Solutions to the Exercises of Section 3.3.

3.3.1. (a) Independent $X_j \in \mathcal{B}(n_j, p)$ for $j = 1, \ldots, n$.

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n|p) = \prod_{j=1}^n \binom{n_j}{x_j} p^{x_j} (1-p)^{n_j-x_j} = h(\mathbf{x}) p^{\sum x_j} (1-p)^{\sum n_j - \sum x_j}$$

By the Factorization Theorem, $S = \sum X_j$ is sufficient for p. Since S is the total number of successes in $\sum n_j$ independent trials with probability p of success on each trial, $S \in \mathcal{B}(\sum n_j, p)$.

(b) Independent $X_j \in \mathcal{NB}(r_j, p)$ for $j = 1, \ldots, n$.

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n|p) = \prod_{j=1}^n \binom{r_j + x_j - 1}{x_j} (1-p)^{r_j} p^{x_j} = h(\mathbf{x})(1-p)^{\sum r_j} p^{\sum x_j},$$

shows that $S = \sum x_j$ is sufficient for p. Since S represents the number of trials required to obtain $\sum r_j$ successes in a sequence of independent trials with probability p of success on each trial, we have $S \in \mathcal{NB}(\sum r_j, p)$.

(c) Independent $X_j \in \mathcal{P}(\lambda)$ for $j = 1, \ldots, n$.

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\lambda) = \prod_{j=1}^n e^{-\lambda} \lambda^{x_j} / x_j! = h(\mathbf{x}) e^{-n\lambda} \lambda^{\sum x_j}.$$

So $S = \sum X_j$ is sufficient for λ . The Moment Generating Function of $X \in \mathcal{P}(\lambda)$ is $M_X(t) = \exp\{\lambda(e^t - 1)\}$. Thus, the MGF of S is $M_S(t) = \prod M_{X-j}(t) = \exp\{n\lambda(e^t - 1)\}$, the MGF of $\mathcal{P}(n\lambda)$.

(d) Independent $X_j \in \mathcal{G}(\alpha, \beta)$ for $j = 1, \ldots, n$.

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n|\alpha,\beta) = \prod_{j=1}^n \frac{1}{\Gamma(\alpha)\beta^{\alpha}} e^{-x_j/\beta} x_j^{\alpha-1} = h(\alpha,\beta) e^{\sum x_j/\beta} (\prod x_j)^{\alpha-1}$$

Thus, $(\sum X_j, \prod X_j)$ is sufficient for (α, β) ; $\sum X_j$ is sufficient for β if α is known; and $\prod X_j$ is sufficient for α if β is known. The MGF of $\mathcal{G}(\alpha, \beta)$ is $(1 - \beta t)^{\alpha}$, so the MGF of $\sum X_j$ is $(1 - \beta t)^{n\alpha}$, which is the MGF of $\mathcal{G}(n\alpha, \beta)$.

(e) Independent $X_j \in \mathcal{B}e(\alpha,\beta)$ for $j = 1, \ldots, n$.

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n|\alpha,\beta) = \prod_{j=1}^n h(\alpha,\beta) x_j^{\alpha-1} (1-x_j)^{\beta-1} = h(\alpha,\beta)^n (\prod x_j)^{\alpha-1} (\prod (1-x_j))^{\beta-1} .$$

Thus, $(\prod X_j, \prod (1 - X_j))$ is sufficient for (α, β) ; $\prod X_j$ is sufficient for α if β is known; and $\prod (1 - X_j)$ is sufficient for β if α is known.

3.3.2. The joint probability mass function of X_1, \ldots, X_n is

$$f_{X_1,...,X_n}(x_1,...,x_n|\theta,p) = \prod_{j=1}^n (1-p)p^{x_j-\theta} I(x_j \in \{\theta, \theta+1,...\})$$

= $(1-p)^n p^{-n\theta} p^{\sum x_j} I(\min x_j \in \{\theta, \theta+1,...\})$
 $\cdot \prod_{i=1}^n I(x_i \in \{\min x_j, \min x_j+1,...\}).$

This is of the form $h(\mathbf{x})g_1(\sum x_j, p)g_2(\min x_j, \theta)$, so by the Factorization Theorem, $(\min X_j, \sum X_j)$ is sufficient for (θ, p) . Moreover, if p is known, then $\min X_j$ is sufficient for θ , and if θ is known, then $\sum X_j$ is sufficient for p.

3.3.3. Let $\mathbf{X} = (X_1, \ldots, X_n)$ be i.i.d from a distribution $F(x|\theta)$. Then for every permutation π of (x_1, \ldots, x_n) , the distribution of $\pi \mathbf{X}$ is the same as the distribution of \mathbf{X} . Let $\mathbf{T} = (X_{(1)}, \ldots, X_{(n)})$ be the vector of order statistics. Then for any measurable set A in \mathbf{E}_n ,

$$\mathbf{P}(\mathbf{X} \in A) = \frac{1}{n!} \sum_{\pi} \mathbf{P}(\pi \mathbf{X} \in A) = \frac{1}{n!} \sum_{\pi} \mathbf{P}(\pi \mathbf{T} \in A)$$

where the sumation is over the set of all n! permutations. This shows that the conditional distribution of (X_1, \ldots, X_n) given the order statistics, $(X_{(1)}, \ldots, X_{(n)})$, is uniform on the set of all permutations of $(X_{(1)}, \ldots, X_{(n)})$. Since this conditional distribution does not depend on θ , it follows that **T** is sufficient for θ .

In fact, the above proof works for a family of exchangeable distributions. (The distribution of a sequence, $\mathbf{X} = (X_1, \ldots, X_n)$ of random variables is said to be exchangeable if for every permutation π , of (x_1, \ldots, x_n) , the distribution of $\pi \mathbf{X}$ is the same as the distribution of \mathbf{X} .)

3.3.4. First, suppose that the parameter space is $\Theta = \{(\mu, \mathfrak{P}) : \mathfrak{P} \text{ nonsingular}\}$. Then the joint density of $\mathbf{X}_1, \ldots, \mathbf{X}_n$ exists and is of the form

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n|\mu,\mathbf{x}) = (2\pi \det(\mathbf{x}))^{-n/2} \exp\{-U/2\},$$

where

$$U = \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{T} \mathfrak{Y}^{-1} (\mathbf{x}_{i} - \mu)$$

=
$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}} + \overline{\mathbf{x}} - \mu)^{T} \mathfrak{Y}^{-1} (\mathbf{x}_{i} - \overline{\mathbf{x}} + \overline{\mathbf{x}} - \mu)$$

=
$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T} \mathfrak{Y}^{-1} (\mathbf{x}_{i} - \overline{\mathbf{x}}) + n(\overline{\mathbf{x}} - \mu)^{T} \mathfrak{Y}^{-1} (\overline{\mathbf{x}} - \mu).$$

The last term depends on $\mathbf{x}_1, \ldots, \mathbf{x}_n$ only through $\overline{\mathbf{x}}$. The factorization theorem will imply that $\overline{\mathbf{X}}, \mathbf{S}^2$ is sufficient for μ, Σ when we show the first term depends on $\mathbf{x}_1, \ldots, \mathbf{x}_n$ only through \mathbf{S}^2 . Let σ^{hj} denote the (h, j)-element of Σ^{-1} . Then

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T} \mathbf{\mathfrak{P}}^{-1} (\mathbf{x}_{i} - \overline{\mathbf{x}}) = \sum_{i=1}^{n} \sum_{h} \sum_{j} (x_{ih} - \overline{x}_{\cdot h}) \sigma^{hj} (x_{ij} - \overline{x}_{\cdot j})$$
$$= \sum_{h} \sum_{j} \sigma^{hj} \sum_{i=1}^{n} (x_{ih} - \overline{x}_{\cdot h}) (x_{ij} - \overline{x}_{\cdot j}).$$

The inside sum is n times the (h, j)-element of \mathbf{S}^2 .

Now suppose that \mathfrak{X} is allowed to be singular in Θ . First note that \mathfrak{X} and \mathbf{S}^2 have the same null space almost surely; more precisely, $\mathbf{a}^T \mathfrak{X} \mathbf{a} = 0$ if and only if $\mathbf{a}^T \mathbf{S}^2 \mathbf{a} = 0$ w.p. 1. This is because $\operatorname{Var}(\mathbf{a}^T \mathbf{X}) = \mathbf{a}^T \mathfrak{X} \mathbf{a}$ and this is zero if and only if $\mathbf{a}^T \mathbf{X}_i = \mathbf{a}^T \mu$ w.p. 1 for all *i*, so that $\mathbf{a}^T \mathbf{S}^2 \mathbf{a} = (1/n) \sum_{i=1}^n \mathbf{a}^T (\mathbf{X}_i - \mu) (\mathbf{X}_i - \mu)^T \mathbf{a} = 0$ w.p. 1. Hence when \mathbf{S}^2 is nonsingular, the distribution of $\mathbf{X}_1, \ldots, \mathbf{X}_n$ given $\overline{\mathbf{X}}, \mathbf{S}^2$ is the same as in the nonsingular \mathfrak{X} case and does not depend on μ, \mathfrak{X} . If \mathbf{S}^2 is singular, say of rank r < k, then the distribution of $\mathbf{X}_1, \ldots, \mathbf{X}_n$ given $\overline{\mathbf{X}}, \mathbf{S}^2$ is found as follows. There exists an *r*-dimensional subvector \mathbf{X}^* of \mathbf{X} with nonsingular subcovariance matrix \mathbf{S}^{*2} of \mathbf{S}^2 . The conditional distribution of these components of $\mathbf{X}_1, \ldots, \mathbf{X}_n$ given $\overline{\mathbf{X}}, \mathbf{S}^2$ is the same as in the nonsingular \mathfrak{X} case but with dimension *r*. The remaining components of the vectors $\mathbf{X}_1, \ldots, \mathbf{X}_n$ may be determined exactly from these and $\overline{\mathbf{X}}, \mathbf{S}^2$. This distribution is described idependently of μ, \mathfrak{X} .