
Solutions to the Exercises of Chapter 1.

1. Let Xj = (X1j ,X2j) denote the jth observation, where

X1j = return from the jth burglary, and

X2j =
{

0 if he is caught at the jth burglary, and
1 if he is not caught at the jth burglary.

It is assumed that the Xj are i.i.d. and that X1j and X2j are independent of each other.
The distribution of the X1j is assumed known, as is the probability that X2j is 1. The
burglar’s total fortune, if he stops at n , is

Yn = (
n∏

j=1

X2j)(Y0 +
n∑

j=1

X1j) for n = 1, 2, 3, . . . ,

where Y0 is his initial fortune, and Y∞ = 0. The problem is to find a stopping rule N to
maximize E(YN ).

2. Let Tj be the time required to catch fish number j . The T1, . . . , Tn are i.i.d. with
known distribution, F , assumed to have non-decreasing hazard rate. The observations are
Xj = T(j) , where T(1) ≤ . . . ≤ T(n) are the order statistics. If we stop after catching j
fish, we receive a reward, j , and pay cT(j) ; thus, the reward sequence is given by Y0 = 0,
and

Yj = j − cT(j) = j − cXj for j = 1, 2, . . . , n,

where c > 0. This is a finite horizon problem. We seek a stopping rule N ≤ n to maximize
E(YN ).

3. The observations X1,X2, . . . are i.i.d. with P(Xi = j) = pj for j = 1, 2, . . .
assumed known. Let D(n) denote the number of distinct observations among X1, . . . ,Xn ,
D(n) = 1 +

∑n
2 I(Xj �= X1, . . . ,Xj �= Xj−1). If we stop after observing Xn , we receive

Yn = D(n) − nc for n = 0, 1, 2, . . . ,

where c > 0, and Y∞ = −∞ . The problem is to find a stopping rule, N , to maximize
E(YN ).

4. Let Xn denote the number of misprints found on the nth proofreading. The
observations are X1,X2, . . . , and their joint distribution may be described as follows.
Given the number M of misprints, X1 has a binomial distribution with sample size M and
probability of success, p1 , denoted by B(M,p1). Similarly, given M and X1, . . . ,Xn−1 ,
the distribution of Xn is B(Mn, pn), where Mn = M − X1 − · · · − Xn−1 , the number of
misprints remaining after the first n − 1 proofreadings. The prior distribution of M is
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assumed known. Since each proofreading costs c1 > 0 and each undetected misprint costs
c2 > 0, stopping after proofreading number n costs

Yn = nc1 + (M −
n∑
1

Xi)c2 for n = 0, 1, . . . , and Y∞ = ∞.

We seek a stopping rule N to minimize EYN . Note that the payoff depends on M which
is not known exactly when the decision to stop is made. We may, as pointed out in Remark
2, replace the payoff by the known function,

yn(X1, . . . ,Xn) = nc1 + (E{M |X1 , . . . ,Xn} −
n∑
1

Xi)c2 for n = 0, 1, . . . ,

and Y∞ = ∞ .

5. The observations, X1,X2, . . . , are i.i.d. with P(Xj = 1) = p = 1−P(Xj = 0). The
net return for stopping at n is

Yn = K

n∑
j=1

(
n∏

i=n−j+1

Xi) − nc for n = 0, 1, 2, . . . ,

and Y∞ = −∞ , where K and c are positive constants. We seek a stopping rule, N , to
maximize E(YN ).



Solutions to the Exercises of Chapter 2.

1.(a) By the Lemma, there is an optimal threshold rule Rr . Let Er denote the ex-
pected payoff using Rr . Then,

Er = P(select best|Rr) − P(select not best|Rr)
= 2P(select best|Rr) − P(select something|Rr).

Now, P(select something|Rr) = P(the best occurs after r − 1) = (n − r + 1)/n , and
P(select the best|Rr) is the same as it is for the CSP. Hence,

Er = (2(r − 1)/n)
n∑

k=r

1/(k − 1) − (n − r + 1)/n.

The optimal r is the first r such that Er+1 ≤ Er , which reduces to the first r such that∑n
k=r+1 1/(k − 1) ≤ 1/2.

(b) Using
∑n

k=r+1 1/(k − 1) ∼ log(n/r), we find for the optimal r that log(n/r) ∼ 1/2,
or r ∼ n/

√
e .

2.(a) If applicant k is a candidate and is available, then the probability of win is the
same as for the CSP.
(b) Same argument as for the CSP.

Pr =
n∑

k=r

P(select k and it wins|Nr)(c)

=
n∑

k=r

P(reach k|Nr)P(Xk = 1, εk = 1, and it wins).

P(reach k|Nr) =
r − p

r

r + 1 − p

r + 1
· · · k − 1 − p

k − 1
=

Γ(r)Γ(k − p)
Γ(k)Γ(r − p)

P(Xk = 1, εk = 1, and it wins) = (1/k)p(k/n) = p/n.

(d) Computation reveals that

Pr+1 − Pr =

[
p

r − p

n∑
r+1

Γ(r)Γ(k − p)
Γ(k)Γ(r − p)

− 1

]
p

n
.

Hence, the optimal rule is Nr′ , where r′ is

r′ = min{r ≥ 1 :
pΓ(r)

Γ(r + 1 − p)

n∑
r+1

Γ(k − p)
Γ(k)

≤ 1}.
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Using the approximation kpΓ(k − p)/Γ(k) → 1 as k → ∞ , we find
n∑

r+1

Γ(k − p)
Γ(k)

∼
∫ n

r

x−p dx =
nq − rq

q
,

where q = 1 − p . Combined with pΓ(r)/Γ(r + 1 − p) ∼ p/rq , this gives the result.

3. Let A(k, r) be the event {best of first k − 1 occurs before r} , and let B(k, s) be
the event {2nd best of first k− 1 occurs before s} . Let Pk = P(A(k, r)) = (r− 1)/(k− 1)
and Qk = P(B(k, s)|A(k, r)) = (s − 2)/(k − 2). Then,

PA = P(select best) =
n∑

k=r

P(best at k and is selected)(a)

=
n∑

k=r

(1/n)P(reach k)

=
s−1∑
k=r

(1/n)Pk +
n∑

k=s

(1/n)PkQk,

which gives the formula in (a).
(b) Let Zk = P(best occurs after k|2nd best at k) = (n − k)/(n − 1). Then,

PB = P(select 2nd best) =
n∑

k=r

P(2nd best at k and is selected)

=
s−1∑

r

(1/n)PkZk +
n∑
s

(1/n)PkQk,

which gives the formula in (b).
(c) The expected return using rule Rr,s is

V (r, s) = aPA + bPB → W (x, y)

where
W (x, y) = (ax) log(y/x) + bx(log(y/x) − (y − x)) + (a + b)x(1 − y).

(d) The derivative of W (x, y) with respect to y yields (a + b)x/y − ax − 2bx = 0 which
gives y = (a + b)/(a + 2b). The derivative of W (x, y) with respect to x yields (a +
b)(log(y/x) − y) − b(y − x) + bx = 0 which reduces to the formula in (d).
(e) If a = b = 1, then y = 2/3 and log(x) = log(2/3) − 1 + x . Newton’s method gives
x = .3475 · · · .

4. (a) The joint density of θ,X1, . . . ,Xj is

g(θ, x1, . . . , xj) = αθ−(α+1)I(α > 1)
j∏

i=1

I(0 < xi < θ)(1/θ)

= αθ−(j+α+1)I(θ > max(1, x1, . . . , xj)).
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Hence, g(θ|x1, . . . , xj) is proportional to θ−(j+α+1)I(θ > mj), and so is Pa(j + α,mj).
(b) yj(x1 , . . . , xj) = P(Mn = mj|Mj = mj)I(Xj = Mj), and

P(Mn = Mj |X1, . . . ,Xj) = E{P(Mn = Mj |θ,X1, . . . ,Xj)|X1, . . . ,Xj}

=
∫ ∞

Mj

(Mj/θ)n−jf(θ|α + j,Mj)dθ

= (α + j)/(α + n),

independent of X1, . . . ,Xj .
(c) If you have a new candidate at stage j , that is if Xj = Mj , it is optimal to stop if and
only if

(α + j)/(α + n) ≥ P(win with best strategy from stage j + 1 on).

The right side of this inequality is a nonincreasing function of j , since any strategy available
at stage j + 2 is also available at stage j + 1. Since the left side of the inequality is an
increasing function of j , an optimal rule may be found among rules Nr for some r ≥ 1:
reject the first r − 1 applicants and accept the next applicant for which Xj = mj , if any.
(d) The probability of a win, Pr = P(win|Nr), may be computed as follows.

Pr =
n∑

j=r

P(select j|Nr)P(j is best|select j) =
α + r − 1

α + n

n∑
r

1
α + j − 1

,

since P(j is best|select j) = (α + j/(α + n), and

P(select j|Nr) = P(Mj−1 = Mr−1 and Mj > Mj−1)
= ((α + r − 1)/(α + j − 1))(1 − (α + j − 1)/(α + j))
= (α + r − 1)/((α + j − 1)(α + j)).

To find the value of r that maximizes Pr , look at the differences,

Pr+1 − Pr =
α + r

α + n

n∑
r+1

1
α + j − 1

− α + r − 1
α + n

n∑
r

1
α + j − 1

=
1

α + n

[
n∑

r+1

1
α + j − 1

− 1

]
.

Since this is decreasing in r , the optimal r is the first r such that the term in square
brackets is less than or equal to 0.

5. (a) If we reach stage j and the j th applicant is a candidate and if we accept him,
we win if none of the remaining K − j applicants is a candidate. Since the distribution of
K given K ≥ j is uniform on the set {j, . . . , n} , this happens with probability

pj =
1

n − j + 1

n∑
k=j

P(Xj+1 > 1, . . . ,Xk > 1)

=
1

n − j + 1

n∑
k=j

j

j + 1
j + 1
j + 2

· · · k − 1
k

=
j

n − j + 1

n∑
k=j

1
k

.
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Thus, yj = pjI{K ≥ j,Xj = 1} .

(b) We show that for every j , if it is optimal to stop at j with a candidate, then it is
optimal to stop at j +1 with a candidate as well. Let Wj be the optimal expected return
if we continue from j , given that we reach j . This sequence of constants is nonincreasing
since continuing from j + 1 is always an option if we continue from j . Moreover, it is
optimal to stop at j with a candidate if pj ≥ Wj . We show below that pj is increasing.
Then the result follows since pj+1 > pj ≥ Wj ≥ Wj+1 .

pj+1 − pj =
j + 1
n − j

n∑
k=j+1

1
k
− j

n − j + 1

n∑
k=j

1
k

=
(

j + 1
n − j

− j

n − j + 1

) n∑
k=j+1

1
k
− 1

n − j + 1

=
n + 1

(n − j + 1)(n − j)

n∑
k=j+1

1
k
− 1

n − j + 1
.

This is positive if and only if

1
n − j

n∑
k=j+1

1
k

>
1

n + 1
.

This is always true since the left side is an average of terms each of which is greater than
1/(n + 1).

(c) If Nr is used, the conditional probability of win given K = k is zero if k < r and,
from (3) of the text, ((r−1)/k)

∑k
i=r 1/(i−1) if k ≥ r . Since K is uniform on {1, . . . , n} ,

E(YNr) =
1
n

n∑
k=r

r − 1
k

k∑
i=r

1
i − 1

.

(d) If n is large and r/n is approximately x , then the expected return of part 1(c)
and 2(c) is a Riemann approximation to an integral,

r − 1
n

n∑
k=r

1
k

k∑
j=r

1
j − 1

∼ x

∫ 1

x

1
y

∫ y

x

1
z

dz dy

= x

∫ 1

x

1
y

log
y

x
dy = x(log x)2/2.

This has derivative (log x)2 + 2(log x) which has a unique root at a maximum value at
log x = 2 or x = e−2 = .135 . . . . The optimal rule is to pass up about 13.5% of the possible
applicants and select the next candidate. The optimal expected return is 2e−2 = .271 . . . .
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6. (a) Let Tj denote the time of the first relatively best object after j , and Tj = n+1
if there are none. Then if applicant j is relatively best and selected, then the expected
proportion of time this applicant remains relatively best is

pj = E
Tj − j

n
=

n∑
k=j

1
n

P(Tj > k) =
1
n

n∑
k=j

j

k
.

(b) If Wj represents the optimal expected return if we continue from j , then the Wj

are nonincreasing constants as in problem 5(b). However, the pj are not monotone:

pj+1 − pj =
j + 1

n

n∑
k=j+1

1
k
− j

n

n∑
k=j

1
k

=
1
n

n∑
k=j+1

1
k
− 1

n
.

This is positive if and only if
∑n

j+1(1/k) > 1, valid for small j but not for large. Hence, we
can see that pj is monotone increasing for j less than some jn and monotone decreasing
for j greater than jn . So it is certainly optimal to select a candidate at any stage j ≥ jn

since continuing will certainly decrease our expected payoff. On the other hand, for j < jn

if it is optimal to stop at j with a candidate (because yj ≥ Wj ), then it is optimal to
stop at j + 1 with a candidate, since yj+1 > yj ≥ Wj ≥ Wj+1 . This shows that there is a
threshold rule that is optimal.

(c) The expected return of the threshold rule Nr is

EYNr =
n∑

j=r

P(Tr−1 = j)pj =
n∑

j=r

r − 1
(j − 1)j

1
n

n∑
k=j

j

k
=

r − 1
n

n∑
k=r

1
k

k∑
j=r

1
j − 1

exactly the same answer as 5(c).

7. For n = 1, there is no choice. The first observation is selected and the expected
return is 5/2.

Suppose n = 2. If the first observation is 1, you clearly continue and the expected
return is 3. If the first observation is 2, the expected return if you continue is 8/3, so you
should continue. If the first observation is 3 or 4, you should stop. The expected return is
(3 + (8/3) + 3 + 4)/4 = 19/6.

Suppose n = 3. If the first observation is 1 or 2, you should continue until you get
a 3 or a 4, and your expected return is 7/2. If the first observation is 3, continuing and
stopping at the next stage only with the 4 gives an expected payoff of 19/6; since this is
greater then 3, it is best to continue. If the first observation is a 4, you should stop. The
expected return is [(7/2) + (7/2) + (19/6) + 4]/4 = 85/24.

If n = 4, you can wait for the best value. The expected payoff is 4.

8.(a) We have A0 = 0, A1 = 1 and for j ≥ 1,

Aj+1 =
∫ Aj

0

Aje
−x dx +

∫ ∞

Aj

xe−x dx

= Aj + e−Aj .



Solutions 2.6

(b) Let Bn = eAn − (n + 1), so that An = log(n + 1 + Bn). From the recursion formula
of part (a), we have log(n + 1 + Bn) = log(n + Bn−1) + 1/(n + Bn−1) for n ≥ 1, which
implies,

Bn − Bn−1 = (n + Bn−1)
[
exp{ 1

n + Bn−1
} − 1

]
− 1

=
1

2(n + Bn−1)
+

1
3!(n + Bn−1)2

+ · · ·

We start with B0 = 0 and find inductively that Bn ≥ 0 for all n , so that An ≥ log(n+1)
for all n . This equation also implies that Bn − Bn−1 ≤ 1/n for all n sufficiently large
so that Bn < log(n) + c for some constant c . The conclusion now follows from 0 ≤
An − log(n + 1) = log(n + 1 + Bn) − log(n + 1) ≤ log(1 + (log(n) + c)/(n + 1)) → 0.

(c) If an = (1 + a2
n−1)/2 is the answer to the optimal cutoff for one choice, then the

optimal cutoff for two choices left is sn , where

sn − an = (1 + (sn−1 − an−1)2)/2 − (an − an−1).

9.(a) We accept the last observation, Xn if we get that far, so A0 = 0. We accept
Xn−1 if it is at least A1 = EXn = 1/2. Inductively we accept Xn−j if it is at least Aj ,
where

Aj =
∫ Aj−1

0

Aj−1
1
j

dx +
∫ j

Aj−1

x

j
dx =

j

2
+

A2
j−1

2j
.

(b) Since An is the average of n and A2
n−1/n and A0 = 0 we have inductively that An ≤ n

for all n . Let Bn = n + 1−An . Then B0 = 1,B1 = 3/2,B2 = 31/16, and inductively for
n ≥ 1,

Bn = Bn−1 + 1 −
B2

n−1

2n
.

We are to show that Bn/
√

2n → 1. We first show by induction that Bn ≤
√

2(n + 1).
This is true for n = 0, and if true for n , then, since B + 1 − B2/(2n) is an increasing
function of B for B < n , Bn+1 ≤

√
2n + 1 − 1 <

√
2(n + 1).

So now letting Cn = Bn/
√

2(n + 1), we find C0 = 1/
√

2 = .707 · · · , C1 = .75,
C2 = .791 · · · , and

Cn =

√
2nCn−1 + 1 − C2

n−1√
2n + 2

.

If fn(Cn−1) denotes the right side of this expression, then fn(c) is concave and nonde-
creasing in (0,1) for n ≥ 2 with fn(0) > 0 and fn(1) < 1. So there exists a unique
fixed point rn of fn and Cn is between rn and Cn−1 . Moreover, rn is the root in
(0,1) of the equation c2 + (

√
2n + 2 −

√
2n)c − 1 = 0, and so the rn are increasing

since the coefficients
√

2n + 2 −
√

2n are decreasing. Since C2 < r2 = .800 · · · , we
have by induction that the Cn are increasing, and hence converging to a limit, say
Cn → b ≤ 1. The proof will be complete when we show that b = 1. Suppose b < 1,
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that is suppose Bn ≤ b
√

2(n + 1) for all n . Then from the recursion for the Bn , we have
Bn = B0 +

∑n
1 (Bj −Bj−1) = 1+

∑n
1 (1−B2

j−1/(2j)) ≥ 1+n(1− b2). But this contradicts
the fact that Bn <

√
2(n + 1).

10.Pretend you pay nc for gas anyway. Then you pay (n − j)(1 − c) if you stop at
j < n , and (j − n)(1 + c) if you stop at j > n . Change scale by measuring in units of
(1−c): you pay n−j for stopping at j ≤ n and (j−n)α for stopping at j > n where α =
(1+c)/(1−c). The problem becomes as before except that if you go beyond the destination
you expect to pay α/(1 − p). Thus, the recursion is as before but the initial condition is
now P0 = αp/(1−p). Induction this time leads to Pr = (r+1)+((α+1)pr+1−1)/(1−p).
The optimal value of r is smallest r ≥ 0 such that pr+1 ≥ 1/(α + 1) = (1 − c)/2.

11.(a) We have WT = 0, WT−1 = pT sT and for j ≤ T ,

Wj−1 = pj max{sj ,Wj} + (1 − pj)Wj = Wj + pj(sj − Wj)+.

(b) An optimal rule stops at j if sj ≥ Wj . From (a), the Wj are nonincreasing, and from
assumption the sj are nondecreasing. So the rule Nr is optimal for r = min{j : sj ≥ Wj} .

12.(a) We have WT (s) ≡ 0 and for j ≤ T ,

Wj−1(s) = pjE max(s + Zj ,Wj(s + Zj)) + (1 − pj)EW (s + Zj)
= EW (s + Zj) + pjE(s + Zj − Wj(s + Zj))+.

(b) It is optimal to stop at stage j with Sj = s if s ≥ Wj(s). Wj(s) is nondecreasing and
continuous in s , since any stopping rule used with s gives at least a great a return when
used with s + δ but not more that δ greater, where δ is an arbitrary positive number.
Hence there is a number rj such that it is optimal to stop at stage j with Sj = s if s ≥ rj .
That the rj are nonincreasing follows from Wj−1(s) ≥ EWj(s + Zj) ≥ Wj(s), since the
Zj are nonnegative.

13. V
(n)
n = Yn = n − c

∑n
1 Zj . Using the independence of the Zj and the fact that

EZn−j = 1/(j + 1), we find

V
(n)

n−1 = max{Yn−1,E(Yn|Z1, . . . , Zn−1)}
= Yn−1 + max{0,E(1 − cZn|Z1, . . . , Zn−1)}
= Yn−1 + max{0, 1 − c} = Yn−1 + cn−1,

say. We would only continue at the last stage if c ≤ 1. Similarly, by backward induction,

V
(n)
n−j = Yn−j + cn−j ,

where
cn−j = max{0, 1 − c/j + cn−j+1}.
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It is seen that c1, c2, . . . forms a decreasing sequence until cj hits zero, and then it stays
at zero. The optimal rule continues until cj hits zero. So, find the first k ≤ n such that
1 − c/k ≤ 0 and stop at n − k . For example, if c = 5.5, catch all but 5 fish and stop.

14. (a) qj = P{Sj ≥ 0, Sj − S1 ≥ 0, . . . , Sj − Sj−1 ≥ 0} = P{Xj ≥ 0,Xj + Xj−1 ≥
0, . . . ,Xj + · · · + X1 ≥ 0} = P{S1 ≥ 0, . . . , Sj ≥ 0} = P{S1 ≤ 0, . . . , Sj ≤ 0} = pj , using
the symmetry of the distribution of the X ’s.

(b) Let q(n, z) denote the probability of ending on a maximum if there are n stages
to go and the deficit is z , q(n, z) = P(Sn = max{Mn, z}), defined for integers n ≥ 0 and
real numbers z ≥ 0. Note that qn = q(n, 0). Then q(n, z) satisfies the recurrence,

q(n, z) = Eq(n − 1, (z − X)+) (1)

with initial condition
q(0, z) =

{ 1 if z = 0
0 otherwise.

(2)

Let V
(n)
j (z) denote the expected return from an optimal policy for the problem with

n stages when we are already at stage j with Sj = s and Mj = s + z . Since we should
never stop with Sj < Mj , the dynamic programming equations are

V
(n)
j (z) =

⎧⎨
⎩

EV
(n)
j+1((z − X)+) if z > 0

max
{
pn−j ,EV

(n)
j+1((−X)+)

}
if z = 0

(3)

with boundary condition V
(n)
n (z) = 1 if z = 0 and V

(n)
n (z) = 0 otherwise.

We now proceed by backward induction to show that V
(n)
j (z) = q(n − j, z). This is

true for j = n by the boundary conditions. Suppose true for k + 1 ≤ j ≤ n . Then (3) for
j = k becomes

V
(n)
k (z) =

{
Eq(n − k − 1, (z − X)+) if z > 0
max {pn−k,Eq(n − k − 1, (−X)+)} if z = 0

=
{

q(n − k, z) if z > 0
max {pn−k, q(n − k, 0)} if z = 0

(4)

using (1) and (2). From part (a) we have pn−k = qn−k = q(n − k, 0). This shows
V

(n)
k (z) = q(n − k, z) and completes the induction. It also shows that when Sk = Mk , it

is optimal to stop or to continue. If Sk < Mk , it is always optimal to continue.

(c) Use the Reflection Principle. First note that S2n−1 cannot be 0, so that p2n−1 =
p2n for all n . Let us compute p2n . We break the sample space into three subsets, E1 =
{S1 ≤ 0, . . . , S2n ≤ 0} , E2 = {S2n > 0} , and E3 = {S2n ≤ 0, but Sj > 0 for some j } .
We are to show P(E1) =

(
2n
n

)
2−2n .

The Reflection Principle says P(E2) = P(E3). This is seen as follows. For any path
(S1, S2, . . . , S2n) in E2 , (with S2n > 0) there is a first k such that Sk = 1. This path
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reflected about the line Sj = 1 from k +1 on, namely (S1, . . . , Sk, 2− Sk+1, . . . , 2−S2n),
has the same probability and is in E3 . Moreover this mapping is one-to one. Hence,
P(E2) = P(E3).

From this we may compute P(E1) = 1 − P(E2) − P(E3) = 1 − P(E2) − P(E2) =
1 − P(S2n > 0) − P(S2n < 0) = P(S2n = 0) =

(
2n
n

)
2−2n .

(d) For the double exponential distribution, M(t) = 1/(1 − t2) for |t| < 1. The lack
of memory property of the exponential distribution implies that SN has an exponential
distribution, independent of N , and EetSN = 1/(1 − t) for |t| < 1. Therefore, the
Wald identity gives EetSN EM(t)−N = (1 − t)−1E(1 − t2)N = 1, or E(1 − t2)N = 1 − t .
Substituting u for 1− t2 gives EuN = 1−

√
1 − u . The power series expansion of

√
1 − u

is
√

1 − u = 1 −
∑∞

1 fnun where

fn =
1 · 3 · 5 · · · (2n − 3)

2nn!
=

1
22n−1

(
2n − 1

n

)
1

(2n − 1)
.

Hence, EuN =
∑∞

1 fnun and fn = P(N = n). Then, since pn = P(N > n),

pn = 1 −
n∑
1

fj =
1

22n−1

(
2n − 1

n

)

as may be seen by induction.

15.(a) and (b) Let g(α) = Emax(X,α) when X has distribution F (x|θ).

g(α) = αF (α|θ) +
∫ 1

α

xdF (x|θ) = αF (α|θ) + xF (x|θ)
∣∣∣1
α
−

∫ 1

α

F (x|θ)dx

= αF (α|θ) + 1 − αF (α|θ) −
∫ 1

α

(1 − θ)2

(1 − xθ)2
dx = 1 − (1 − θ)2

θ(1 − xθ)

∣∣∣1
α

= 1 − 1 − θ

θ
+

(1 − θ)2

θ(1 − θα)
= 1 − (1 − θ)(1 − α)

(1 − θα)
.

When α = 0 this gives E(X) = θ .
(c)

g1(g2(α)) = 1 − (1 − θ1)(1 − g2(α))
(1 − θ1g2(α))

= 1 − (1 − θ1)(1 − θ2)(1 − α)
(1 − θ2α) − θ1((1 − θ2α) − (1 − θ2)(1 − α))

= 1 − (1 − θ1)(1 − θ2)(1 − α)
1 − θ1θ2(1 − 2α) − (θ1 + θ2)α)

.

Since this is symmetric in θ1 and θ2 , we have g1(g2(α)) = g2(g1(α)).
(d) So gi and gj commute for all i and j . This implies that An = gn(gn−1(· · · (g1(α)) · · ·))
does not depend on the order of the subscripts. Since An represents the optimal payoff,
it doesn’t matter in what order the Xi are observed.
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1. (a) Let N = N
(J)
1 . To show N is regular, we must show

for all n, E{YN |Fn} > Yn a.s. on {N > n}. (1)

We proceed by backward induction. For n = J , this is automatic since {N > J} is empty.
For n = J − 1: on {N > J − 1} we have {N1 > J − 1} , i.e.

YJ−1 < E(YJ |FJ−1) = E(YN |FJ−1),

since N = J on {N > J − 1} .

Now assume the induction hypothesis (1) for n = k + 1. We show (1) for n = k . On
{N > k} , we have N1 > k , so that

Yk < E(Yk+1|Fk)
= E(Yk+1I(N = k + 1)|Fk) + E(Yk+1I(N > k + 1)|Fk).

The first term on the right is equal to E(YNI(N = k+1)|Fk). The second term is bounded,
using the induction hypothesis, by

E(Yk+1I(N > k + 1)|Fk) ≤ E(E{YN |Fk+1}I(N > k + 1)|Fk)
= E(E{YNI(N > k + 1)|Fk+1}|Fk)
= E(YNI(N > k + 1)|Fk).

Combining these, we get Yk < E(YN |Fk) as was to be shown.

(b) We are to show that on {N1 > n} , Yn < E(YN1 |Fn). First note that part (a)
implies that for all J > n ,

Yn < E(Yn+1|Fn) ≤
J∑

j=n+1

E(YN1I(N1 = j)|Fn) + E(YJI(N1 > J)|Fn) on {N1 > n}.

Now, let J → ∞ . The first term on the right converges to
∑∞

j=n+1 E(YN1I(N1 = j)|Fn)
by A1. By Fatou-Lebesgue and A2, the limsup of the second term is bounded above by
E(Y∞I(N1 = ∞)|Fn). Combining these, we have on {N1 > n} ,

Yn < E(Yn+1|Fn) ≤
∞∑

j=n+1

E(YN1I(N1 = j)|Fn) + E(Y∞I(N1 = ∞)|Fn)

= E(YN1|Fn)

as was to be shown.
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(c) In Example 3.1, A2 is satisfied and A1 is not. Moreover, the 1-sla will continue
as long as successes occur and stop at the first failure, so N1 = min{n ≥ 0 : Yn = 0}
and YN1 = 0. Thus, Yn ≥ E(YN1|Fn) = 0 on {N1 > n} , so N1 is not regular. In
Example 3.2, A1 is satisfied and A2 is not. Here, the 1-sla is simply N1 = ∞ , and again
Yn ≥ E(YN1 |Fn) = 0. So N1 is not regular.

2. We are to show that Yn < E(YN∞ |Fn) on {N∞ > n} . First note that on {N∞ >
n} ,

Yn < E(Y∞|Fn)

= E(Y∞I(N∞ = ∞)|Fn) +
∞∑

j=n+1

E(Y∞I(N∞ = j)|Fn).

The first term on the right is equal to E(YN∞I(N∞ = ∞)|Fn). Since for every j ,
YjI(N∞ = j) ≥ E(Y∞|Fj)I(N∞ = j), if we take expectation conditional on Fn , we
have for j > n ,

E(YjI(N∞ = j)|Fn) ≥ E(E{Y∞I(N∞ = j)|Fj}|Fn)

or
E(YN∞I(N∞ = j)|Fn) ≥ E(Y∞I(N∞ = j)|Fn).

Combining these, we find on {N∞ > n} ,

Yn < E(YN∞I(N∞ = ∞)|Fn) +
∞∑

j=n+1

E(YN∞I(N∞ = j)|Fn)

= E(YN∞I(N∞ > n)|Fn) since A1 implies EYN∞ < ∞
= E(YN∞|Fn).

3. (a) We follow the general ideas of Exercise 1(a,b). First we show that a related
truncated rule, T (J), that does not allow stopping at any finite n > J is regular. T (J)
is defined by

T (J) = min{n ≥ 0 : Yn ≥ supn<j≤J E(Yj |Fn) and Yn ≥ E(Y∞|Fn)}.

That is, we show that for all n ≤ J ,

Yn < E(YT (J)|Fn) on {T (J) > n}. (2)

For n = J , this is easy since on {T (J) > J} , we have YJ < E(Y∞|FJ) = E(YT (J)|FJ ).
Assuming, as the induction hypothesis, that (2) is true for n = k + 1, we must show that
(2) holds for n = k . On {T (J) > k} , either there exists a t with k < t ≤ J such that Yk <
E(Yt|Fk) or Yk < E(Y∞|Fk), so it suffices to show that both (i) E(Y∞|Fk) ≤ E(YT (J)|Fk)
on {T (J) > k} , and (ii) for all t with k < t ≤ J , we have E(Yt|Fk) ≤ E(YT (J)|Fk), on
{T (J) > k} . Details are similar to Exercise 1(a).
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To show that T1 is regular, note that on {T1 > n} , either Yn < E(Y∞|Fn) or
Yn < E(Yt|Fn) for some n < t < ∞ . Therefore it suffices to show that both E(Y∞|Fn) ≤
E(YT1 |Fn) and for k < t < ∞ , E(Yt|Fn) ≤ E(YN1∞ |Fn) on {T1 > n} . But from the
above paragraph, we know for J > n , that on {T1 > n} , both E(Y∞|Fn) ≤ E(YT (J)|Fn)
and E(Yn+1|Fn) ≤ E(YT (J)|Fn). Therefore it is sufficient to show that on {T1 > n} ,

lim sup
J→∞

E(YT (J)|Fn) ≤ E(YT1 |Fn).

Details of this are similar to Exercise 1(b).

(b) Since both N1 and T1 are regular, we have from Lemma 2 that EYmax{N1,T1} ≥
max{EYN1,EYT1} . But if N1 says continue, then so does T1 . Hence, max{N1, T1} = T1

and EYT1 ≥ EYN1 . Similarly, EYT1 ≥ EYN∞ .

4. (a) Suppose for independent X1,X2, . . . that P(Xj = 2j) = P(Xj = −2j) = 1/2
for all j , and consider the stopping rule, Nr = min{j ≥ r : Xj > 0} . Then Nr has a
geometric distribution on {r, r + 1, . . .} and so has finite expectation. Moreover, YN1 ≡ 1
so E(YN1 = 1. Similarly, ESNr = 2r−1 . This shows that supN ESN = ∞ .

(b) The equations (16) still hold provided the interchange of summations is valid.
However, if Xj is replaced by |Xj | in (16), we see that we need

∑∞
j=1 P{N ≥ n}E(|Xj |) <

∞ . For this to be true for all stopping rules N with EN < ∞ , we need that the E(|Xj |)
are bounded, i.e. supj E(|Xj |) < ∞ . Under this condition, (33) holds.

5. We need a mass at m , the median of max{X1,X2} , so let’s try X1 = 1 and
make m = 1. This only requires P(X2 ≤ 1) > 1/2. Then m = 1, p = P(M2 > 1) =
P(X2 > 1) < 1/2, q = P(M2 < 1) = 0, and β = E(X2 − 1)+ . Then E(M2) = 1 + β ,
E(Xs(1)) = E(X2), and E(Xt(1)) = 1. We can make β as large as we like. So E(M2) =
(1 + β)E(Xt(1)) > 2E(Xt(1)) when β > 1. Similarly, we can make E(X2) as small as we
like. So E(M2) > 1 > 2E(X2) when E(X2) < 1/2.

6. By the Borel-Cantelli Lemma,
∑∞

i=1 P(Xi ≥ 0) = ∞ implies that P(Xi ≥ 0 i.o.) =
1. So M∗ = E(supn Xn) exists and is equal to E(supn |Xn|). Let N < ∞ be an arbitrary
stopping rule for the sequence X+

n , let N ′ = N if X+
N > 0, and let N ′ = min{j >

N : Xj ≥ 0} otherwise. Then N ′ < ∞ is a stopping rule for the sequence Xi and
E(XN ′) ≥ E(X+

N ). Thus supN ′<∞ E(XN ′) ≥ supN<∞ E(X+
N ) ≥ (1/2)M∗ .

7. Take X1 = v , P(X2 = 1) = v , P(X2 = 0) = 1 − v and X3 = X4 = · · · = 0.
Then the best the decision maker can do is stop at the first observation and get V ∗ = v .
But since P(max{X1,X2} = v) = 1 − v and P(max{X1,X2} = 1) = v , we have M∗ =
v(1 − v) + v = 2v − v2 .
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1. From Theorem 1, since the second moment of the distribution of X is finite, the
optimal rule exists and is the same for sampling with and without recall. It has the form
N∗ = min{n ≥ 1 : Xn ≥ V ∗} , where V ∗ satisfies the equation

c =
∫ ∞

V ∗
(x − V ∗)dF (x)

=
{

exp{−σV ∗}/σ for V ∗ > 0
1/σ − V ∗ for V ∗ ≤ 0.

So, V ∗ = − log(cσ)/σ for c < 1/σ , and V ∗ = 1/σ − c for c ≥ 1/σ .

2.(a) For A1, note that supn Yn ≤
∑∞

1 βn|Xn| , so E(supn Yn) ≤
∑∞

1 βnE(|Xn|) =
E(|X|)β/(1−β) < ∞ . For A2, note lim supn Yn ≤ limn βn

∑n
1 |Xj | = limn nβn[

∑n
1 |Xj |/n]

= 0, since
∑n

1 |Xj |/n → E(|X|) from the law of large numbers, and nβn → 0.

(b) Since the Xj are independent, vn = E(V ∗
n+1|Fn) are constants for n = 0, 1, . . . .

By time invariance, vn+1 = βvn . Moreover, using the optimality equation,

v0 = E(V ∗
1 ) = E(max(βX1, v1)) = βE(max(X1, v0).

Therefore the optimal rule is given by the principle of optimality, N∗ = min{n ≥ 0 : Xn ≥
v0} , where v0 satisfies the above equation.

(c) If X ∈ U(0, 1), then 0 < v0 < 1, and so v0 satisfies the equation

v = β

∫ v

0

v dx + β

∫ 1

v

xdx = β(1 + v2)/2.

This gives v0 = (1 ±
√

1 − β2)/β , and since v0 < 1, the minus sign must be used. The
optimal rule is therefore N = min{n ≥ 1 : Xn ≥ (1 −

√
1 − β2)/β} .

If X ∈ U(−1, 1), again 0 < v0 < 1, and v0 satisfies

v = β

∫ v

−1

v/2 dx + β

∫ 1

v

x/2 dx = β(1 + 2v + v2)/4.

The root between 0 and 1 is v0 = (2 − β − 2
√

1 − β)/β .

3. Yn ≤ βn max(X1, . . . ,Xn) ≤ max(βX1, . . . , β
nXn) ≤

∑∞
1 βj |Xj | . Thus, A1

follows as in problem 2, and A2 follows similarly. As in the case in the text of selling an
option with a cost, the principle of optimality will never lead to using the recall option.
The best rule will be identical to the no recall rule of problem 2, with the same results for
U(0, 1) and U(−1, 1).
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4.(a) To show A1, note that supn Yn = max{Z1, . . . , ZK−1, µ} = µ + max{Z1 −
µ, . . . , ZK−1 − µ, 0} ≤ µ +

∑K−1
1 (Zj − µ)+ ; so using Wald’s equation, E supn Yn ≤ µ +

E{
∑K−1

1 (Zj − µ)+} = µ + E(Z − µ)+E(K − 1) < ∞ . A2 is clear since Yn → µ a.s.

(b) Since the Z ’s are independent, we have on {K > n} , E(V ∗
n+1|Fn) = E(V ∗

n+1|K >
n) is a constant independent of Z1, . . . , Zn . The time invariance implies that this constant
is independent of n , and equal to V ∗ , say. From the optimality equation,

V ∗ = E(V ∗
n+1|K > n) = (1 − β)µ + βE(max(Zn+1, V

∗))
= (1 − β)µ + βE((Z − V ∗)+) + βV ∗.

This equation may be rewritten in the form

V ∗ = µ + (β/(1 − β))E((Z − V ∗)+),

which has a unique solution since the left side is increasing in V ∗ and the right side is
nonincreasing in V ∗ .

(c) If Z ∈ U(0, 1), then E((Z − V ∗)+) =
∫ 1

V ∗(z − V ∗)dz = (1− V ∗)2/2, so the above
equation becomes, with µ = 0,

V ∗ =
β

1 − β

(1 − V ∗)2

2
or V ∗2 − 2

β
V ∗ + 1 = 0.

This has a root in the interval (0,1) at the point

V ∗ =
1
β

(1 −
√

1− β2).

If Z ∈ U(−1, 1), similar calculations give V ∗ = (2 − β − 2
√

1 − β)/β .

5. (a) Since the distribution of X is elementary, the optimal rule is N∗ = min{n ≥
0 : Sn ≥ s0} , where s0 = φ(β)/(1−φ(β)), and φ(β) satisfies the equation G(φ(β)) = 1/β ,
G being the generating function of X , G(θ) = E(θ−X ) = pθ−1 + (1 − p)θ . This equation
becomes

(1 − p)φ(β)2 − φ(β)/β + p = 0.

The root in (0, 1) is φ(β) = (1 −
√

1 − 4β2(1 − p)p)/(2β(1 − p)). The optimal rule stops
as soon as Sn is at least φ(β)/(1 − φ(β)).

(b) If p ≥ 1/2, the probability that Sn eventually hits 1 is 1. This implies that
P(N∗ < ∞) = 1. Suppose p < 1/2. Let T = min{n ≥ 0 : Sn = 1} . Then P(T < ∞) =
pP(T < ∞|X1 = 1) + (1 − p)P(T < ∞|X1 = −1) = p + (1 − p)P(T < ∞)2 . Solving
for P(T < ∞) in (0, 1), we find that P(T < ∞) = p/(1 − p). Let k = �s0� , so that
N∗ = min{n ≥ 0 : Sn = k} . Note that N∗ is finite if and only if the event {T < ∞}
occurs k times. Hence, P(N < ∞) = P(T < ∞)k = (p/(1 − p))�s0� .
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(c) Note that s0 ≤ 1 if and only if φ ≤ 1/2. So the question becomes when is
φ ≤ 1/2 for all β < 1. Since φ is increasing in β , we take the limit, limβ→1 φ(β) =
(1 −

√
1 − 4p(1 − p))/2(1 − p) = p/(1 − p) for p < 1/2. For p ≤ 1/3, this is less than or

equal to 1, so the optimal rule stops at the first time that Sn = 1 no matter what β is.
When 1/3 < p < 1/2, we have φ > 1/2 for β sufficiently close to 1, so the optimal rule
may continue past Sn = 1.

6.(a) Let Ek be the event that Sn eventually hits k , for k = 1, 2, . . . . Then,
E1 ⊃ E2 ⊃ · · · , and P(M ≥ k) = P(Ek). Moreover, P(E1) = P(T < ∞), P(E2) =
P(E1)P(E2|E1) = P(T < ∞)2 , etc. Hence, P(M ≥ k) = P(Ek) = P(T < ∞)k , the
geometric distribution.

(b) Let φ(β) = E(βT ) =
∑∞

n=1 βnP(T = n), and note that as β → 1− , φ(β) →
P(T < ∞). If the distribution of X is elementary, we have G(φ(β)) = 1/β , as in §4.2.
Letting β → 1− , we find P(T < ∞) is the root in (0, 1) of the equation, G(P(T <
∞)) = 1. After solving this for P(T < ∞), we find EM as the mean of the geometric,
EM = P(T < ∞)/(1 − P(T < ∞)).

(c) If G(θ) = p/θ + (1 − p)θ , we solve G(θ) = 1 for the root in (0, 1), and find
P(T < ∞) = p/(1 − p).

7.(a) To show A1, write

Mn − nc = max(S1, . . . , Sn) − nc

= max(S1 − nc, . . . , Sn − nc)
≤ max(S1 − c, . . . , Sn − nc)
= max(S ′

1, . . . , S
′
n)

where ES ′
1 < 0 and E(S ′2

1 ) < ∞ . Hence by Theorem 2, E sup(Mn − nc) ≤ E supS ′
n < ∞ ,

and A1 is satisfied. Since Yn → −∞ a.s. by the strong law of large numbers, A2 is satisfied.

(b) The time invariance of the problem implies that Vn has the form, Vn = Mn−nc+
f(Mn −Sn) for some decreasing function f . The optimal rule is therefore N∗ = min{n ≥
0 : Yn ≥ Vn} = min{n ≥ 0 : f(Mn − Sn) ≤ 0} = min{n ≥ 0 : Mn − Sn ≥ γ} for some γ .

(c) We may take γ to be an integer. Let Nγ = min{n ≥ 0 : Mn − Sn = γ} , and let
V (k) denote the return using Nγ starting at k − γ , V (k) = E{YNγ |M0 = 0, S0 = k − γ} .
Then,

V (0) = 0
V (k) = (1/2)V (k − 1) + (1/2)V (k + 1) − c for 0 < k < γ

V (γ) = (1/2)V (γ − 1) + (1/2)(V (γ) + 1) − c.

Let x = V (1) and solve the central equations successively for V (2), . . . , V (γ) to find
V (k) = kx + k(k − 1)c . Now use the last equation to solve for x to find x = 1 − 2cγ ,
and thus V (γ) = γ − γ(γ + 1)c . Now choose γ to maximize V (γ); the last γ such that
V (γ)−V (γ − 1) = 1− 2γc ≥ 0 is the optimal one. This gives the optimal γ as the largest
integer less than or equal to 1/2c .
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8.(a) Yn is bounded above, so A1 holds. Yn → −∞ , so A2 holds.

(b) If Sn = s and it is optimal to continue, it is also optimal to continue at Sn = s′

where s < s′ < a . It is clearly optimal to stop when Sn ≥ a . Hence, the rule Nγ =
min{n ≥ 0 : Sn < γ or Sn ≥ a} is optimal for some γ .

(c) We may take both γ and a to be integers and we may take the optimal rule to
be Nγ = min{n ≥ 0 : Sn ≤ γ or Sn ≥ a} . For γ ≤ k ≤ a , let V (k) be the expected
return using Nγ starting at k . Then,

V (γ) = 0
V (k) = (1/2)V (k − 1) + (1/2)V (k + 1) − c for γ < k < a

V (a) = 1.

This is the classical gambler’s ruin problem, with P(hit a| start at k) = (k−γ)/(a−γ) and
expected duration = E(Nγ) = (k−γ)(a−k). So, V (k) = (k−γ)/(a−γ)−(k−γ)(a−k)c =
1−ck(a−k)+(a−k)[cγ−1/(a−γ)] . The optimal γ is the one that maximizes cγ−1/(a−γ),
namely a − {

√
1/4 + 1/c} , where {x} denotes the integer closest to x .

9.(a) Yn = max{Sn − nc,−Sn − nc} , so supYn = max{sup(Sn − nc), sup(−Sn −
nc)} ≤ sup(Sn − nc) + sup(−Sn − nc). Thus, by the theorem of Kiefer and Wolfowitz,
E(sup Yn) < ∞ and A1 is satisfied. Moreover, lim supYn = lim supn(|Sn/n| − c) = −∞ ,
since Sn/n → 0.

(b) Let V ∗
0 (x) denote the optimal return starting with S0 = x . Then

V ∗
n = ess supN≥nE(|SN | − Nc|Fn)

= ess supN≥nE(|Sn + S ′
N−n| − Nc|Fn) = V ∗

0 (Sn) − nc,

where S ′
N−n denotes the sum of the Xj from n + 1 to N . The optimal rule is N∗ =

min{n ≥ 0 : Yn ≥ V ∗
n } = min{n ≥ 0 : |Sn| ≥ V ∗

0 (Sn)} = min{n ≥ 0 : V ∗
0 (Sn) − |Sn| ≤ 0} .

Note that V ∗
0 (x)−|x| is symmetric about 0 and is nonincreasing on (0,∞) since for x ≥ 0,

V ∗
0 (x)−|x| = supN≥0 E(|x+SN |−x−Nc) and |x+SN |−x is nonincreasing in x . Hence

the optimal rule is of the form Nγ = min{n ≥ 0 : |Sn| ≥ γ} for some γ ≥ 0.

(c) E(YNγ ) = E(|SNγ |) − cE(Nγ). We may take γ to be an integer. When stopping
occurs, SNγ is ±γ , so E(|SNγ |) = γ . Moreover, this is the gambler’s ruin problem
symmetric about 0, so E(Nγ) = γ2 . Thus, E(YNγ ) = γ − cγ2 . This is maximized by
choosing γ to be the integer closest to 1/(2c).

10.(a) Let M = supn≥T (Sn − ST ). Then EM < ∞ from Theorem 2. Then

E{sup
n

Sn|T = t} = E{max(S0, S1, . . . , St−1, St−1 + M)|T = t}

≤ E{max(S0, S1, . . . , St−1)|T = t} + EM

≤ tEX+ + EM.
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Then A1 follows from E(supn Yn) ≤ E(supn Sn) = E(E(supn Sn|T )) ≤ ET E0X
+ + EM <

∞ , where E0 represents the expectation under f0(x). To show A2, it is sufficient to
show that Sn → −∞ a.s. This follows since P(Sn → −∞|T = t) = 1 for all t so that
P(Sn → −∞) = E{P(Sn → −∞|T )} = 1.

(b)By direct calculation,

P((T ≤ n|X1, . . . ,Xn) =
∑n

t=1 πt−1
∏n

t λ(Xi)∑n
t=1 πt−1

∏n
t λ(Xi) +

∑∞
t=n+1 πt−1

,

from which we may compute

Qn+1 = P(T ≤ n + 1|X1, . . . ,Xn+1) =
[Qn + (1 − Qn)(1 − π)]λ(Xn+1)

[Qn + (1 −Qn)(1 − π)]λ(Xn+1) + (1 − Qn)π
.

(c) Let V ∗(q) denote the optimal return for the problem modified by allowing an
initial Q0 = P(T = 0) = q , so that P(T = t) = (1 − q)(1 − π)πt−1 for T ≥ 1. The
rule given by the principle of optimality is N∗ = min{n ≥ 0 : Yn ≥ V ∗

n } , where V ∗
n =

ess supN≥nE(YN |Fn) = Yn + V ∗(Qn). Hence, N∗ = min{n ≥ 0 : V ∗(Qn) ≤ 0} . To
show that N∗ = min{n ≥ 0 : Qn ≥ γ} for some γ , it is sufficient to show that V ∗(q) is
nonincreasing in q . Since V ∗(q) = ess supNE(SN − aQN − c), it is sufficient to show that
ESN is nonincreasing in q and EQN is nondecreasing in q for any stopping rule N . The
latter is clear since each Qn is increasing in q by induction using the answer to (b). To
see that ESN is nonincreasing, we make the computation

ESN =
∞∑

t=0

P(T = t)E(SN |T = t)

= qE(SN |T = 0) + (1 − q)
∞∑

t=1

(1 − π)πt−1E(SN |T = t).

The coefficient of q in this expectation is

∞∑
t=1

(1 − π)πt−1[E(SN |T = 0) − E(SN |T = t)].

From the generalization of Wald’s equation found in Exercise 4 of Chapter 3, we find that
E(SN |T = 0) = µ1E(N) and, for t ≥ 1, E(SN |T = t) = E

∑N
i=1 ξi where ξi is µ0 for

i < t and µ1 for i ≥ t . Therefore, E(SN |T = 0) − E(SN |T = t) =
∑N

i=1(µ1 − ξi) ≤ 0,
completing the proof.

11. (a) The Optimality Equation is Vxy = E(max{Wn, Vxy} − c . This becomes

Vxy = E(max{Xn + Yn,Xn + Vy, Yn + Vx, Vxy}) − c.
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The optimal strategy given by the Principle of Optimality is to continue sampling until
Wn ≥ Vxy , and then to stop and sell both objects if Xn + Yn = Wn , the x-object alone if
Xn + Vy = Wn , and the y -object alone if Yn + Vx = Wn .

(b) The Optimality Equation becomes

Vxy = E(max{Xn + Yn,Xn + .5, Yn + .5, Vxy}) − .125

Here 1 < Vxy < 1.5. In the unit square, the max is Vxy on the set {y < Vxy − .5, x <
Vxy − .5, x+y < Vxy} , the max is x+ .5 on the set {x > Vxy, y < .5} , the max is y + .5 on
the set {y > Vxy− .5, x < .5} , and the max is x+y on the set {x > .5, y > .5, x+y > Vxy} .

The expectation on the first set is Vxy[(Vxy − .5)2 − .5(Vxy − 1)2] = Vxy(V 2
xy − .5)/2.

The expectation on the second set is .5
∫ 1

Vxy−.5

∫ .5

0 (x + .5)dy dx = .25(2.25 − V 2
xy),

and the same on the third set.

The expectation on the fourth set is the integral of x+y over the set {x > .5, y > .5} ,
minus the integral of x + y over the triangle {x > .5, y > .5, x + y < Vxy − .5} , i.e.

∫ 1

.5

∫ 1

.5

(x + y)dy dx = 3/8

minus ∫ Vxy−.5

.5

∫ Vxy−x

.5

(x + y)dy dx = (Vxy − 1)2(Vxy + .5)/3

The Optimality Equation becomes

Vxy + .125 =
1
2
Vxy(V 2

xy − .5) +
1
2
(2.25 − V 2

xy) +
3
8
− 1

3
(Vxy − 1)2(Vxy + .5)

=
1
6
V 3

xy −
1
4
Vxy +

4
3

This reduces to 4V 3
xy −30Vxy +29 = 0 whose solution between 1 and 1.5 is Vxy = 1.19313.

(c) The Optimality Equation becomes Vxy = E(max{Xn + Yn, Vxy}) − .5. Here
0 < Vxy < 1. The integral of Vxy over the region {0 < x, 0 < y, x + y < Vxy) is V 3

xy/2.
The integral of x + y over the unit square minus the region {0 < x, 0 < y, x + y < Vxy) is
1 − (1/3)V 3

xy . The Optimality Equation is therefore Vxy = V 3
xy/2 + 1 − V 3

xy/3 − .5. This
gives the cubic equation, V 3

xy − 6Vxy + 3 = 0, whose solution is Vxy = .52398. If we sell
the objects separately, we accept the first offers that come in. However if we sell them
together, we accept the first vector of offers such that Xn + Yn > .52398.
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1. (a) The joint density of X1 and θ is

f(x, θ) = g(θ)f(x|θ)

=
1
θ
e−x/θ λα

Γ(α)
e−λ/θ 1

θα+1

=
λα

Γ(α)
e−(λ+x)/θ 1

θα+2

The marginal density of X1 is

f(x) =
∫ ∞

0

f(x, θ)dθ =
αλα

(λ + x)α+1
for x > 0,

the inverse power, or Pareto, distribution. The posterior density of θ given X1 is

g(θ|x) = f(x, θ)/f(x) =
(λ + x)α+1

Γ(α + 1)
e−(λ+x)/θ 1

θα+2
,

the inverse gamma distribution, G−1(α + 1, λ + x). Thus, as each observation arrives, the
parameters are updated by adding one to the alpha parameter and adding the x-value to
the lambda parameter, giving G−1(α + n, λ + Sn) as the posterior distribution of θ given
X1, . . . ,Xn .

(b) If θ ∈ G−1(α, λ), then

Eθ =
λα

Γ(α)

∫
e−λ/θθ−α dθ =

λα

Γ(α)
Γ(α − 1)

λα−1
=

λ

α − 1
.

Similarly, Eθ2 = λ2/((α − 1)(α − 2)), and so Var θ = λ2/((α − 1)2(α − 2)).

(c)If you stop at stage 0, you lose Y0 = Var (θ). If you take one observation and stop,
you lose

c + E
(λ + X1)2

α2(α − 1)
= c +

λ2 + 2λEX + EX2

α2(α − 1)
.

Now, EX = E{E(X|θ)} = Eθ = λ/(α − 1), and EX2 = E{E(X2|θ)} = E{2θ2} =
2λ2/((α − 1)(α − 2)), so the above quantity reduces to

c +
λ2

α(α − 1)(α − 2)
.

Therefore, the 1-sla calls for stopping at stage 0 if Y0 is no greater than this, or equivalently,
if

λ2

α(α − 1)2(α − 2)
≤ c.



Solutions 5.2

(d) At stage 1, the conditional expected loss given X1 of the optimal rule truncated
at stage 2 is

c + min{ (λ + X1)2

α2(α − 1)
, c +

(λ + X1)2

(α + 1)α(α − 1)
}.

The 2-sla calls for stopping at stage 0 if Y0 is no greater than the expectation of this.
As in the problem in the text, we can simplify this by subtracting the expectation of the
first term of the minimum from both sides of the inequality to find that the 2-sla calls for
stopping at stage 0 if

(∗) λ2

α(α − 1)2(α − 2)
≤ c − E(

(λ + X1)2

(α + 1)α2(α − 1)
− c)+.

We now evaluate this expectation using the marginal distribution of X1 as found in (a).
Case 1, λ2 ≥ c(α + 1)α2(α − 1): Then the quantity inside the expectation sign is positive
whatever be X1 > 0, and since from (c), E(λ + X1)2 = λ2α/(α − 2), (*) reduces to

λ2

α(α − 1)2(α − 2)
≤ 2c − λ2

(α + 1)α(α − 1)(α − 2)

In case 1, this is never satisfied, so we always take two observations whatever be X1 .
Case 2, λ2 < c(α + 1)α2(α − 1): Let A = c(α + 1)α2(α − 1). Then

E((λ + X1)2 − A)+ =
∫ ∞

√
A−λ

((λ + x)2 − A)(
λ

λ + x
)α+1 α

λ
dx

=
∫ ∞

√
A−λ

(
λ

λ + x
)α−1αλdx − A

∫ ∞

√
A−λ

(
λ

λ + x
)α+1 α

λ
dx

=
αλ2

α − 2
(

λ√
A

)α−2 − A(
λ√
A

)α

=
2A

α − 2
(

λ√
A

)α.

Equation (*) now reduces to

λ2

α(α − 1)2(α − 2)
≤ c − E((λ + X1)2 − A)+

(α + 1)α2(α − 1)

= c − (2c/(α − 2))(λ2/(c(α + 1)α2(α − 1)))α/2.

2. (a) The posterior distribution of θ given X1, . . . ,Xn is easily seen to be the gamma
distribution, G(n + 1, 1/(Sn + λ)). Hence, E(Xn+1|X1, . . . ,Xn) = E(1/θ|X1, . . . ,Xn) =
(Sn+λ)/n . If we stop at stage n , we recieve βnSn ; if we continue one stage more and stop,
we expect to receive E(βn+1Sn+1|Sn) = βn+1(Sn+E(Xn+1|Sn)) = βn+1(Sn+(Sn+λ)/n).
The 1-sla stops the first time the former is greater than the latter, namely

N1 = min{n ≥ 1 : βnSn > βn+1(Sn + (Sn + λ)/n)}
= min{n ≥ 1 : (1 − β)Sn/(Sn + λ) > β/n}.
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Since Sn/(Sn + λ) is increasing a.s. and β/n is decreasing, the problem is monotone.
(b) Note that E(Xj) = E(1/θ) = ∞ but that given X1 = x1 , the posterior distribution
of θ is G(2, 1/(λ + x1)), so that for j > 1, E(Xj |X1 = x1) = E(1/θ|X1 = x1) = λ + x1 .
Now, βnSn ≤

∑n
1 βjXj ≤

∑k
1 βjXj . Hence, E(supn |βnXn||x1) ≤ E(

∑k
1 βjXj |X1) =∑k

1 βjE(Xj |X1) = (λ + X1)β/(1 − β), so that the conditions of Corollary 2 are satisfied
in this conditional problem.

3. (a)

N1 = min{n ≥ 0 : Yn ≥ E(Yn+1|Fn}

= min{n ≥ 0 : (T ≤ n) or (T > n and u(Sn) ≥
∫ ∞

0

u(Sn + x)r(Sn + x)dF (x))}

so the 1-sla stops as soon as

u(Sn)
∫ ∞

0

(1 − r(Sn + x)dF (x) ≥
∫ ∞

0

(u(Sn + x) − u(Sn))r(Sn + x)dF (x)

The problem is monotone since the left side of this inequality is a.s. nondecreasing (Sn is
a.s. nondecreasing since Xj ≥ 0 a.s., u(Sn) is nondecreasing a.s. since u is nondecreasing,
and the integral of 1− r(Sn +x) over x is nondecreasing since r is nonincreasing) and the
right side is a.s. nonincreasing (u(Sn +x)−u(Sn) is nonincreasing a.s. since u is concave).

Since r is nonincreasing and not identically one, there is some z0 and δ > 0 such
that r(z) ≤ 1 − δ for z > z0 . Since Xj ≥ 0 and S > 0, we have Sn → ∞ a.s. Hence,
P(T = n + 1|T > n) = E(r(Sn)) will be eventually be less than 1 − δ/2, say, so that T is
finite with probability one, and in fact has all moments finite. Hence, A3 is satisfied. To
check A1, first note that the concavity of u imply it is bounded above by a linear function,
u(z) ≤ a + bz for some a and b > 0. Then, supn Yn ≤ u(ST ) ≤ a + bST , so that

E(sup
n

Yn) ≤ a + bE(ST ) = a + bµE(T ) < ∞.

Now, the conditions of Corollary 2, with W ≡ 0, yield the optimality of the 1-sla.
(b)

N1 = min{n ≥ 0 : (T ≤ n) or (T > n and u(n) ≥ u(n + 1)
∫ ∞

0

r(Sn + x)dF (x))}.

The problem monotone because u(n)/u(n + 1) is nondecreasing, r is nonincreasing, and
Sn is nondecreasing a.s. A3 is satisfied by the argument given in part (a), and A1 is
satisfied since E(supn Yn) ≤ E(u(T )), which is finite by assumption. Hence by Corollary
2, the 1-sla is optimal.

N1 = min{n ≥ 0 : Yn ≥ E(Mn+1 − (n + 1)c|Fn)}4. (a)
= min{n ≥ 0 : E(Mn+1 − Mn|Fn) ≤ c}.
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and
E(Mn+1 − Mn|Fn) =

∫ ∞

Mn

(x −Mn)dE(F (x)|Fn)

=
∫ ∞

Mn

(x −Mn)d(pnF0(x) + (1 − pn)dF ∗
n(x))

= pn

∫ ∞

Mn

(x − Mn)dF0(x).

This is decreasing a.s. in n since pn is decreasing and Mn is nonincreasing a.s. Since
X1,X2, . . . are identically distributed with finite second moment, Theorem 4.1 implies
that the conditions of Corollary 2 are satisfied and that the 1-sla is optimal.

N1 = min{n ≥ 0 : Yn ≥ E(βn+1Mn+1|Fn)}(b)
= min{n ≥ 0 : (1 − β)Mn ≤ βE(Mn+1 − Mn|Fn)}.

As long as Mn < 0, N1 never stops. So we may rewrite N1 as

N1 = min{n ≥ 0 : Mn > 0 and E((Mn+1/Mn − 1)|Fn) ≤ (1 − β)/β}.

Since

E((Mn+1/Mn − 1)|xn) =
∫ i

nftyMn (x/Mn − 1)dE(F (x)|Fn)

= pn

∫ ∞

Mn

(x/Mn − 1)dF0(x),

and since this is a decreasing function of Mn , the problem is monotone. To see that
the 1-sla is optimal, we use Corollary 2 with W ≡ 0, and note that E(sup |Yn|) ≤
E(sup βn

∑n
1 |Xj |) ≤ E(

∑∞
1 βj|Xj | = (β/(1 − β))E(|X|) < ∞ , and also that limYn =

lim(nβn)(Mn/n) ≤ lim(nβn)(
∑n

1 |Xj |/n) = 0 a.s.

5. If you continue at stage n ≥ r , you will improve the sum of the expected worths
if and only if Xn+1 ≥ X

(n)
r ; we then drop X

(n)
r and accept Xn+1 so the gain would be

(Xn+1 − X
(n)
r )+ . Hence,

E(Yn+1 − Yn|Fn) = E((Xn+1 − X(n)
r )+|Fn) − c

= g(X(n)
r ) − c,

where g(x) =
∫ ∞

x (z − x)dF (x). Since

N1 = min{n ≥ r : Yn ≥ E(Yn+1|xn)} = min{n ≥ r : g(X(n)
r ) ≥ c},

the problem is monotone since g(x) is nonincreasing. An argument similar to that in
Example 2 shows that the Tn are a.s. nonincreasing and that Tn → 0, so that ETn → 0
and the 1-sla is optimal.

N1 = min{n ≥ 0 : g(Xn) ≤ E(g(Xn+1)|xn)}6. (a)

= min{n ≥ 0 : g(Xn) ≤
∫

g(Xn + z)dF (z)}.
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Hence, the problem is monotone if g(x) −
∫

g(x + z)dF (z) is monotone nonincreasing in
x , i.e. we must show that if x ≤ x′ then g(x′) − g(x) ≤

∫
[g(x′ + z) − g(x + z)] dF (z).

This would follow if we show that if x ≤ x′ then g(x′) − g(x) ≤ g(x′ + z) − g(x + z) for
all z > 0, since Z is assumed to be a positive random variable.

Lemma. If g(x) is convex, then for all y > 0 and z > 0 , g(x + y) − g(x) ≤ g(x + y +
z) − g(x + z) .

Proof. Conxevity implies both g(x + y) ≤ (z/(y + z))g(x) + (y/(y + z))g(x + y + z) and
g(x + z) ≤ (y/(y + z))g(x) + (z/(y + z))g(x + y + z). Summing gives the inequality of the
lemma.

(b) A1 is satisfied since this is a minimum cost problem with nonnegative cost. A3 is satis-
fied as noted in the statement of the problem. Tn = supj≥n(−Yj +Yn) = supj≥n(g(Xn)−
g(Xj)) ≤ g(0), so the Tn are u.i.

7. (a) We must find

E(Yn+1|Sn = x) = P(win if stop at next available place|start at x < t).

=
∫ ∞

0

P(win if stop at x + z)λ exp{−λz} dz

=
∫ t−x

0

exp{−2λ(t − x − z)}λ exp{−λz} dz +
∫ 2(t−x)

t−x

λ exp{−λz} dz

= 2 exp{−λ(t − x)}(1 − exp{−λ(t − x)}.

The 1-sla stops if Sn ≥ t , or (when Sn < t) if exp{−2λ(t − Sn)} ≥ E(Yn+1|Sn), so that

N1 = min{n ≥ 0 : Sn ≥ t or [Sn < t and exp{−λ(t − Sn)} ≥ 2/3]}
= min{n ≥ 0 : Sn ≥ t − (1/λ) log(3/2)}.

It may be noted that the 1-sla stops when the probability of win is at least 4/9.
(b) Since the Sn are nondecreasing a.s., the problem is monotone. Since the payoff is
bounded, all the conditions of Theorem 2 are satisfied and the 1-sla is optimal.

8. (a) We are given M ∈ P(λ), and for n = 1, 2, . . . , (Xn+1|M,X1, . . . ,Xn) ∈
B(Mn, pn+1). An analysis similar to that in the text shows that Mn|xn ∈ P(λ(1 −
p1) · · · (1 − pn)). We simplify the problem by replacing Yn by its expectation given Fn :

Yn = nc1 + c2E(Mn|Fn)
= nc1 + c2λ(1 − p1) · · · (1 − pn).

Since the payoffs are constants, the optimal rule is a fixed sample size rule, namely, stop
at that n for which Yn is smallest. The 1-sla is

N1 = min{n ≥ 0 : Yn ≤ Yn+1}

= min{n ≥ 0 : λpn+1

n∏
1

(1 − pj) ≤ c1/c2}.
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If pn+1

∏n
1 (1 − pj) is nonincreasing in j , then the problem is monotone and the 1-sla is

optimal. This condition is equivalent to the condition that pn+1/(1 + pn+1) ≤ pn for all
n . In particular, if the pn are nonincreasing, the 1-sla is optimal.
(b) We are given M ∈ B(W,π), and for n = 1, 2, . . . , Xn+1|M,X1, . . . ,Xn ∈ B(Mn, pn+1).
A somewhat lengthy prior to posterior analysis shows that Mn|Fn ∈ B(Wn, πn), where
Wn = W − X1 − · · · − Xn , and πn = π

∏n
1 (1 − pj)/[(1 − π) + π

∏n
1 (1 − pj)] . This time

the 1-sla becomes
N1 = min{n ≥ 0 : E(Xn+1|Fn) ≤ c1/c2}

= min{n ≥ 0 : pn+1E(Mn|Fn) ≤ c1/c2}
= min{n ≥ 0 : pn+1Wnπn ≤ c1/c2}

Since the Wn are a.s. nonincreasing, the problem will be monotone if the pn+1πn are
nonincreasing. The πn are automatically nonincreasing, so the 1-sla will be optimal if the
pn are nonincreasing.

9. Let Z be 1 if the object is in the box and 0 otherwise, so that P(Z = 1) = π .
Let X1,X2, . . . be the indicators of success on the searches, so that given Z,X1,X2, . . .
are i.i.d. Bernoulli, with P(Xj = 1|Z = 0) = 0, and P(Xj = 1|Z = 1) = p . Then,
Yn = Mn − nc , where Mn = max{X1, . . . ,Xn} .
(a) The 1-sla is

N1 = min{n ≥ 0 : Mn − nc ≥ E(Mn+1|Fn) − (n + 1)c}
= min{n ≥ 0 : Mn = 1 or P(Xn+1 = 1|Mn = 0) ≤ c}.

The problem is monotone if P(Xn+1 = 1|Mn = 0) is nonincreasing a.s. in n . This
probability is

P(Xn+1 = 1|Mn = 0) =
P(Mn = 0,Xn+1 = 1)

P (Mn = 0)
=

π(1 − p)np

1 − π + π(1 − p)n

This is decreasing in n . A1 is satisfied, since the Yn are bounded above, and A3 is satisfied
if Y∞ = −∞ . Since the loss is of the form of Corollary 2, the 1-sla is optimal.
(b) Same N1 as above, but this time

P (Xn+1 = 1|Mn = 0) =
P (Mn = 0,Xn+1 = 1)

P (Mn = 0)
=

E(π(1 − p)np)
E(1 − π + π(1 − p)n)

This is nonincreasing in n if for all n ≥ 0,

E(π(1 − p)np)E(1 − π + π(1 − p)n+1) ≥ E(π(1 − p)n+1p)E(1 − π + π(1 − p)n).

Some algebra reduces this to

E(π(1 − p)np2)(E(1 − π) + E(π(1 − p)n) ≥ (E(π(1 − p)np))2.

The left side is ≥ E(π(1 − p)np2)E(π(1 − p)n), which is ≥ the right side by Schwartz’
inequality.
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(c) Let Mj,n be 1 if object j is found by search n , and 0 otherwise. Then, Yn =∑k
j=1 xjMj,n − nc . Hence,

N1 = min{n ≥ 0 : c ≥
k∑

j=1

(1 − Mj,n)xjπj,n},

where πj,n = πj(1−pj)npj/[1−πj +πj(1−pj)n] . As in (a), each of the Wj,n is decreasing
in n , and since each 1−Mj,n is nonincreasing in n , the problem is monotone. The same
argument as in (a) shows the 1-sla is optimal.

10. (a) Since E(h(Kn+1)|Fn) = Qnh(Kn + 1) + (1−Qn)h(Kn), where Qn is the sum
of the pj over the unobserved species after the first n observations, we have

N1 = min{n ≥ 0 : h(Kn) − nc ≥ E(h(Kn+1) − (n + 1)c|Fn)}
= min{n ≥ 0 : c ≥ Qn(h(Kn + 1) − h(Kn))}.

The problem is monotone since Qn is nonincreasing a.s., h(k + 1)− h(k) is nonincreasing
by assumption, and Kn is nondecreasing a.s. From Corollary 2, with Wn = nc and
Zn = h(Kn) ≤ h(s), we see that the 1-sla is optimal.
(b) For random pj , we find that E(h(Kn+1)|Fn) = E(Qn|Fn)(h(Kn +1)−h(Kn))+h(Kn),
so the 1-sla is

N1 = min{n ≥ 0 : c ≥ E(Qn|xn)(h(Kn + 1) − h(Kn))}.

In order that the problem be monotone, we need E(Qn|Fn) to be nonincreasing a.s. If the
prior of (p1, . . . , ps) is D(α1, . . . , αs), then the posterior given Fn is D(α1 +X1,n, . . . , αs+
Xs,n), where Xj,n represents the number of observations of species j by time n . Hence,
E(Qn|Fn) = Mn/(M + n), where M is the sum of the αj over all j , and Mn is the
sum of the αj over the unobserved species after the first n observations. Since this is
nonincreasing a.s., the 1-sla is monotone and the same argument as in (a) shows it is
optimal.
(c) Let s = 3, take h(k) = k for all k , and take the prior distribution of (p1, p2, p3) to be

P{(p1, p2, p3) = (1, 0, 0)} = 1 − ε

P{(p1, p2, p3) = (1/3, 1/3, 1/3)} = ε,

where ε is a small positive number. For c < 1, the 1-sla calls for taking the first observa-
tion. Suppose it is from species 1; then, E(Q1|F1) = E(p2 + p3|F1) = ε/(3 − 2ε), so the
1-sla calls for stopping if c ≥ ε/(3 − 2ε). Yet, if one continues and the second observation
turn out to be species 2, then E(Q2|F2) = 1/3. So, for ε chosen so that ε/(3 − 2ε) < 1/3
(say, ε = 1/2), and c = ε/(3 − 2ε), the 1-sla calls for stopping (actually, the 1-sla is
indifferent), but the 2-sla calls for continuing and does strictly better.



Solutions 5.8

11. (a) For n = 0, 1, . . . , T ,

Yn = E(Wn|Fn) =

⎡
⎣ n∑

j=1

(n − j)Xj +
T∑

j=n+1

(T − j)λj

⎤
⎦ δ.

E(Yn+1|Fn) =

⎡
⎣ n∑

j=1

(n + 1 − j)Xj +
T∑

j=n+2

(T − j)λj

⎤
⎦ δ.

so that the 1-sla is

N1 = min{n ≥ 0 : Yn ≤ E(Yn+1|Fn)}
= min{n ≥ 0 : (T − (n + 1))λn+1 ≤ Sn},

where Sn =
∑n

j=1 Xj . The right side is nondecreasing since the Xn are nonnegative. So
if (T −n)λn is nonincreasing, the problem is monotone, and since the horizon is finite, the
1-sla is optimal.
(b) If the prior distribution of λ is G(α, 1/β), the posterior distribution of λ given Fn is
G(α + Sn, 1/(β + n)). Since the mean of G(α, 1/β) is α/β , we have

Yn = E(Wn|Fn) =
n∑

j=1

(n − j)Xj +
α + Sn

β + n

T∑
j=n+1

(T − j)

E(Yn+1|Fn) =
n∑

j=1

(n + 1− j)Xj +
α + E(Sn+1|Fn)

β + n + 1

T∑
j=n+2

(T − j)

=
n∑

j=1

(n + 1− j)Xj +
α + Sn

β + n

T∑
j=n+2

(T − j)

so that the 1-sla becomes

N1 = min{n ≥ 0 : (T − (n + 1))(α + Sn) ≤ (β + n)Sn}
= min{n ≥ 0 : α(T − (n + 1)) ≤ (β + 2n − T + 1)Sn}.

To see that the problem is monotone, suppose that the inequality in N1 is satisfied at n .
Then β + 2n − T + 1 must be positive, and will stay positive for larger n ; thus, the right
side is nondecreasing a.s. and the left side is decreasing, so the problem is monotone and
the 1-sla is optimal.

12. (a)

N1 = min{n ≥ 0 : Yn ≤ E(Yn+1|Fn)}
= min{n ≥ 0 : cP (K > n|Fn) + E((n − K)+|Fn) ≤

cP (K > n + 1|Fn) + E((n + 1 − K)+|Fn)}
= min{n ≥ 0 : cP (K = n + 1|Fn) ≤ E((n + 1 − K)+ − (n − K)+|Fn)}
= min{n ≥ 0 : Un ≥ c},
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where Un = P (K ≤ n|Fn)/P (K = n + 1|Fn).
(b) We have U0 = 0, U1 = P(K = 1|X1)/P(K = 2|X1) = π1f1(X1)/(π2f0(X1)), and in
general,

Un =
P(K ≤ n,X1, . . . ,Xn)
P(K = n,X1, . . . ,Xn)

· P(K = n,X1, . . . ,Xn)
P(K = n + 1,X1, . . . ,Xn)

= [1 +
P(K ≤ n − 1,X1, . . . ,Xn−1)f1(Xn)

P(K = n,X1, . . . ,Xn−1)f1(Xn)
] · πnf1(Xn)

πn+1f0(Xn)
= [1 + Un−1] · (πn/πn+1)λ(Xn),

where λ(x) = f1(x)/f0(x) is the likelihood ratio.
(c) We have πn = (1 − π)πn−1 for n = 1, 2, . . . , f0(x) = exp{−x}I(x > 0), f1(x) =
(1/µ) exp{−x/µ}I(x > 0), so λ(x) = (1/µ) exp{x(µ − 1)/µ)} . Thus, U0 = 0, and

Un = [1 + Un−1](1/π)(1/µ) exp{Xn(µ − 1)/µ}.

Since µ > 1 and Xn > 0, we have exp{Xn(µ − 1)/µ} > 1. The problem is monotone if
for all n , Un−1 > c implies Un > c . If Un−1 > c , then Un > (1 + c)/(πµ), which is > c
if and only if 1 + c > cπµ , as was to be shown.

13. (a) Let A = {(s, z) : 0 ≤ s ≤ t} . Then independent of the number, catch
times and sizes of the fish caught in the interval (0, t] , the number of fish not caught
by time t is N(Ac), which has a Poisson distribution with parameter, λP(Ac), where
P(Ac) = P(T > t) = S(t), and given N(Ac), their catch times and sizes are i.i.d. P/P(Ac),
namely, P(T ≤ s, Z ≤ z|T > t) = (F (s, z) − F (t, z))/S(t).
(b) EYt = E(

∑
j ZjI(Tj ≤ t)− tc) where the sum is over those j for which Tj ≤ t . Hence,

from Wald’s equation, EYt = EN(A)E(Z|T ≤ t) − tc = λ
∫ t

0

∫
zf(s, z)dz ds − tc . The

optimal rule, if any, is given by the value of t , if any, that maximizes this. The derivative
of EYt with respect to t is λ

∫
zf(t, z)dz − c = λE(Z|T = t)f(t) − c , where f(t) is the

density of T . If this is a decreasing function of t from a positive value to a negative value,
as it is for parts (c) and (d), the optimal rule is given by the value of t that makes this
derivative zero, and the rule is the infinitesimal look-ahead rule.
(c) Since E(Z|T = t) = αγ(t + 1), the derivative of EYt with respect to t is λαγ(t +
1)θ/(t + 1)θ+1 − c , from which we conclude that it is optimal to stop fishing at the fixed
time,

t = ((
λαγθ

c
)1/θ − 1)+.

(d) The conditional distribution of Z given T = t is easily found to be the gamma,
G(α + 1, β/(1 + βγt)) so that E(Z|T = t) = (α + 1)β/(1 + βγt). The marginal density of
T is found to be inverse power, f(t) = αβγ/(1 + βγt)α+1 for t > 0. The optimal rule is
the fixed time

t =
1

βγ
((

λ(α + 1)β2αγ

c
)1/(α+2) − 1)+.

14. (a) If Sn > L , we might as well stop. The 1-sla as defined says we should stop.
On {N > n} = {Sn ≤ L} , we have E(Yn+1|Fn) = Yn+E(rn+1(Sn+1)|Fn)−bn+1P(Sn+1 >



Solutions 5.10

L|Fn). The 1-sla calls for stopping iat n if this is less or equal to Yn . Hence,

N1 = min{n ≥ 0|Sn > L or E(rn+1(Sn+1)|Fn) ≤ bn+1P(Sn+1 > L|Fn)}.

(b) The problem is monotone if the difference E(rn+1(Sn+1)|Fn) − bn+1P(Sn+1 > L|Fn)
is nonincreasing almost surely. This will be satisfied if the following two conditions are
satisfied:

(1) E(rn+1(Sn+1)|Fn) is nonincreasing a.s., and
(2) bn+1P(Xn+1 > L − Sn|Fn) is nondecreasing a.s.

The expectation in condition (1) may be written E(rn+1(z + X)) where z is a constant
representing Sn and X has the same distribution as Xn+1 . Thus, (1) would be satisfied,
for example, if rn(x) is nonincreasing in n for all x . The probability in (2) may be written
as 1 − F (L − Sn). Since the Xn are nonnegative, the Sn are nondecreasing a.s., and so
the probability in (2) is automatically nondecreasing a.s. Thus (2) would be satisfied, for
example, if the bn were nondecreasing.
(c) If L is random with distribution function G on (0,∞), the only change in N1 is that the
probability in P (Sn+1 > L|Fn) must take this randomness into account. In particular, Fn

contains the information whether Sn > L or not. Thus the only change in the conditions for
monotonicity is that (2) becomes (2′ ): bn+1P(Xn+1 > L−Sn|Sn, L > Sn) is nondecreasing
a.s. The probability may be written as

∫ ∞
Sn

(1−F (L−Sn))dG(L)/(1−G(Sn)). For this to
be nondecreasing in n a.s., it is sufficient that the conditional distribution of L− s given
L > s be stochastically increasing in s .

15. If you stop at stage n , your expected payoff is given by Equation (17) with Yn = θ
if Tn = ∞ , and Y∞ = θ . If you continue to the next success and stop, your expected
payoff is [

∏∞
i=n+1(1 − pi)]

∑∞
i=n+1

pi

1−pi
+ θ

∏∞
i=n+1(1 − pi). Therefore the 1-sla is

N1 = min{n ≥ 0 : Xn = 1 and
∞∑

i=n+1

pi

1 − pi
≤ 1 − θ}.

This rule is clearly monotone. It is optimal by the same argument that shows the rule of
Equation (19) is optimal.

16. Let Xi be the indicator of the event that the ith group has a relatively best
applicant, i = 1, . . . ,m . The Xi are independent and we want to stop on the last success.
The probability that Xi is 1 is the probability that among the first k1+ · · ·+ki applicants,
the best is found in the ith group, namely, P (Xi = 1) = ki/(k1 + · · · + ki . The odds of
success are ki/(k1 + · · · + ki−1 . Therefore, the sum-the-odds rule

N1 = min{t ≥ 1 : Xt = 1 and
n∑

i=t+1

ki

k1 + · · · + ki−1
≤ 1}.

is optimal.
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17. (a) First note that the distribution of the minimum of two exponentials, E(θ1)
and E(θ2), is exponential, E(θ1 + θ2). By induction, the minimum of n exponentials,
E(θ1), . . . , E(θn), is exponential, E(

∑n
1 θi). Next note that P (Z2 < Z1) = θ2/(θ1 + θ2).

Then, P (Xn = 1) = P (Zn < min{Z1, . . . , Zn−1} = θn/(θ1 + · · · + θn). Note that the
condition

∑∞
1 θi < ∞ is equivalent to the condition that

∑∞
1 P (Xi = 1) < ∞ .

(b) To show independence, it is sufficient to show P (X1 = 1, . . . ,Xn = 1) =∏n
1 P (Xi = 1) because all the variables are Bernoulli. But we have

P (X1 = 1, . . . ,Xn = 1) = P (Zn < Zn−1 < · · · < Z1)

=
∫ ∞

0

∫ ∞

zn

· · ·
∫ ∞

z2

(
n∏
1

θi) exp{−
n∑
1

θizi} dz1 · · · dzn

= (
∞∏
1

θi)
1
θ1

∫ ∞

0

· · ·
∫ ∞

z3

exp{−
n∑
3

θizi − (θ2 + θ1)z2} dz2 · · · dzn

=
θ1θ2 · · · θn

θ1(θ1 + θ2) · · · (θ1 + · · · + θn)
= P (X1 = 1)P (X2 = 1) · · ·P (Xn = 1)

(c) The optimal stopping rule is the sum-the-odds rule,

N1 = min{t ≥ 1 : Xt = 1 and
∞∑

i=t+1

θi

θ1 + · · · + θi−1
≤ 1}.

18. (a) Since
∑n

s+1 ri ≤ 1, all pi are less than 1 for i ≥ s . If ps = 1, then the
optimal rule stops at s and succeeds if and only if all remaining events are failures; hence,
V ∗

n =
∏n

s+1 qi . If ps < 1, then as in the derivation of Equation (18),

V ∗
n = ps

n∏
s+1

qi + qsps+1

n∏
s+2

qi + · · · =

[
n∏
s

qi

]
n∑
s

ri.

(b) We have V ∗
n = [

∏n
s+1 qi](ps + (1 − ps)

∑n
s+1 ri). This is nondecreasing in ps since∑n

s+1 ri ≤ 1. Thus we decrease V ∗
n by making ps smaller. But we must stop when we hit

the constraint
∑n

s ri ≥ 1.
(c) This is immediate using Lagrange multipliers, but here is a way to get the result using
G ≤ A , the geometric mean of positive numbers is less than or equal to the arithmetic
mean, with equality if and only if all the numbers are equal. Thus,

(
n∏
s

(1 + ri)

)1/(n+s+1)

≤ 1
n + s + 1

n∑
s

(1 + ri) =
n + s + 2
n + s + 1
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with equality if and only if all ri are equal. Now note that qi = 1/(1 + ri), and write

n∏
s

qi =
1∏n

s (1 + ri)
≥

(
n− s + 1
n− s + 2

)n−s+1

=
(

1 − 1
n − s + 2

)n−s+1

with equality if and only if all qi are equal.
(d) It is well known (and easy to prove) that (1 + 1

n)n is monotonically increasing to e as
n increases to infinity. So (1 − 1

n+1)n = (1 + 1
n)−n decreases to e−1 . This implies that∏n

s qi of the previous display is bounded above by the value of the right side when s = 1.
This gives the bound V ∗

n ≥ (1 − 1
n+1)n which is achieved if and only if all pi are equal to

1/(n + 1).
(e) Let ε > 0. Find n such that P(no successes after n) ≥ 1 − ε . Such an n exists since∑

pi < ∞ . From (d), there is a stopping rule Nn ≤ n such that the probability that Nn

stops at the last success in the first n trials is at least (1+(1/n))−n . Then, the probability
that Nn stops at the last success in all trials is at least (1+ (1/n))−n(1− ε) → e−1(1− ε).
This shows V ∗

∞ ≥ e−1(1 − ε). Since this is true for all ε > 0, it is also true for ε = 0,
completing the proof.



Solutions to the Exercises of Chapter 6.

1. Maximizing the ratio E(XN − c)/E(N + d) reduces to solving the problem of
maximizing the return E(XN − c − λ(N + d)) and choosing λ so that the optimal return
is zero. Since the Xn have finite second moment, this problem is solved in §4.1 and the
optimal rule is found to be stop as soon as Xn − c− λd is at least V ∗ , where V ∗ satisfies
the equation E(X − c − λd − V ∗)+ = λ . Setting V ∗ = 0, we find that the optimal rule,
N∗ , for maximizing the rate of return is to accept the first offer that exceeds c+λd , where
λ satisfies

E(X − c − λd)+ = λ.

The left side of this inequality is decreasing in λ with value E(X − c)+ at λ = 0, so there
is a unique solution for λ . If P(X < c) = 1, then λ = 0 and N∗ ≡ ∞ . Otherwise, the
optimal rate of return is λ > 0.

If F is U(0, 1) and c < 1, then E(X − c − λd)+ = (1 − c − λd)2/2 = λ , so that λ is
the root of d2λ2 − 2((1 − c)d + 1)λ + (1 − c)2 = 0 between 0 and (1 − c)/d , namely,

λ = [(1 − c)d + 1 −
√

1 + (1 − c)d]/d2.

2.(a) The 1-sla is

N1 = min{n ≥ 1 : Yn − nλ ≤ E(Yn+1 − (n + 1)λ|Fn)}
= min{n ≥ 1 : T ≤ n or (T > n and λ ≤ E(Yn+1 − Yn|Sn))}
= min{n ≥ 1 : T ≤ n or (T > n and λ ≤ KP(T = n + 1|Sn))}
= min{n ≥ 1 : T ≤ n or (T > n and λ ≥ Kq exp(−(M − Sn)/µ))}

Thus, N1 ≡ T if λ ≥ qK , and, N1 = min{n ≥ 1 : Sn ≥ M − µ log(Kq/λ)} if λ < qK .
Since the Sn are increasing, the problem is monotone. Since nλ−Yn is bounded above by
λT which is integrable, and since Yn is a.s. nondecreasing, the 1-sla is optimal by Lemma
5.2.
(b) The expected loss is E(YN −Nλ) = c + KP(N = T )− λE(N). Since we must take at
least one observation, we must distinguish two cases.
Case 1 : M ≤ µ log(Kq/λ). Then N ≡ 1, and P(N = T ) = P(T = 1) = q exp{−M/µ} ,
so the expected loss is c + Kq exp{−M/µ} − λ .
Case 2 : M > µ log(Kq/λ). Then,

P(N = T ) = P(SN ≥ M |SN ≥ M − µ log(Kq/λ)) = exp(−(µ log(Kq/λ)/µ) = λ/(Kq).

To find E(N), we use two formulas for E(SN ); E(SN) = E(N)E(X) = E(N)qµ , and
E(SN ) = (M − µ log(Kq/λ)) + µ . (This uses the fact that when Sn does exceed M −
µ log(Kq/λ), it will do so on the average by µ). Thus, E(N) = (M/µ− log(Kq/λ)+1)/q ,
and the expected loss is c + K(λ/(Kq)) − λ(M/µ− log(Kq/λ) + 1)/q = c + (λ/q)(M/µ −
log(Kq/λ)).
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We must solve for the value of λ that makes the expected loss zero. In case 1,
λ ≤ Kq exp{−M/µ} , so that the expected loss cannot be made equal to zero. Thus, the
optimal rate of return may be found by solving the equation

λ(M − µ log(Kq/λ)) = c.

Since the left side is increasing in λ , there is a unique root of this equation in the interval
(Kq exp{−M/µ},∞).

3. To find N to maximize E(N)/E(XN + τ ), we first solve the problem of finding
N to maximize E(N − λ(XN + τ )) and then adjust λ so that this expectation is zero.
As in Example 5 of §5.4, the optimal rule for this problem is the fixed sample size rule
N∗ = min{j ≥ 0 : j ≥ n − λ} = n − �λ� . The expected return using this rule is E(N −
λ(XN +τ )) = n−�λ�−λ(E(Xn−
λ�+τ )). Since E(Xk) = 1/n+1/(n−1)+· · ·+1/(n−k+1),
the optimal rate of return satisfies the equality

n − �λ� = λ(τ + 1/n + · · · + 1/(�λ� + 1)).

(This equation has a unique solution.) When n = 10 and τ = 1, trial and error gives
�λ� = 3, and λ = 3.34028, and the optimal rule is the fixed sample size rule N∗ = 7.

4. First, we solve the problem of finding a stopping rule to maximize c1P(SN >
a) − λE(N + c2), and then adjust λ to make the optimal return equal to zero. From
the solution to Exercise 4.8(c), we see that the optimal rule is N∗ = min{n ≥ 1 : Sn =
−γ or Sn = a} , where

γ = a + {a(1/4 + c1/λ)},

where {x} represents the integer closest to x (either integer if there are two such). The
optimal return using this rule is (using formulas from the gambler’s ruin problem),

c1(a/(a + γ)) − λ(γa + c2).

We must set this to zero and solve for λ keeping in mind that γ is a function of λ . If
c2 = 0, then γ = 1 works: λ = c1/(a(a+1)) and {a(1/4+ c1/λ)} = {a(1/4+a(a+1))} =
{a + 1/2} = a + 1 = a + γ . The optimal rule is to stop as soon as Sn is negative.

For general c2 , a similar analysis shows that

γ = {a(c2 + 1/4)}

works, and the optimal return is λ = c1γ/((a + γ)(aγ + c2)). It is interesting to note that
the stopping value for negative values of Sn , (the point where you get discouraged), is
independent of the goal, a , and of the reward for attaining it, c1 .


