Solutions to Exercises 4.5.1 through 4.5.7, and 4.5.10.

4.5.1. The median, θ , of the Cauchy distribution is a location parameter, and the loss, $L(\theta, a) = L(a - \theta)$, is a function of $a - \theta$. The risk function of an invariant rule, $d_b(x) = x - b$, is the constant, $R(\theta, d_b) = R(0, d_b) = P_0(|X - b| > c)$. By Theorem 4.5.1, the best invariant rule is d_b where b minimizes this quantity, or equivalently, maximizes, $P_0(|X - b| \le c)$. But since the Cauchy distribution is unimodal and symmetric about 0, $P_0(|X - b| \le c)$ is maximized by b = 0, i.e. d(x) = x is the best invariant rule. It does not depend on β or c (or the distribution of $X - \theta$ provided it is unimodal and symmetric about 0).

4.5.2. By Theorem 1, the best invariant estimate of θ is $d(X) = X - b_0$, where b_0 is that value of b that minimizes $E_0(X - b)^2$, namely $b_0 = E_0X$. We now note that this estimate is unbiased, $E_{\theta}d(X) = E_{\theta}X - b_0 = \theta + E_{\theta}(X - \theta) - b_0 = \theta + E_0X - E_0X = \theta$. But any function of a complete sufficient statistic is a best unbiased estimate of its expectation (if it has finite risk). Thus d(X) is a best unbiased estimate of θ as well.

4.5.3. We are given that $\theta > 0$ is a scale parameter, $f(x|\theta) = (1/\theta)f(x/\theta)$, and that the loss is a function of $a - \theta$, say $L(\theta, a) = L(a/\theta)$. Such a problem is invariant under the group of scale changes, $g_c(x) = cx$ for c > 0, with $\bar{g}_c(\theta) = c\theta$ and $\tilde{g}_c(a) = ca$. An invariant nonrandomized estimate of θ then satisfies $d(g_c(x)) = \tilde{g}_c(d(x))$ for all c > 0 and all x. For x=1, this implies that d(c) = c d(1). Hence the class of invariant rules are the rules of the form $d_b(x) = x/b$ for some b (here equal to 1/d(1)). From Theorem 4.2.1, the risk function of any invariant rule $\delta \in \mathcal{D}$ satisfies $R(\theta, \delta) = R(c\theta, \delta)$ for all c and θ , so that the risk of an invariant rule is a constant independent of θ . By Lemma 4.5.1 and by the fact that the orbits of \mathcal{X} have multiplicity one, we may restrict attention to nonrandomized rules. The risk of a nonrandomized invariant rule is $R(\theta, d_b) = E(L(X/b)|\theta = 1)$ since it is independent of θ , and the best invariant rule is the one that minimize this. So, we have

In the problem of estimating a scale parameter with loss $L(a, \theta) = L(a/\theta)$, if $E(L(X/b)|\theta = 1)$ exists and is finite for some b, and if there exists a b_0 such that

$$\mathbb{E}(L(X/b_0)|\theta = 1) = \inf_b \mathbb{E}(L(X/b)|\theta = 1).$$

where the infimum is taken over all b for which $E(L(X/b)|\theta = 1)$ exists, then $d(x) = X/b_0$ is a best invariant rule.

4.5.4. If δ is invariant, then by Theorem 4.2.1, $R(\theta, \delta)$ is constant on orbits of $\overline{\mathcal{G}}$. If $\overline{\mathcal{G}}$ is transitive, there is only one orbit because every point of Θ can be carried into every other point by some $\overline{g} \in \overline{\mathcal{G}}$. Thus $R(\theta, \delta)$ is constant which shows that δ is an equalizer rule.

4.5.5. If $\mathbf{X}_1, \ldots, \mathbf{X}_n$ is a sample from the k-dimensional normal distribution, $\mathcal{N}(\theta, \mathbf{I})$, then $\overline{\mathbf{X}}_n$ is sufficient for θ and has a $\mathcal{N}(\theta, (1/n)\mathbf{I})$ distribution. So if we can show $\overline{\mathbf{X}}_n$ is minimax for quadratic loss, $L(\theta, \mathbf{a}) = \sum_{i=1}^k (\theta_i - a_i)^2$, for n = 1 it will be minimax for arbitrary n as well. So take n = 1 and let $d(\mathbf{X}) = \mathbf{X}$. The risk function of d is constant, $R(\theta, d) = \mathbf{E}_{\theta}L(\theta, \mathbf{X}) = \mathbf{E}_{\theta}\sum_{i=1}^k (X_i - \theta_i)^2 = k$, so it will be minimax if it is extended Bayes. Take as the prior distribution τ_{σ} of θ the $\mathcal{N}(0, \sigma^2 \mathbf{I})$ distribution. The posterior distribution of θ given \mathbf{X} is then $\mathcal{N}(\mathbf{X}\sigma^2/(1+\sigma^2), (\sigma^2/(1+\sigma^2))\mathbf{I})$, so that the Bayes rule with respect to τ_{σ} is $d_{\sigma}(\mathbf{X}) = \mathbf{X}\sigma^2/(1+\sigma^2)$ and it has Bayes risk

$$r(\tau_{\sigma}, d_{\sigma}) = \mathbf{E}(\mathbf{E}\{\|\boldsymbol{\theta} - d_{\sigma}(X)\| \,| \mathbf{X}\}) = \frac{k\sigma^2}{1+\sigma^2}$$

Now, since $r(\tau_{\sigma}, d_{\sigma}) \to k = R(\theta, d)$ as $\sigma \to \infty$, we have that d is extended Bayes and therefore minimax.

4.5.6. There is a misprint in the definition of the rule d_b . It should read

$$d_b(x) = (x+1)I_{(-\infty,b)}(x) + (x-1)I_{[b,\infty)}(x).$$

By the methods of the Example 1, we have

$$R(\theta, d_b) = \begin{cases} 0 & \text{if } b - 1 \le \theta < b + 1 \\ 1/2 & \text{otherwise.} \end{cases} = \frac{1}{2} - \frac{1}{2} I(\theta - 1 < b \le \theta + 1).$$

The risk of the randomized rule, δ , that chooses b according to a strictly increasing distribution function, F(b), is

$$R(\theta, \delta) = \int_{-\infty}^{\infty} R(\theta, d_b) dF(b)$$
$$= \frac{1}{2} - \frac{1}{2} P(\theta - 1 < b \le \theta + 1) < \frac{1}{2}$$

A best invariant rule has constant risk 1/2, so this is better than a best invariant rule at all θ .

4.5.7. (a) Invariant rules are of the form $d_b(x) = x - b$ for some number b. The risk function of d_b is

$$R(\theta, d_b) = \mathcal{E}_{\theta} L(\theta, X - b) = \mathcal{E}_0 L(0, X - b) = \mathcal{E}_0 (X - b)^+$$
$$= \sum_{\substack{x \ge 1 \\ x > b}} (x - b) \frac{1}{x(x+1)} \ge \sum_{\substack{x \ge 1 \\ x > 2b}} \frac{1}{2} \frac{1}{x+1} = +\infty$$

for all θ and b.

(b) For the noninvariant rule, d(x) = x - c|x|, with c > 1, the risk is $R(\theta, d) = E_{\theta}(X - c|X| - \theta)^+ = E(Y - c|Y + \theta|)^+$ where $Y = X - \theta$ has mass function independent of θ , f(y) = 1/(y(y+1)) for y = 1, 2, ... If $\theta \ge 0$, then $Y - c|Y + \theta| \le 0$ w.p. 1 since c > 1. Thus $R(\theta, d) = 0$ for $\theta \ge 0$. If $\theta < 0$, then $y - c|y + \theta| > 0$ if and only if a < y < b where a and b are the roots of $y = c|y + \theta|$, namely, $a = |\theta|/(c+1)$ and $b = |\theta|/(c-1)$. Hence, for $\theta < 0$,

$$\begin{aligned} R(\theta, d) &= \sum_{a < y < b} \frac{(y - c|y + \theta|)}{y + 1} \le \sum_{a < y < b} \frac{1}{y + 1} \\ &\le \frac{1}{2} + \sum_{a < y < b - 1} \frac{1}{y + 1} = \frac{1}{2} + \sum_{a + 1 < y < b} \frac{1}{y} \\ &\le \frac{1}{2} + \int_{a}^{b} \frac{1}{y} = \frac{1}{2} + \log \frac{b}{a} \\ &= \frac{1}{2} + \log \frac{c + 1}{c - 1} = \log e^{1/2} \frac{c + 1}{c - 1} \\ &\le \log 2 \frac{c + 1}{c - 1} \end{aligned}$$

for all θ .

(c) If L(x) = 1 when x is an integer and $L(x) = \max(x, 0)$ otherwise, then the invariant rule d(x) = x has constant risk equal to one; yet if c is irrational, the risk of the rule d(x) = x - c|x| has risk bounded by $\log 2(c+1)/(c-1)$, which if c is sufficiently large is less than one.

4.5.10. Suppose X, Y has joint density $f_{X,Y}(x, y|\theta_1, \theta_2) = f(x - \theta_1, y - \theta_2)$ with finite second moments, where the parameter space, Θ is the whole Euclidean plane.

(a) If we put $g_{b,c}(X,Y) = (X+b,Y+c) = (S,T)$, then the joint density of S,T is $f_{S,T}(s,t|\theta_1,\theta_2) = f_{X,Y}(s-b,t-c|\theta_1,\theta_2) = f(s-(b+\theta_1),t-(c+\theta_2))$, so that the distributions are invariant with $\bar{g}_{b,c}(\theta_1,\theta_2) = (b+\theta_1,c+\theta_2)$. Moreover, for the given loss function we have

$$L(\bar{g}_{b,c}(\theta_1,\theta_2),\tilde{g}_{b,c}a) = \left(\frac{b+\theta_1+c+\theta_2}{2} - \tilde{g}_{b,c}a\right)^2 = \left(\frac{\theta_1+\theta_2}{2} - a\right)^2$$

provided $\tilde{g}_{b,c}a = a + ((b+c)/2)$. This shows that the loss, and hence the problem, is invariant.

(b) The group $\overline{\mathcal{G}} = \{\overline{g}_{b,c}\}$ is transitive on Θ , (so that the risk function of an invariant rule is constant) and the single orbit in \mathcal{X} has multiplicity one (so that from Lemma 4.5.1 and the discussion, we may restrict attention to nonrandomized rules in our search for a best invariant rule.

(c) An invariant rule satisfies $d(g_{b,c}(x,y)) = \tilde{g}_{b,c}(d(x,y))$ which means d(x+b,y+c) = d(x,y) + (b+c)/2 for all x, y, b, c. Put x = y = 0 and find d(b,c) = (b+c)/2 - d(0,0) for all b, c, so that the nonrandomized invariant rules have the form $d_{\alpha}(x,y) = (x+y)/2 - \alpha$ for some α (here $\alpha = -d_{\alpha}(0,0)$).

(d) The risk function of d_{α} is the constant $R((\theta_1, \theta_2), d_{\alpha}) = E_{(0,0)}((1/2)(X+Y)-\alpha)^2$ which is minimized by $\alpha_0 = E_{(0,0)}((X+Y)/2)$. Therefore, the best invariant rule is $(X+Y)/2 - E_{(0,0)}((X+Y)/2)$.