
Solutions to the Exercises of Section 3.1.

3.1.1. (a) The joint distribution of X and Y is a mixed discrete and continuous density,

fX,Y (x, y) =
Γ(α + β)
Γ(α)Γ(β)

yα−1(1 − y)β−1

(
n

x

)
yx(1 − y)n−xI(0 < y < 1) x = 0, 1, . . . , n

so the marginal distribution of X has mass function,

fX(x) =
Γ(α + β)
Γ(α)Γ(β)

(
n

x

)∫ 1

0

yα+x−1(1 − y)β+n−x−1 dy =
Γ(α + β)
Γ(α)Γ(β)

(
n

x

)
Γ(α + x)Γ(β + n− x)

Γ(α + β + n)

for x = 0, 1, . . . , n , exactly BB(α, β, n).
(b) EX = E(E(X|Y )) = E(nY ) = nEY = nα/(α + β).
(c) EX2 = E(E(X2 |Y )) = E(Var(X|Y ) + E(X|Y )2) = E(nY (1 − Y ) + n2Y 2), so

VarX = E(nY (1 − Y )) + Var(nY ) = n(EY − EY 2) + n2VarY

= n

(
α

α + β
− α(α + 1)

(α + β)(α + β + 1)

)
+ n2 αβ

(α + β)2(α + β + 1)

=
nαβ(α + β + n)

(α + β)2(α + β + 1)
.

3.1.2. It is easier to do this problem in reverse. Let X and Z be independent with binomial distributions
B(n, p) and B(M−n, p), respectively, and let Y = X +Z . We are to show (a) the unconditional distribution
of Y is B(M, p), and (b) the conditional distribution of X given Y = y is H(n, y,M).

(a) Y is the number of successes in M independent trials with probability p of success on each trial,
and so is B(M, p).

(b) The joint mass function of X and Y

fX,Y (x, y) =
(
n

x

)
px(1 − p)n−x

(
M − n

y − x

)
py−x(1 − p)M−n−y+x

for 0 ≤ x ≤ n and x ≤ y ≤ M −n+x . The conditional mass function of X given Y = y is the ratio of this
to fY (y) =

(
M
y

)
py(1 − p)M−y , namely,

fX|Y (x|y) =

(
n
x

)(
M−n
y−x

)
(
M
y

) for max(0, y + n−M) ≤ x ≤ min(y, n).

3.1.3. The joint density of Y and Z is

fY,Z(y, z) =
1√
2π

e−(y−µ)2/2 1
Γ(ν/2)2ν/2

e−z/2z(ν/2)−1

over −∞ < y < ∞ and 0 < z < ∞ . First we make the transformation from (Y, Z) to (T, U), where
T = Y/

√
Z/ν and U =

√
Z . The inverse transformation is Y = TU/

√
ν and Z = U2 over −∞ < t < ∞

and 0 < u < ∞ . The Jacobian of the inverse transformation is

J = det
(

u/
√
ν t/

√
ν

0 2u

)
= 2u2/

√
ν.

Therefore the joint density of T and U is

fT,U (t, u) =
1√
2π

1
Γ(ν/2)2ν/2

e−(tu/
√

ν−µ)2/2eu2/2uν−2 2u2/
√
ν.



We find the marginal density of T by integrating out U using the change of variable x = u/
√

(t2/ν) + 1 as
follows:

fT (t) =
1√
2π

1
Γ(ν/2)2ν/2

2√
ν

∫ ∞

0

exp{−1
2

(
tu√
ν
− µ)2 − 1

2
u2}uν du

=
2−(ν−1)/2

√
νπΓ(ν/2)

∫ ∞

0

exp{−u2

2
(
t2

ν
+ 1) +

tuµ√
ν
− µ2

2
}uν du

=
2−(ν−1)/2

√
νπΓ(ν/2)

e−µ2/2

∫ ∞

0

exp{−x2

2
+

tuµ√
t2 + ν

uν} du (
t2

ν
+ 1)−(ν+1)/2

=
2−(ν−1)/2

√
νπΓ(ν/2)

(
t2

ν
+ 1)−(ν+1)/2 exp{−µ2

2
+

t2µ2

2(t2 + ν)
}

∫ ∞

0

exp{−1
2

(x− tµ√
t2 + ν

)2}xν dx

=
2−(ν−1)/2νν/2

√
πΓ(ν/2)

(t2 + ν)−(ν+1)/2 exp{− νµ2

2(t2 + ν)
}

∫ ∞

0

exp{−1
2

(x− tµ√
t2 + ν

)2}xν dx.

3.1.4. Since there exists an orthogonal matrix P such that Pµ = (γ, 0, . . . , 0)T , we may transform
the problem to Z = PY where X = Z2

1 + · · · + Z2
n with Z1, . . . , Zn independent random variables with

Z1 ∈ N (γ, 1) and Zj ∈ N (0, 1) for j = 2, . . . , n . We are to show that X has density (3.18).
If the result is true for n = 1, then it is clearly true for n > 1 since we just take the result for n = 1

and convolute it with the distribution of Z2
2 + · · ·+ Z2

n , namely, the χ2
n−1 distribution. Then since the sum

of independent chi-squares is a chi-square with the sum of the degrees of freedom, the result follows.
Therefore, suppose n = 1, and consider the distribution X = Z2

1 . This transformation is 2 to 1, with
inverse transformation Z1 = ±

√
X and Jacobian dz1/dx = ±1/(2

√
x). Since the transformation is 2 to 1,

the density of X is the sum of the two pieces,

fX(x) =
1√
2π

e−(
√

x−γ)2/2 1
2
√
x

+
1√
2π

e−(−
√

x−γ)2/2 1
2
√
x

=
1

2
√

2πx
e−x/2−γ2/2

[
e
√

xγ + e−
√

xγ
]

=
1

2
√

2πx
e−x/2−γ2/2 2

∑
i even

(
√
xγ)i

i!

=
1√
2πx

e−x/2−γ2/2
∞∑

j=0

xjγ2j

(2j)!

=
∞∑

j=0

[
e−γ2/2(γ2/2)j

j!

]
· j!2j

(2j)!
√

2π
e−x/2xj−(1/2)

The terms in square brackets are the probabilities for P(γ2/2). We will be finished when we show that the
remaining terms are the chi-square densities, f2j+1(x), where

f2j+1(x) =
1

Γ(j + (1/2))2j+(1/2)
ex/2xj−(1/2).

Thus, it is a matter of checking that the constants agree. This follows from

Γ(j + 1
2 ) = (j − 1

2)Γ(j − 1
2) = · · · = (j − 1

2) · · · (1
2)Γ(1

2)

=
(2j − 1)(2j − 3) · · ·1

2j

√
π =

(2j)(2j − 1) · · ·1
√
π

(2j)(2j − 2) · · ·2 2j

=
(2j)!

√
π

j! 22j
.
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3.1.5. We first derive the density of the central Fr,n distribution, and then apply (3.18). Let Y and Z
be independent with Y ∈ χ2

r and Z ∈ χ2
n . The joint density of Y and Z is

fY,Z(y, z) =
1

Γ( r
2)2r/2Γ(n

2 )2n/2
e−(y/2)−(z/2)y(r/2)−1z(n/2)−1

We want to find the density of X = (Y/r)/(Z/n). We make this replacement for Y with Y = rXZ/n and
dy/dx = rz/n . Hence

fX,Z (x, z) =
1

Γ( r
2)Γ(n

2 )2(r+n)/2
exp{−rxz

2n
− z

2
}(

rxz

n
)(r/2)−1z(n/2)−1rz

n
.

To find the density of the central Fr,n distribution, we integrate out z , and denote the result by gr,n(x):

gr,n(x) =
(r/n)r/2x(r/2)−1

Γ( r
2 )Γ(n

2 )2(r+n)/2

∫ ∞

0

exp{−z

2
(
rx

n
+ 1)}z(r+n−2)/2 dz

=
(r/n)r/2x(r/2)−1

Γ( r
2 )Γ(n

2 )2(r+n)/2

Γ( r+n
2

)
( rx

n
+ 1)(r+n)/2(1

2
)(r+n)/2

=
Γ( r+n

2 )rr/2nn/2

Γ( r
2 )Γ(n

2 )
· x(r/2)−1

(rx + n)(r+n)/2

for x > 0. To find the density of the noncentral Fr,n(γ2), we let Y have density (3.18) with n replaced by
r , and let Z be an independent χ2

n . The joint density of Y and Z is

fY,Z(y, z) =
∞∑

j=0

pγ2/2(j)fr+2j (y)fn(z).

We make the same change of variable X = (Y/r)/(Z/n) for Y and integrate out Z as above to find

f(x|γ2) =
∞∑

j=0

pγ2/2(j)gr+2j,n(x)

as the density of the noncentral Fr,n(γ2). Unfortunately, this is not the same as (3.19). The correct version
of (3.19) is

f(x|γ2) =
∞∑

j=0

pγ2/2(j)
Γ( r+n

2 + j)(r + 2j)(r/2)+jnn/2

Γ( r
2 + j)Γ(n

2 )
· x(r/2)+j−1

((r + 2j)x + n)j+((r+n)/2)
.

3.1.6. The density of the Fr,n distribution is

gr,n(x) =
Γ( r+n

2 )rr/2nn/2

Γ( r
2)Γ(n

2 )
· x(r/2)−1

(rx + n)(r+n)/2

for x > 0. The inverse of the change of variable Y = rX/(rX +n) is X = (n/r)Y/(1−Y ) where 0 < Y < 1,
and the Jacobian is dx/dy = (n/r)/(1 − y)2 . The density of Y is then proportional to

fY (y) ∝ (
ny

r(1 − y)
)(r/2)−1(

ny

1 − y
+ n)−(r+n)/2 n

r

1
(1 − y)2

∝ y(r/2)−1(1 − y)(n/2)−1

for 0 < y < 1. Thus, Y has the Be(r/2, n/2) distribution.
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3.1.7. X = x if and only if exactly x of the first x − α − 1 balls drawn are black, and the (x + α)th
ball drawn is white. The probability of this may be computed as

P(X = x) =

(
n
x

)(
α+β−1

α−1

)
(
n+α+β−1

x+α−1

) · β

n− x + β

=
(
n

x

)
(α + β − 1)!(x + α− 1)!(n + β − x)!

(α− 1)!β!(n + α + β − 1)!
· β

n− x + β

=
(
n

x

)
Γ(α + β)Γ(x + α)Γ(n + β − x)

Γ(α)Γ(β)Γ(n + α + β)
.

which is the mass function of BB(α, β, n).
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