Solutions to the Exercises of Section 4.1.

4.1.1. Consider a decision problem with parameter space Θ , action space \mathcal{A} , and observations X with distribution P_{θ} . Suppose this problem is invariant under a group \mathcal{G} , and that \mathcal{G}_1 is a subgroup of \mathcal{G} . Find groups $\overline{\mathcal{G}}$ and $\widetilde{\mathcal{G}}$ such that (1) for all $g \in \mathcal{G}$ and all $\theta \in \Theta$, the distribution of g(X) is given by $P_{\overline{g}(\theta)}$ and (2) for all $g \in \mathcal{G}$, $\theta \in \Theta$ and $a \in \mathcal{A}$, we have $L(\overline{g}(\theta), \widetilde{g}(a)) = L(\theta, a)$. Since the same two statements are true with "for all $g \in \mathcal{G}$ " replaced by "for all $g \in \mathcal{G}_1$ ", the problem is invariant under \mathcal{G}_1 .

4.1.2. If the distribution of X is given by P_{θ} , then the distribution of $g_1(X)$ is given by $P_{\bar{g}_1(\theta)}$ and hence, the distribution of $g_2(g_1(X)) = g_2g_1(X)$ is given by $P_{\bar{g}_2(\bar{g}_1(\theta))}$, so the family of distributions is invariant under the transformation g_2g_1 .

If g_1 is bimeasurable, one-to-one and onto, then the inverse transformation, g_1^{-1} , exists and is measurable. If the distribution of X is given by P_{θ} , then the distribution of $g_1(X)$ is given by $P_{\bar{g}_1(\theta)}$. Let $Y = g_1(X)$. If the distribution of Y is given by $P_{\bar{g}_1(\theta)}$, then the distribution of $g_1^{-1}(Y) = X$ is given by $P_{\theta} = P_{\bar{g}_1^{-1}\bar{g}_1\theta}$. Hence the family of distributions is invariant under g_1^{-1} .

4.1.3. Let $\phi(x)$ be a continuous increasing function of the real line onto itself. If X_1, \ldots, X_n are i.i.d. with distribution function F, and if $Y_i = \phi(X_i)$ for $i = 1, \ldots, n$, then Y_1, \ldots, Y_n are i.i.d. with distribution function $G(y) = P(Y \leq y) = P(\phi(X) \leq y) = P(X \leq \phi^{-1}(y)) = F(\phi^{-1}(y))$. This shows that the distributions are invariant under the group \mathcal{G} of transformations of the form $g_{\phi}(x_1, \ldots, x_n) =$ $(\phi(x_1), \ldots, \phi(x_n))$, with $\bar{g}_{\phi}(F(x)) = F(\phi^{-1}(x))$. If L(F, a) = W(F(a)), then the loss is invariant if we can find $\tilde{g}_{\phi}(a)$ such that $L(F, a) = L(\bar{g}_{\phi}(F), \tilde{g}_{\phi}(a))$, or equivalently, $W(F(a)) = W(F(\phi^{-1}(\tilde{g}_{\phi}(a))))$ for all ϕ , F, and a. This is obviously satisfied if we take $\tilde{g}_{\phi}(a) = \phi(a)$. Thus the loss and hence the decision problem are invariant under \mathcal{G} .

4.1.4. Let **O** be an orthogonal *n* by *n* matrix. If **X** is an *n*-dimensional random vector with a $\mathcal{N}(\theta, \mathbf{I})$ distribution, then the distribution of $\mathbf{Y} = \mathbf{OX}$ is $\mathcal{N}(\mathbf{O}\theta, \mathbf{I})$ (since $\mathbf{OO}^T = \mathbf{I}$). This shows that the distributions are invariant under the group \mathcal{G} of transformations of the form $g_{\mathbf{O}}(\mathbf{X}) = \mathbf{OX}$ with $\bar{g}_{\mathbf{O}}(\theta) = \mathbf{O}\theta$. If $L(\theta, a) = W(|\theta|, a)$, then the loss is invariant if we can find $\tilde{g}_{\mathbf{O}}(a)$ such that $L(\theta, a) = L(\bar{g}_{\mathbf{O}}(\theta), \tilde{g}_{\mathbf{O}}(a))$ or equivalently, $W(|\theta|, a) = W(|\mathbf{O}\theta|, \tilde{g}_{\mathbf{O}}(a))$ for all \mathbf{O}, θ , and *a*. This is satisfied if we take $\tilde{g}_{\mathbf{O}}(a) = a$. Thus the loss and hence the decision problem are invariant under \mathcal{G} .

4.1.5. Let **O** be an *n* by *n* diagonal matrix with determinant ± 1 . If **X** is an *n*-dimensional random vector with a $\mathcal{N}(\mathbf{0}, \mathfrak{P})$ distribution, where \mathfrak{P} is a diagonal matrix, then the distribution of $\mathbf{Y} = \mathbf{O}\mathbf{X}$ is $\mathcal{N}(\mathbf{0}, \mathbf{O}\mathfrak{P}\mathbf{O})$. This shows that the distributions are invariant under the group \mathcal{G} of transformations of the form $g_{\mathbf{O}}(\mathbf{X}) = \mathbf{O}\mathbf{X}$ with $\bar{g}_{\mathbf{O}}(\mathfrak{P}) = \mathbf{O}\mathfrak{P}\mathbf{O}$. If $L(\mathfrak{P}, a) = W(\det \mathfrak{P}, a)$, then the loss is invariant if we can find $\tilde{g}_{\mathbf{O}}(a)$ such that $L(\mathfrak{P}, a) = L(\bar{g}_{\mathbf{O}}(\mathfrak{P}), \tilde{g}_{\mathbf{O}}(a))$ or equivalently $W(\det \mathfrak{P}, a) = W(\det \mathbf{O}\mathfrak{P}\mathbf{O}, \tilde{g}_{\mathbf{O}}(a))$ for all \mathbf{O} , \mathfrak{P} , and *a*. This is satisfied if we take $\tilde{g}_{\mathbf{O}}(a) = a$. Thus the loss and hence the decision problem are invariant under \mathcal{G} .