Solutions to the Exercises of Section 5.7.

5.7.1. If X_1, \ldots, X_N are i.i.d. from the density $f(x|\theta) = \theta e^{\theta x} I_{(-\infty,0)}(x)$, and if $V_{(1)} < V_{(2)} < \cdots < V_{(N)}$ denote the order statistics, then the joint density of $V_{(1)}, \dots, V_{(N)}$ is

$$f_{V_{(1)},\cdots,V_{(N)}}(v_1,\ldots,v_N|\theta) = N!\theta^N \exp\{\theta \sum_{j=1}^N v_j\}$$

for $-\infty < v_1 < \cdots < v_N < 0$. Let $Y_j = V_{(j)} - V_{(j+1)}$ for $j = 1, \dots, N-1$ and let $Y_N = V_{(N)}$. The inverse transformation is $V_{(j)} = Y_j + \cdots + Y_N$ for $j = 1, \dots, N$. The Jacobian of this transformation is +1, so the joint density of Y_1, \ldots, Y_n is

$$f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_N|\theta) = N!\theta^N \exp\{\theta \sum_{j=1}^N jy_j\}$$

for $-\infty < y_j < 0$ for $j = 1, \ldots, N$. Since this density factors into

$$f_{Y_1,...,Y_n}(y_1,...,y_N|\theta) = \prod_{j=1}^N j\theta \exp\{j\theta y_j\}I_{(-\infty,0)}(y_j),$$

we see that Y_1, \ldots, Y_N are independent and the density of Y_j is $f_{Y_j}(y_j|\theta) = j\theta \exp\{j\theta y_j\}I_{(-\infty,0)}(y_j)$.

5.7.2. We must compute $\operatorname{Eexp}\{(\theta_1 - \theta_0) \sum_{1}^{m} V_{(r_i)}\}$, where $V_{(1)}, \ldots, V_{(N)}$ are the order statistics of a sample of size N = m + n from the distribution with density $f(x|\theta_0)$. The inverse transformation to the transformation $Y_1 = V_{(1)} - V(2), \dots, Y_{N-1} = V_{(N-1)} - V_{(N)}, Y_N = V_{(N)}$, is found to be $V_{(i)} = \sum_{j=i}^N Y_j$ for $i = 1, \ldots, N$. From this we find

$$\sum_{i=1}^{m} V_{(r_i)} = \sum_{i=1}^{m} \sum_{j=r_i}^{N} Y_j = \sum_{j=1}^{N} c_j Y_j,$$

where for j = 1, ..., N, $c_j = k$ if $r_k \leq j < r_{k+1}$. Since the Y_j are independent, we may write $\operatorname{Eexp}\{(\theta_1 - \theta_0)\sum_1^m V_{(r_i)}\} = \operatorname{Eexp}\{(\theta_1 - \theta_0)\sum_1^N c_j Y_j\} = \prod_{j=1}^N \operatorname{Eexp}\{(\theta_1 - \theta_0)c_j Y_j\}$. In the special case $\theta_0 = 1$ and $\theta_1 = 2$, we may use $\operatorname{Eexp}\{c_j Y_j\} = j/(j + c_j)$ to find

$$\operatorname{E}\exp\{(\theta_1 - \theta_0)\sum_{i=1}^m V_{(r_i)}\} = \prod_{j=1}^N \frac{j}{j+c_j} = \frac{N!r_1(r_2+1)\cdots(r_m+M-1)}{(N+m)!}$$

From (5.107), a most powerful rank test (of $H_0: f(x) = g(x) = f(x|\theta_0)$ against $H_1: f(x) = f(x|\theta_1)$ and $g(x) = f(x|\theta_0)$ is to reject H_0 if $r_1(r_2+1)\cdots(r_m+m-1)$ is too large. The distribution function of $f(x|\theta_0)$ is $G(x) = e^x$ for x < 0 and the distribution function of $f(x|\theta_1)$ is $F(x) = e^{2x}$ for x < 0. Then, since $F(x) = G(x)^2$, the above test is also a most powerful rank test of $H_0: F = G$ against the alternatives $H_1: F = G^2.$

5.7.3. The density of $V_{(r)}$ at v is the probability that one of the N observations falls at v, namely N dv, times the probability that of the remaining N-1 observations exactly r-1 fall to the left of v and the other N-r fall to the right of v. This gives

$$f_{V_{(r)}}(v) = N\binom{N-1}{r-1}v^{r-1}(1-v)^{N-r},$$

which is the density of the beta, $\mathcal{B}e(r, N-r+1)$. Hence, $EV_{(r)} = r/(N+1)$.

5.7.4. For the logistic distribution with $g(x) = e^x/(1+e^x)^2$, the distribution function is $G(x) = e^x/(1+e^x)$. We have $g'(x)/g(x) = (d/dx)\log g(x) = (d/dx)(x-2\log(1+e^x)) = 1-2e^x/(1+e^x) = 1-2G(x)$. Hence, the test (5.110) becomes

$$\phi(\mathbf{r}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{m} \mathrm{E}G(V_{(r_i)}) > \text{some } K, \\ \gamma & = \\ 0 & < \end{cases}$$

But given a sample V_1, \ldots, V_N from a distribution G(v), the variables $G(V_1), \ldots, G(V_N)$ form a sample from the uniform distribution, $\mathcal{U}(0, 1)$, and the order statistics are $G(V_{(1)}), \ldots, G(V_{(N)})$. Hence, from Exercise 5.7.3, $EG(V_{(r)}) = r/(N+1)$, and the above test rejects H_0 if $\sum_{i=1}^{m} R_i$ is too large. This is the Wilcoxon test.

5.7.5. Since this is a location parameter family we may use (5.110). We find -g'(x)/g(x) = 1 if x > 0and -g'(x)/g(x) = -1 if x < 0. Therefore the locally best test (5.110) rejects H_0 if $\sum_{i=1}^{m} [2P(V_{(r_i)} > 0) - 1]$ is too large, or equivalently, if $\sum_{i=1}^{m} P(V_{(r_i)} > 0)$ is too large. But $P(V_{(r)} > 0)$ is just the probability that at most r - 1 of the N observations fall below zero, and since 0 is the median of the distribution, this is just the probability of at most r - 1 successes in N independent trials with probability 1/2 of success on each trial. Using the normal approximation for large N, we have that $P(V_{(r)} > 0)$ is approximately $\Phi((r - (N + 1)/2)/\sqrt{N/4})$, using a correction for continuity. This leads to the test that rejects H_0 if $\sum_{i=1}^{m} \Phi((R_i - (N + 1)/2)/\sqrt{N/4})$ is too large.

5.7.6. Let $f(x|\theta) = c(\theta)h(x)I_{(\theta,\infty)}(x)$. We are given a sample Y_1, \ldots, Y_n from $g(x) = f(x|\theta_0)$ and a sample X_1, \ldots, X_m from $f(x) = f(x|\theta)$. We are to test the hypothesis $H_0: \theta = \theta_0$ against the hypothesis $H_1: \theta > \theta_0$ based on the ranks R_1, \ldots, R_m of the X's. Note that g(x) = 0 implies that f(x) = 0, so that Theorem 1 gives the joint distribution of the R_i :

$$P(R_1 = r_1, \dots, R_m = r_m | \theta) = {\binom{m+n}{m}}^{-1} \left(\frac{c(\theta)}{c(\theta_0)}\right)^m E \prod_{i=1}^m \frac{I_{(\theta,\infty)}(V(r_i))}{I_{(\theta_0,\infty)}(V(r_i))}$$
$$= {\binom{m+n}{m}}^{-1} \left(\frac{c(\theta)}{c(\theta_0)}\right)^m P(V_{(r_1)} > \theta)$$

where the V(r) are the order statistics of the combined sample under H_0 . Under H_0 , $P(R_1 = r_1, \ldots, R_m = r_m | \theta) = {\binom{m+n}{m}}^{-1}$. By the Neyman-Pearson Lemma, the best test of H_0 against any simple hypothesis in H_1 has the form

$$\phi(\mathbf{r}) = \begin{cases} 1 & \text{if } P(V_{(r_1)} > \theta) > K \\ \gamma & \text{if } P(V_{(r_1)} > \theta) = K \\ 0 & \text{if } P(V_{(r_1)} > \theta) < K. \end{cases}$$

Since $P(V_{(r_1)} > \theta)$ is nondecreasing in r_1 , this is equivalent to

$$\phi(\mathbf{r}) = \begin{cases} 1 & \text{if } r_1 > K' \\ \gamma & \text{if } r_1 = K' \\ 0 & \text{if } r_1 < K' \end{cases}$$

5.7.7. First, suppose $F(x|\theta) = (e^{\theta G(x)} - 1)/(e^{\theta} - 1)$. Since the power of the test depends only on $\psi(z) = (e^{\theta z} - 1)/(e^{\theta} - 1)$, we may take G(x) as we please. If we take G(x) to be the uniform distribution on (0, 1), then $f(x|\theta)$ is of the form (5.106) and so the locally optimal rank test is of the form (5.109). In fact, this is just the Wilcoxon test as described below (5.109).

Suppose now that $F(x|\theta) = G(x)/(e^{\theta}(1-G(x)) + G(x))$. Again we may choose G(x) as we like. If we choose it to be the logistic distribution, $G(x) = e^x/(1+e^x)$, then $F(x|\theta) = e^{x-\theta}/(1+e^{x-\theta})$ is just the logistic with location parameter θ . So this is just the problem solved in Exercise 5.7.4, and the locally best rank test is again the Wilcoxon test.