
Solutions to the Exercises of Section 4.3.

4.3.1. The parameter space is Θ = {(θ, j) : 0 ≤ θ ≤ 1, j = 1, . . . , n} , the action space is A = [0, 1] , and
the loss function is L((θ, j), a) = (θ − a)2 . Under (θ, j), the observations, X1, . . . , Xn are independent, Xj

is B(1, θ) and Xi is B(1, 1/2) for i �= j .
The problem is invariant under the permutations of the observations, gπ(x1, . . . , xn) = (xπ(1), . . . , xπ(n))

for permutations π of (1, . . . , n), with ḡπ(θ, j) = (θ, π−1(j)) and g̃π(a) = a . It is also invariant under
the map g2(x1, . . . , xn) = (1 − x1, . . . , 1 − xn) with ḡ2(θ, j) = (1 − θ, j) and g̃2(a) = 1 − a . We may
restrict attention to nonrandomized invariant rules. A rule d is invariant under gπ if d(gπ(x1, . . . , xn)) =
g̃πd(x1, . . . , xn) = d(x1, . . . , xn). This means that d depends on the xi only through the sum S = X1+ · · ·+
Xn . We henceforth write invariant rules as d(s). Such a rule is invariant under g2 if d(s) = 1− d(n − s).
In particular, if n is even then d(n/2) = 1/2.

The distribution of S under (θ, j) is independent of j and has mass function,
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Note that Pθ(S = s) is linear in θ . The risk function of an invariant rule is R((θ, j), d) = Eθ(θ − d(S))2 =
θ2 −2θEθd(S)+Eθd(S)2 . Now note that Eθd(S) and Eθd(S)2 are linear in θ . This implies that R((θ, j), d)
is quadratic in θ . And since d is invariant under g2 , R((θ, j), d) is symmetric in θ about 1/2. Therefore
the maximum of R((θ, j), d) over θ occurs at θ = 1/2 or at θ = 0 and θ = 1.

Below, we show that d0(s) = s/n minimizes R((0, j), d) = R((1, j), d) and then we show that this mini-
mum value is greater than R((1/2, j), d0). First note that R((0, j), d) = (1/2)R((0, j), d)+(1/2)R((1, j), d):
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We wish to find d to minimize this subject to the restriction that d be invariant, i.e. d(s) = 1−d(n−s) for
s = 0, . . . , n . The overall minimum without regard to the restriction is easily found by setting the derivatives
of R((0, j), d) with respect to the d(s) separately to zero. We find d(s) = s/n . This satisfies the restriction
and so gives the minimum value subject to the restriction.

To show that R((0, j), d0) = E0(S/n)2 is greater than R((1/2, j), d0) = E1/2(S/n − 1/2)2 , we evaluate
both. When θ = 1/2, S has a binomial distribution sample size n and probability of success 1/2, so
R((1/2, j), d0) = Var1/2(S/n) = 1/(4n). When θ = 0, S has a binomial distirbution sample size n − 1 and
success probability 1/2, so
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This is greater than 1/4n for all n > 1.

4.3.2. From Lemma 2.11.1, the least favorable distribution must give all its weight to points p for which
R(p, 1/4) = v = 1/4. As in Figure 4.1, this occurs only at the three points 0, 1/2 and 1. From Theorem
3(c), we may restrict attention to invariant prior distributions, those that distribute weight symmetrically
about 1/2. Thus a least favorable distribution τ must be of the form τ (0) = τ (1) = z and τ (1/2) = 1− 2z
for some 0 ≤ z ≤ 1/2. The Bayes risk of such a prior is

r(τ, x) = z[R(0, x) + R(1, x)] + (1− 2z)R(1/2, x) = z2x+ (1− 2z)|1− 2x|.

Since this is increasing in x for x > 1/2 we may assume x ≤ 1/2, and write r(τ, x) = z2x+(1−2z)(1−2x) =
(1/2)− z + x(1 − 4z). If z = 1/4, this is constant in x with value 1/4. Since 1/4 is the minimax value, τ
is least favorable.

4.3.3. From Theorem 3, we may search among the invariant priors for a least favorable τ0 . If a prior
is invariant under ḡ1 , then for all θ it must assign equal weight to (θ, 1) and (θ, 2). If it is invariant under



ḡ2 , then for i = 1, 2 and all θ it must assign equal weight to (θ, i) and (1 − θ, i). However, the risk of a
nonrandomized invariant rule, z , was found to be R((θ, i), z) = 2zθ2−2zθ+z2/2+1/8 and to be maximized
at θ = 0 and θ = 1. Therefore the invariant prior, τ0 , that gives mass 1/4 to each of (0, 1), (0, 2), (1, 1),
and (1, 2), is least favorable: Its Bayes risk is the average of R((θ, i), z) over these four points and so is
r(τ0, z) = z2/2 + 1/8, whose minimum over z is 1/8, the minimax value.

4.3.4. From Exercise 4.2.7(b), we know that a behavioral invariant rule chooses an action at random
independent of the observations. For any such distribution, δ , we may find, for a given ε > 0, a number ∆
such that δ assigns 1− ε of its mass to the interval (0,∆/2). Then, R((∆,Σ), δ) ≥ 1− ε . This shows that
supθ R(θ, δ) = 1. Yet, if d(X, Y) = (Y1/X1)2 (note the correction of the text), then

R(θ, d) = 1− P∆,Σ{|∆− (Y1/X1)2| ≤ ∆/2} = 1− P1,Σ{|1− (Y1/X1)2| ≤ 1/2}.

This is independent of Σ, and so is a constant less than one.

4.3.5. (a) If X is B(n, θ) (the binomial distribution), then n−X is B(n, 1−θ), so ḡθ = 1−θ . Moreover,
if g̃a = 1−a , then L(θ̄, ã) = (1− (1−θ))(1−a)+(1−θ)(1− (1−a)) = L(θ, a). So the problem is invariant.

(b) A nonrandomized decision rule d is invariant if d(g(x)) = g̃d(x), that is, if d(n−x) = 1−d(x) for all
x = 0, 1, . . . , n . So if d(x) is specified for x < n/2, then it is determined for x ≥ n/2 by d(n−x) = 1−d(x),
which implies, if n is even, that d(n/2) = 1/2).

(c) We may compute the risk function for an invariant rule d , using d(n − x) = d(x) to reduce the
dependence of the risk to d(x) for x < n/2 as follows.
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The coefficients of d(x) are (1− 2θ)[1− (θ/(1− θ)n−2x] ≥ 0 for all θ ∈ [0, 1] when x < n/2. Therefore, the
risk is minimized by choosing d(x) = 0 for x < n/2, and hence d(x) = 1 for x > n/2 (and, if n is even,
d(n/2) = 1/2. This is the best invariant rule.

By Exercise 2.11.15, the rule d(x) ≡ 1/2 is minimax. Since this rule is invariant, the best invariant rule
is also minimax. But the best invariant rule has much smaller risk function.

4.3.6. Let τ0 be invariant ( ḡτ0 = τ0 for all g ∈ G ) and let δ be Bayes with respect to τ0 (r(τ0, δ) ≤
r(τ0, δ

′) for all δ′ ). Define
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where N is the number of elements in G . Then δ0 is invariant (in fact, it is the same as δI in the proof of
Theorem 1). We will show that δ0 is also Bayes with respect to τ0 .
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r(ḡτ0, δ) as in Theorem 3(a)

=
1
N

∑
g∈G

r(τ0, δ) since δ0 invariant

= r(τ0, δ).

2



Thus δ0 has the same Bayes risk as δ as so is also Bayes with respect to τ0 .

4.3.7. Let τ be least favorable (infδ r(τ, δ) ≥ infδ r(τ ′, δ) for all τ ′ ). Define τ0 = (1/N)
∑
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the proof of Theorem 3(a). Then
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Thus, τ0 is also least favorable.
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