Ferguson

Solutions to Exercise Set 1.

1.4. (a) The density of X is $f_X(x) = \alpha x^{-\alpha-1}I(x > 1)$. Therefore the expected value of X is $E(X) = \alpha \int_1^\infty x^{-\alpha} dx = \alpha/(\alpha-1)$. The second moment is $E(X^2) = \alpha \int_1^\infty x^{-\alpha+1} dx = \alpha/(\alpha-2)$. The variance is therefore $E(X^2) - (E(X))^2 = \alpha/((\alpha-1)^2(\alpha-2))$. (b) If $Y = (\alpha-1)X - \alpha$, Then for y > -1,

$$P(Y \le y) = P((\alpha - 1)X - \alpha \le y) = P(X \le \frac{\alpha + y}{\alpha - 1})$$
$$= 1 - \left(\frac{\alpha + y}{\alpha - 1}\right)^{-\alpha} = 1 - \left(1 + \frac{y + 1}{\alpha - 1}\right)^{-\alpha}$$
$$\to 1 - e^{-(y+1)}$$

as $\alpha \to \infty$. This is the distribution function of the exponential distribution of mean 1, centered at its mean.

2.1. (a) The density of Y is

$$f(y) = \frac{|\gamma|\alpha^{\alpha}}{\Gamma(\alpha)} \exp\{-\alpha e^{\gamma(y-\theta)} + \alpha\gamma(y-\theta)\} \quad \text{for} \quad -\infty < y < \infty.$$

 θ is a location parameter since this depends on y and θ only through the difference $y - \theta$.

(b) $EY = (1/\gamma)E\log(X)$. Make the change of variable $U = X/\beta$ to find

$$\begin{split} \mathbf{E}Y &= (1/\gamma) \int_0^\infty (\log(u) + \log(\beta)) e^{-u} u^{\alpha - 1} \ du / \Gamma(\alpha) = (1/\gamma) [\psi(\alpha) + \log(\beta)] \\ &= \theta + (1/\gamma) [\psi(\alpha) - \log(\alpha)]. \end{split}$$

Similarly,

$$EY^{2} = (1/\gamma^{2}) \int_{0}^{\infty} (\log(u) + \log(\beta))^{2} e^{-u} u^{\alpha-1} du/\Gamma(\alpha)$$
$$= (1/\gamma^{2}) [\Gamma''(\alpha)/\Gamma(\alpha) + 2\log(\beta)\Gamma'(\alpha) + (\log(\beta))^{2}].$$

Since $\psi'(\alpha) = (d/d\alpha)\Gamma'(\alpha)/\Gamma(\alpha) = (\Gamma''(\alpha)/\Gamma(\alpha)) - (\psi(\alpha))^2$, we have $\mathbf{E}Y^2 = (1/\gamma^2)[\psi'(\alpha) + \psi(\alpha)^2 + 2\log(\beta)\psi(\alpha) + (\log(\beta)^2]$, and $\mathbf{Var}Y = (1/\gamma^2)\psi'(\alpha) = \sigma^2$.

(c) If we let $\gamma \to 0$ with θ and σ fixed, then $\alpha \to \infty$ since $\gamma^2 \sigma^2 = \psi'(\alpha)$. From Stirling's formula, $\Gamma(\alpha) = (1/\alpha)(\Gamma(\alpha+1) \sim (1/\alpha)\alpha^{\alpha}e^{-\alpha}\sqrt{2\pi\alpha})$, we have

$$f_Y(y) \sim \frac{|\gamma|\sqrt{\alpha}}{\sqrt{2\pi}} \exp\{-\alpha [e^{\gamma(y-\theta)} - \gamma(y-\theta) - 1]\}.$$

Since $\alpha \psi'(\alpha) \to 1$, we have $\gamma^2 \alpha \to 1/\sigma^2$. If the term $e^{\gamma(y-\theta)}$ is expanded in a power series, the first two terms cancel and the limit as $\gamma \to 0$ becomes $f_Y(y) \to (1/\sqrt{2\pi\sigma}) \exp\{-(y-\theta)^2/(2\sigma^2)\}$.