
Solutions to Exercises 5.6.1 through 5.6.8, and 5.6.12.

5.6.1. This problem is invariant under a change of location, gc(x1, x2) = (x1+ c, x2 + c), and a maximal
invariant is Y = X1 −X2 . Under H0 , Y has a N (0, 2) distribution with density

f0(y) =
1√
4π

e−y2/4.

Under H1 , Y has a C(0, 2) distribution with density

f1(y) =
2

π(y2 + 4)
.

The uniformly most powerful invariant rule for testing H0 against H1 is the Neyman-Pearson rule that
rejects H0 if the ratio

f0(y)/f1(y) =
√
π

4
(y2 + 4)e−y2/4

is too small. This ratio is a function of y2 and so is symmetric about zero. Moreover, it is a decreasing
function of y2 on the positive axis, as may be checked by taking derivatives. Thus, the best invariant rule
rejects H0 if y2 is too large, or equivalently if |X1 −X2| > K for some constant K . This shows that

φ(x1, x2) =
{
0 if |x1 − x2| < K
1 if |x1 − x2| > K

is a UMP invariant test of H0 against H1 .

5.6.2. We must find the joint density of Y = (Y1, . . . , Yn−1) under H0 and H1 , where Yi = Xi −Xn

for i = 1, . . . , n− 1. Under H0 , this is the multivariate normal density,

f0(y) = (2π)−n/2(det Σ)−1/2 exp{−(1/2)yTΣ−1y}
where Σ is the covariance matrix (3.34) of the text. To find the density of Y under H1 , we may put θ = 0
and first find the joint density of Y1, . . . , Yn−1, Xn as

f1(y1, . . . , yn−1, xn) = exp{−
n−1∑

1

[e(yi+xn) + (yi + xn)] + exn + xn}

Then we integrate out the variable xn using the change of variable u = exp{xn} .

f1(y) = exp{
n−1∑

1

yi}
∫

exp{−e−xn [1 +
n−1∑

1

eyi ] + nxn} dxn

= exp{
n−1∑

1

yi}
∫ ∞

0

exp{−u[1 +
n−1∑

1

eyi ]}un−1 du

= exp{
n−1∑

1

yi}Γ(n)/[1 +
n−1∑

1

eyi ]n

Therefore, the best invariant test of H0 against H1 rejects H0 if

W = exp{
n−1∑

1

yi} exp{−(1/2)yTΣ−1y}/[1 +
n−1∑

1

eyi ]n

is too large, where too large refers to the distribution of W under H0 .

5.6.3. Sufficiency reduces the problem to the consideration of the sufficient statistic, (Xn, S
2), where

S2 =
∑n

1 (Xi − X)2 . The problem is invariant under location changes, which in terms of the sufficient
statistic becomes transformations of the form gc(X, S2) = (X + c, S2) for arbitrary real c . The maximal
invariant is just S2 , whose distribution depends only on σ2 . The problem of finding a UMP invariant test
of H0 against H1 reduces to the problem of finding a UMP test of H0 against H1 based on S2 . But since
the distribution of S2 has monotone likelihood ratio in σ2 (in fact, S2 ∈ σ2χ2

n−1 , an exponential family of
distributions), the usual test that rejects H0 for small values of S2 is UMP invariant for this problem.



5.6.4. Using the form of the density of the noncentral tν -distribution given by (3.17), we have

fT (t|δ)
fT (t|0)

∝ exp{− νδ2

2(t2 + ν)
}

∫ ∞

0

exp{−1
2
(x− δt√

t2 + ν
)2}xν dx

= exp{−δ2

2
}

∫ ∞

0

exp{−x2

2
+

δtx√
t2 + ν

}xν dx

Since t/
√
t2 + ν is increasing in t , this ratio is increasing in t for fixed δ > 0.

5.6.5. Using f|T |(t|δ) = fT (t|δ) + fT (−t|δ) for t > 0, we have

f|T |(t|δ)
f|T |(t|0)

∝ exp{− νδ2

2(t2 + ν)
}

[∫ ∞

0

exp{−1
2
(x− δt√

t2 + ν
)2}xν dx+

∫ ∞

0

exp{−1
2
(x− δt√

t2 + ν
)2}xν dx

]

= exp{−δ2

2
}

∫ ∞

0

[
exp{ δtx√

t2 + ν
}+ exp{− δtx√

t2 + ν
}
]
exp{−x2

2
}xν dx

= exp{−δ2

2
}

∫ ∞

0

2 cosh(
δtx√
t2 + ν

) exp{−x2

2
}xν dx

Since t/
√
t2 + ν is increasing in t , and since cosh(x) is increasing in x for x > 0, this ratio is increasing in

t for fixed δ > 0.

5.6.6. The sufficient statistics are X , Y , and S2 =
∑m

1 (Xi −X)2 +
∑n

1 (Yi − Y )2 . Under the general
hypothesis, these are independent and have distributions N (µ, σ2/m), N (η, σ2/n) and σ2χ2

m+n−2 . The
problem of testing H0 against H1 is invariant under change of location and scale, and a maximal invariant
is T = (X − Y )/

√
S2/(m+ n− 2). The distribution of T depends on the parameters, µ , η and σ ,

only through δ = (µ − η)/σ . In fact, under the general hypothesis, T has the noncentral t-distribution,
tm+n−2(δ). The hypotheses become H0 : δ ≤ 0, and H1 : δ > 0. Now using Exercise 5.6.4, we see that the
usual t-test that rejects H0 when T is too large is UMP invariant.

For testing H ′
0 against H ′

1 , the problem is invariant not only under change of location and scale, but also
under multiplication of all observations by minus one. Now, |T | is a maximal invariant whose distribution
depends only on |δ| , and the hypotheses become H ′

0 : |δ| = 0 and H ′
1 : |δ| > 0. Using Exercise 5.6.5, we see

that the usual two-sided t-test that rejects H ′
0 when |T | is too large is UMP invariant.

5.6.7. Let X and Y be independent with X ∈ G(1, λ−1) and Y ∈ G(1, µ−1), and let θ = λ/µ .
(a) The group of transformations, gc(x, y) = (cx, cy) for c > 0 leaves the distributions invariant since cX

and cY are independent with cX ∈ G(1, c/λ) and cY ∈ G(1, c/µ). The induced group of transformations,
ḡc(λ, µ) = (λ/c, µ/c), on the parameter space leaves the hypotheses H0 : θ ≤ 1 and H1 : θ > 1 invariant,
so the problem in invariant. T = Y/X is a maximal invariant with distribution depending only on θ . The
joint density of X and T is fX,T (x, t|λ, µ) = λµe−(λ+tµ)xx for x > 0 and t > 0. The marginal density of T
may be found from this to be fT (t|θ) = θ/(θ+ t)2 for t > 0. Here θ is a scale parameter for the distribution
of T so that the UMP invariant test is to reject H0 if T > c . To find c so that the test has size α , we solve

α =
∫ ∞

c

θ

(θ + t)2
dt =

θ

θ + t

with θ = 1, and find c = (1− α)/α .
(b) In testing H ′

0 : θ = 1 against H ′
1 : θ �= 1, the distributions are invariant under scale changes as

above, and also under the transformation g(x, y) = (y, x), with ḡ(λ, µ) = (µ, λ). H ′
0 and H ′

1 are left invarint
under all these transformations so the problem is invariant. The maximal invariant is U = max{T, 1/T} .
The density of u is

fU (uθ) = fT (u|θ) + fT (1/u|θ)/u2 =
θ

(θ + u)2
+

θ

(θu + 1)2

2



for u > 1. The distribution depends on θ only through max{θ, 1/θ} so we may assume θ ≥ 1. Below we
show that fU (u|θ)/fU (u|1) is increasing in u . From this we may deduce that the UMP invariant size α test
of H ′

0 against H ′
1 is to reject if U > c , where c satisfies

α = P(U > c|1) =
∫ ∞

c

2
(1 + u)2

du =
2

1 + c
,

namely, c = (2− α)/α .
The likelihood ratio is

fU (u|θ)
fU (u|1)

=
θ

2

[(
u+ 1
u+ θ

)2

+
(

u+ 1
θu + 1

)2
]
.

We show the derivative of the term in square brackets is positive when u > 1 and θ > 1.

d

du

[(
u+ 1
u+ θ

)2

+
(

u+ 1
θu + 1

)2
]
= 2

(
u+ 1
u+ θ

)
θ− 1

(u+ θ)2
+ 2

(
u+ 1
θu+ 1

)
1− θ

(θu + 1)2

= 2(u+ 1)(θ − 1)
[

1
(u+ θ)3

− 1
(θu + 1)3

]
.

This is positive if (θu + 1)3 > (u + θ)3 > 0, which is positive if θu + 1 > u + θ , which is positive if
(θ − 1)u > θ− 1, which follows since u > 1 and θ > 1.

5.6.8. (In the statement of the problem, θ0 should be replaced by 0 four times.)
(a) The distributions are invariant under location changes, gc(x, y) = (x − c, y − c) and the induced

group is ḡc(λ, µ) = (λ − c, µ− c). With θ = λ− µ , the problem of testing H0 : θ ≤ 0 against H1 : θ > 0 is
invariant, and a maximal invariant is Z = X−Y with a distribution depending only on θ . If fZ(z|θ)/fZ(z|0)
is nondecreasing in z for θ > 0, then the test that rejects H0 when Z > c is UMP invariant of size α if c
is chosen so that P(Z > c|θ = 0) = α .

(b) For testing H ′
0 : θ = 0 against H ′

1 : θ �= 0, the problem is invariant in addition under the
transformation g(x, y) = (y, x), with ḡ(λ, µ) = (µ, λ) and |Z| is a maximal invariant. If f|Z|(z|θ)/f|Z|(z|0)
is nondecreasing in z , then a UMP invariant size α test exists of the form: reject H ′

o if |Z| > c where c is
chosen so that P(|Z| > c|θ = 0) = α .

5.6.12. We are given Θ = {−1, 1} , A is the real line and L(θ, a) = (θ − a)2 . The vector (X1, X2)
of independent Poisson random variables has mean (1, 2) if θ = −1 and mean (2, 1) if θ = 1. Since
g(X1, X2) = (X2 , X1) is independent Poisson with mean (2, 1) if θ = −1 and mean (1, 2) if θ = 1, we have
ḡ(θ) = −θ . Furthermore, L(θ, a) = (θ − a)2 = L(ḡ(θ), g̃(a)) = (−θ − g̃(a))2 provided g̃(a) = −a .

A maximal invariant satisfies T (X1 , X2) = (X2 , X1) and takes a different value on each orbit. The
orbits are the singleton sets {(x, x)} , for x = 0, 1, . . ., and the pairs {(x, y), (y, x)} for x �= y . The order
statistics, (X(1), X(2)), where X(1) = min(X1 , X2) and X(2) = max(X1, X2), form a maximal invariant. We
solve the problem conditionally given the order statistics. Since the loss is convex in a for each of these
conditional problems, we may restrict attention to the nonrandomized rules.

A nonrandomized decision rule is invariant (equivariant) if d(x, y) = −d(y, x); in particular d(x, x) = 0
for all x = 0, 1, . . .. Thus the best invariant rule in the conditional problem is trivially zero on all singleton
orbits. Suppose now we are given (X(1), X(2)) = (x, y) where x < y . We choose the value of d(x, y) = z ,
and hence d(y, x) = −z , to minimize the conditional risk. Since this risk does not depend on θ , we may use
θ = 1 for the computations.

P1((X1, X2) = (x, y)|(X(1), X(2)) = (x, y)) =
P1(X1 = x)P1(X2 = y)

P1(X1 = x)P1(X2 = y) + P1(X1 = y)P1(X2 = x)

=
(e−22x/x!) · (e−1/y!)

(e−22x/x!) · (e−1/y!) + (e−1/x!) · (e−22y/y!)

=
2x

2x + 2y
.

3



Hence, the conditional risk is

E1{(1− d(X1, X2))2|(X(1), X(2)) = (x, y)} = (1 − z)2
2x

2x + 2y
+ (1 + z)2

2y

2x + 2y
.

The value of z that minimizes this is easily found to be z = d(x, y) = (2x−2y)/(2x+2y). This same formula
gives 0 for x = y and its negative for x > y . Hence,d(x1, x2) = (2x

1 − 2x
2)/(2x

1 + 2x
2) is the best invariant

rule.
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