Solutions to Exercise Set 7.

14.1 (a) $F(a_n + b_n x)^n = (1 + e^{-(a_n + b_n x)})^n \to \exp\{-\lim_{n \to \infty} n e^{-(a_n + b_n x)}\}$. If we take $b_n = 1$, we get $F(a_n + b_n x)^n \to \exp\{-\lim_{n \to \infty} n e^{-a_n} e^{-x}\}$, which is equal to $\exp\{e^{-x}\} = G_3(x)$ if we take $n e^{a_n} = 1$. This amounts to taking $a_n = \log(n)$, so that we have $M_n - \log(n) \xrightarrow{\mathcal{L}} G_3$.

(b) Since the tail goes down at a power rate, we should be in case (a) where $a_n = 0$. We have , with $a_n = 0$,

$$F(a_n + b_n x)^n = \left(1 - \frac{\log(b_n x + 1)}{b_n x}\right)^n \to \exp\left\{-\lim_{n \to \infty} \frac{n \log(b_n x + 1)}{b_n x}\right\}.$$

We see that b_n must tend to infinity, implying that $\log(b_n x + 1) \sim \log(b_n x) \sim \log(b_n)$. To cancel the *n* in the numerator, let $b_n = nc_n$ for some c_n . Then

$$F(a_n + b_n x)^n \to \exp\left\{-\frac{1}{x}\lim_{n \to \infty} \frac{\log(nc_n)}{c_n}\right\}$$

If $c_n = \log(n)$, then $\lim_{n\to\infty} \log(nc_n)/c_n = \lim_{n\to\infty} (\log(n) + \log\log(n))/\log(n) = 1$. Therefore, we have $b_n = n\log(n)$, and $M_n/(n\log(n)) \xrightarrow{\mathcal{L}} G_{1,1}$.

(c) We have and $F(x) = (1/2)(\sin(x) + 1)$ for $|x| < \pi/2$. Expanding $\sin(x)$ about $\pi/2$ gives $\sin(x) \sim 1 - (x - (\pi/2))^2/2$. Therefore, $F(a_n + b_n x)^n \sim [(1/2)(1 - (a_n + b_n x - (\pi/2))^2/2 + 1]^n = (1 - (a_n + b_n x - (\pi/2))^2/4)^n$. Take $a_n = \pi/2$ to find $F(a_n + b_n x)^n \to \exp\{-\lim_{n\to\infty} b_n^2 x^2/4\}$. Take $(b_n)^2/4 = 1/n$, or $b_n = 2/\sqrt{n}$ and find $\sqrt{n}(M_n - (\pi/2))/2 \xrightarrow{\mathcal{L}} e^{-x^2}$ for x < 0, which is $G_{2,2}$.