
ε = 0, it has the same distribution as

∑min(K,n)
1 Zj , where K represents the distance

back from n to the most recent failure if any. We may take K ≥ 0 to have a geometric
distribution with success probability p and to be independent of the Zj . This latter sum
is less than Q =

∑K
1 Z+

j .

E sup
n

(Xn − n) ≤
∞∑

x=0

P(sup
n

(Xn − n) ≥ x)

≤
∞∑

x=0

∞∑
n=0

P(Xn − n ≥ x)

≤
∞∑

x=0

∞∑
n=0

P(Q ≥ x + n).

This last sum is finite since the variance of Q is finite:

E(Q2) = E(E(Q2 |K)) = E(E(
K∑

i=1

K∑
j=1

Z+
i Z+

j |K))

= EKE(Z+)2 + EK(K − 1)(EZ+)2 < ∞.

Conversely, note that

sup
n

(Xn − n) ≥ sup
n

(I(εn = 1, εn−1 = 0)(Zn − n)).

This latter sup is equal in distribution to supn(Zn − Kn), where Kn is the time of the
nth appearance of the pattern εj−1 = 0, εj = 1,Kn starting with ε0 = 0. Therefore, the
differences K2 − K1,K3 − K2, . . . are i.i.d. with finite second moment. For an arbitrary
positive number c′ , we have

sup(Zn − c′n) ≤ sup(Zn −Kn) + sup(Kn − c′n).

The expectation of the first term on the right is finite since it is bounded above by
E sup(Xn−n) < ∞ . The expectation of the second term is finite from Theorem 2, provided
c′ is chosen large enough, say c′ ≥ 2µ , where µ = E(K2−K1). Hence, E sup(Zn−c′n) < ∞
so that from the converse part of Theorem 1, E(Z+)2 < ∞ .

We precede the proof of Theorem 4 by two lemmas. Let X1,X2, . . . be i.i.d. with
finite mean and let Sn =

∑n
1 Xj .

Lemma 1. For j ≤ n , E{S+
j /j|Sn, Sn+1, . . .} ≥ S+

n /n .

Proof. By symmetry, E{Xj |Sn, Sn+1, . . .} is the same for all j ≤ n , and since the sum
is Sn , we must have E{Xj |Sn, Sn+1, . . .} = Sn/n . Hence, E{Sj/j|Sn, Sn+1, . . .} = Sn/n ,
and hence S+

n /n ≤ E{S+
j /j|Sn, Sn+1, . . .} (since (EX)+ ≤ EX+ ).
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Lemma 2. Let An = {supj≤n S+
j /j ≥ λ} where λ > 0 . Then E{X+

1 I(An)} ≥ λP{An} .

Proof. Let Anj = {S+
j /j ≥ λ and S+

k /k < λ for k = j + 1, . . . , n} . Then An =⋃n
j=1 Anj and X+

1 = S+
1 , so

E{X+
1 I(An)} =

n∑
j=1

E{S+
1 I(Anj)}

=
n∑

j=1

E[E{S+
1 I(Anj)|Sj, Sj+1, . . .}]

=
n∑

j=1

E[I(Anj)E{S+
1 |Sj, Sj+1, . . .}]

≥
n∑

j=1

E[I(Anj)S+
j /j]

≥ λ
n∑

j=1

E{I(Anj)} = λP(An).

Theorem 4. If E{X1 log+ X1} < ∞ , then E supn Sn/n < ∞ .

Proof. (Doob (1953) p. 317) Let Zn = supj≤n S+
j /j . Then EZn < ∞ (since Zn ≤∑n

1 S+
j /j ).

EZn =
∫ ∞

0

P(Zn ≥ z)dz ≤ 1 +
∫ ∞

1

P(Zn ≥ z)dz

≤ 1 +
∫ ∞

1

(1/z)E{X+
1 I(Zn ≥ z)} dz (Lemma 2)

= 1 + E{X+
1

∫ Zn

1

(1/z)dzI(Zn ≥ 1)} = 1 + EX+
1 log+ Zn.

Now, note that log x ≤ x/e for all x > 0. (There is equality at x = 1/e , the slopes
are equal there, and log x is concave.) Replacing x by Zn/X+

1 , we find X+
1 log+ Zn ≤

X+
1 log+ X1 + Zn/e . Therefore,

EZn ≤ 1 + EX+
1 log+ X1 + EZn/e,

so that
EZn ≤ (e/(1 − e))(1 + EX1 log+ X1).

But Zn converges monotonically to supj S+
j /j , so that E supj Sj/j ≤ E supj S+

j /j < ∞ .

The above proof uses the fact that Sn is a sum of i.i.d. random variables only through
Lemma 1. Thus, the theorem is valid for sequences S+

n /n satisfying that lemma (a non-
negative reverse supermartingale).

The following converse, due to McCabe and Shepp (1970) and Davis (1971), explicitly
exhibits a simple stopping rule with ESN/N = ∞ .



Applications 4.22

Theorem 4′ . Let X1,X2, . . . be i.i.d. with finite first moment and suppose EX1 log+ X1

= ∞ . Let c > 0 be such that P(X < c) > 0 , and let N denote the stopping rule
N = min{n ≥ 1 : Xn ≥ nc} . Then ESN/N = ∞ .

Proof. Without loss of generality, we take c = 1 since we could work as well with the
sequence X1/c,X2/c, . . . . First note that P(N = ∞) > 0, since P(X1 < 1) > 0 and

P(N = ∞) = P(Xn < n for all n) =
∞∏

n=1

P(Xn < n)

≥ [
m−1∏
n=1

P(Xn < n)](1 −
∞∑

n=m

P(Xn ≥ n)),

and
∞∑

n=m

P(Xn ≥ n) =
∞∑

n=m

∫ ∞

n

dF (x)

≤
∫ ∞

m

xdF (x) → 0 as m → ∞,

where F denotes the distribution function of X1 . Now, choose m so that the latter sum
is less than 1.

Second, note that EXN/N = ∞ , since

E((XN /N)I{N < ∞}) =
∞∑
1

P(N = n)n−1E{Xn|N = n}

=
∞∑
1

P(N = n)n−1E{Xn|Xn ≥ n}

(since the Xj are independent)

=
∞∑
1

P(N ≥ n)n−1

∫ ∞

n

xdF (x)

(since P(N = n) = P(N ≥ n)P(Xn ≥ n))

≥ P(N = ∞)
∞∑
1

n−1

∫ ∞

n

xdF (x)

= P(N = ∞)
∫ ∞

1

[x]∑
1

n−1xdF (x)

≥ P(N = ∞)
∫ ∞

1

x log(x)dF (x) = ∞.
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Finally, note that E(SN/N) = E(XN /N) + E(
∑N−1

k=1 Xk/N). But,

E(
N−1∑
k=1

Xk/N) =
∞∑

n=1

P(N = n)n−1
n−1∑
k=1

E(Xk|N = n)

=
∞∑

n=1

P(N = n)n−1
n−1∑
k=1

E(Xk|Xk < k)

≥
∞∑

n=1

P(N = n)n−1E(X1|X1 < 1)(n − 1) > −∞,

since E(X|X < k) is nondecreasing in k . Thus, E(SN/N) = ∞ .


