Solutions to the Exercises of Section 2.11.

2.11.1. **Proof.** Let ϵ be an arbitrary positive number. Since $r(\tau_n, \delta_n) \to C$, we can find an integer n such that $r(\tau_n, \delta_n) \ge C - \epsilon$. Then, as in the proof of Theorem 1,

$$\overline{V} \leq \sup_{\theta} R(\theta, \delta_0) \leq C \leq r(\tau_n, \delta_n) + \epsilon \leq \inf_{\delta} r(\tau_n, \delta) + \epsilon \leq \underline{V} + \epsilon.$$

Since this holds for all $\epsilon > 0$, we have

$$\overline{V} \le \sup_{\theta} R(\theta, \delta_0) \le C \le \underline{V}.$$

This shows that the value exists and is equal to C and that δ_0 is minimax.

2.11.2. **Proof.** Let τ_0 be least favorable and let θ_0 be in the support of τ_0 . (This means for every $\epsilon > 0$ that $\tau_0(\theta_0 - \epsilon, \theta_0 + \epsilon) > 0$.) Suppose that $R(\theta_0, \delta_0) < V$. Since $R(\theta, \delta_0)$ is continuous, there exists an $\epsilon > 0$ such that $R(\theta, \delta_0) < V$ for all θ in $(\theta_0 - \epsilon, \theta_0 + \epsilon)$, a set of positive measure. But since δ_0 is minimax, we must have $R(\theta, \delta_0) \leq V$ for all θ . Hence,

$$V = r(\tau_0, \delta_0) = \int R(\theta, \delta_0) \, d\tau_0(\theta) < V.$$

This contradiction completes the proof. \blacksquare

2.11.3. **Proof:** Let δ_0 be an equalizer rule with $R(\theta, \delta_0) \equiv c$. If δ_0 were not minimax, then there would exist a rule δ' such that $\sup_{\theta} R(\theta, \delta')$, call it v, would be strictly less than $\sup_{\theta} R(\theta, \delta_0) = c$. For any ϵ such that $0 < \epsilon < c - v$ and any prior, π , we have

$$r(\pi, \delta_0) = c > v + \epsilon \ge r(\pi, \delta') + \epsilon$$

Thus, δ_0 cannot be ϵ -Bayes with respect to any prior distribution, and so δ_0 cannot be an extended Bayes rule.

2.11.4. If d is an equalizer rule, then $R(\theta, d) \equiv c$ for some constant c. Hence, $r(\tau, d) = c$ for all $\tau \in \Theta^*$, and hence $\sup_{\tau} r(\tau, d) = c$. If d were not minimax, then there would exist a rule d_0 with smaller maximum risk: $\sup_{\tau} r(\tau, d_0) = c_1 < c$. This implies $R(\theta, d_0) \leq c_1 < c = R(\theta, d)$ for all θ , showing that d is not admissible.

2.11.5. Take $\Theta = \{1, 2, ...\}$ and $\mathcal{A} = \{0, 1, 2, ...\}$ and $L(\theta, a) = 1$ if $\theta < a$, $L(\theta, a) = -1$ if $0 < a < \theta$, and $L(\theta, a) = 0$ if $a = \theta$ or if a = 0. Then $d \equiv 0$ is an equalizer rule $(L(\theta, 0) \equiv 0)$, and d is admissible since nature can do better than zero against any $\delta \neq d$ by taking θ large enough. Hence, d is minimax from 2.11.4. But the value does not exist since the lower value is still -1 as in (2.24) on pg. 83, and the upper value is now zero. Furthermore, d cannot be Bayes with respect to any τ , since $r(\tau, d) \equiv 0$ and the statistician can do better than zero against τ by choosing a sufficiently large.

2.11.6. In the problem with $\Theta = \{\theta_1, \theta_2\}$, $\mathcal{A} = [0, \pi/2]$ and loss $L(\theta_1, a) = -\cos(a)$, $L(\theta_2, a) = -\sin(a)$, the loss is convex in a for each θ so that attention may be restricted to the nonrandomized rules. The observations are X = 0 or 1, with $P(X = 1|\theta_1) = 1/3$, and $P(X = 1|\theta_2) = 2/3$. The nonrandomized rules are of the form (a_0, a_1) where a_j is the action we take if X = j is observed, j = 0 or 1. For $d = (a_0, a_1)$, we have

$$R(\theta_1, d) = -(1/3)\cos(a_1) - (2/3)\cos(a_0)$$

$$R(\theta_2, d) = -(2/3)\sin(a_1) - (1/3)\sin(a_0).$$

If τ_0 gives probability 1/2 to each state of nature, then

$$r(\tau_0, d) = -(1/6)(\cos(a_1) + 2\sin(a_1) + 2\cos(a_0) + \sin(a_0)).$$

The values of a_0 and a_1 that minimize this may be found by taking derivatives and equating to zero. This gives $\tan(a_1) = 2$ and $\tan(a_0) = 1/2$, which gives the Bayes rule with respect to τ_0 , call it d_0 . From this, we find $\sin(a_1) = 2/\sqrt{5} = \cos(a_0)$ and $\cos(a_1) = 1/\sqrt{5} = \sin(a_0)$, so that the risk function of d_0 is

$$R(\theta_1, d_0) = -(1/3)(1/\sqrt{5} + 4/\sqrt{5}) = -\sqrt{5}/3.$$

$$R(\theta_2, d_0) = -(1/3)(4/\sqrt{5} + 1/\sqrt{5}) = -\sqrt{5}/3.$$

Thus, the Bayes risk of d_0 is also $-\sqrt{5}/3$, so from Theorem 2.11.1 we may conclude that d_0 is minimax and τ_0 is least favorable.

2.11.7. (a) Since $\mathcal{A} = [0, 1]$ and X takes on two values, say X = 1 if heads and X = 0 if tails, D is the unit square, where $d = (a_0, a_1)$ represents the decision to choose a_j if X = j.

(b) If $d = (x, y) \in D$, then

$$R(1/3, d) = (2/3)x^2 + (1/3)y^2$$

$$R(2/3, d) = (1/3)(1-x) + (2/3)(1-y).$$

(c) A prior distribution may be represented by p, the probability that $\theta = 1/3$. The Bayes risk of $d \in D$ is

$$r(p,d) = p[2x^{2} + y^{2}]/3 + (1-p)[(1-x) + 2(1-y)]/3.$$

Setting derivatives with respect to x and y to zero gives 4px - (1-p) = 0 and 2py - 2(1-p) = 0, from which we find the Bayes rule to be

$$x = (1-p)/4p$$
 if $p > 1/5$ and $x = 1$ if $p > 1/5$.
 $y = (1-p)/p$ if $p > 1/2$ and $y = 1$ if $p \le 1/2$.

The set of such (x, y) as p ranges from 0 to 1 consists of two lines, the line y = 4x from (0,0) to (1/4,1) (for p > 1/2), and the line y = 1 from (1/4,1) to (1,1) (for $p \le 1/2$).

(d) We search for an equalizer rule on the line y = 4x. Set R(1/3, (x, 4x)) = R(2/3, (x, 4x)) and solve for $x: (2/3)x^2 + (1/3)(4x)^2 = (1/3)(1-x) + (2/3)(1-4x)$ implies that $6x^2 + 3x - 1 = 0$. Since this gives $x = (\sqrt{33} - 3)/12 = .2287 \cdots$ and $y = (\sqrt{33} - 3)/3 = .9148 \cdots$ and both are in \mathcal{A} , this is the minimax rule. The minimax risk is $1 - 3x = .3139 \cdots$.

2.11.8. The risk function of the rule d(x) = x/n is

$$R(\theta, d) = E\{(X/n - \theta)^2/(\theta(1 - \theta))|\theta\} = \operatorname{Var}(X/n|\theta)/(\theta(1 - \theta))$$
$$= \{\theta(1 - \theta)/n\}/(\theta(1 - \theta)) = 1/n,$$

a constant, so that d is an equalizer rule. From Exercise 1.8.9, d is a Bayes rule for the uniform prior distribution on θ . Therefore, from Theorem 3, the rule d is minimax.

2.11.9. (a)

$$R(\theta, d) = E_{\theta}\left(\frac{(\theta - d(X))^2}{(1 - \theta)}\right)$$

= $\sum_{x=0}^{\infty} (\theta^2 - 2\theta d(x) + d(x)^2) \theta^x$
= $d(0)^2 + \theta(d(1)^2 - 2d(0)) + \sum_{x=2}^{\infty} (d(x)^2 - 2d(x - 1) + 1) \theta^x$

(b) d is an equalizer rule if and only if

$$d(1)^2 = 2d(0)$$
 and
 $d(x)^2 = 2d(x-1) - 1$ for $x = 2, 3, ...$

We are to show that the only solution in \mathcal{A} to these equations is given by d(0) = 1/2 and d(x) = 1 for $x \ge 1$. For $x \ge 2$, the lower equations imply that $2d(x-1) = d(x)^2 + 1 = (d(x)-1)^2 + 2d(x) \ge 2d(x)$, so that the d(x) are nonincreasing from x = 1 on. Hence, the d(x) converge, say, to some number c, and applying $\lim_{x\to\infty}$ to the lower equations gives $c^2 = 2c-1$, from which we conclude that c must be equal to one. The only nonincreasing sequence in [0,1] that converges to one is the sequence identically one. Hence, $d(1) = d(2) = \cdots = 1$, and from the top equation, d(0) = 1/2 is the unique equalizer rule.

(c) From part (a),

$$r(\tau, d) = E R(\theta, d)$$

= $d(0)^2 + \mu_1(d(1)^2 - 2d(0)) + \sum_{x=2}^{\infty} (d(x)^2 - 2d(x-1) + 1)\mu_x$

We may find the Bayes rule by taking the derivative with respect to each d(x) separately, and setting equal to zero, to find

$$d_{\tau}(x) = \mu_{x+1}/\mu_x$$
 for $x = 0, 1, 2, \dots$

(d) For d to be a Bayes rule with respect to τ , we must have $d(x) = \mu_{x+1}/\mu_x$ for $x = 0, 1, 2, \ldots$, which reduces to $\mu_1 = \mu_2 = \mu_3 = \cdots = 1/2$. There is a distribution, τ , with these moments, namely, the two point distribution, $\tau(0) = 1/2$, and $\tau(1) = 1/2$. Unfortunately, 1 is not in the parameter space, so d is not a Bayes rule. To show that it is extended Bayes, we look at the distributions, τ_{ϵ} , that give weight 1/2 to 0 and weight 1/2 to $1 - \epsilon$. For this distribution, $\mu_x = (1 - \epsilon)^x/2$ and the Bayes rule with respect to τ_{ϵ} is $d_{\epsilon}(0) = (1 - \epsilon)/2$, and $d_{\epsilon}(x) = 1 - \epsilon$ for $x = 1, 2, \ldots$ To compute the minimum Bayes risk, note since d_{ϵ} takes on only two values,

$$R(\theta, d_{\epsilon}) = (1-\theta)\frac{(\theta - (1-\epsilon)/2)^2}{1-\theta} + \theta \frac{(\theta - (1-\epsilon))^2}{1-\theta}$$

and since θ takes on only two values,

$$r(\tau_{\epsilon}, d_{\epsilon}) = \frac{1}{2} (\frac{1-\epsilon}{2})^2 + \frac{1}{2} (\epsilon - \frac{1-\epsilon}{2})^2 = \frac{(1-\epsilon)^2}{4}.$$

Since the constant risk of the rule d is 1/4, and since the minimum Bayes risk of τ_{ϵ} converges to 1/4 as $\epsilon \to 0$, d is extended Bayes and hence minimax.

2.11.10. (a) The risk function of the rule d_0 is

$$R(\theta, d_0) = E_{\theta}(\mu_1 - \frac{X + \sqrt{n}}{n + \sqrt{n}})^2 = \operatorname{Var}(\frac{X + \sqrt{n}}{n + \sqrt{n}}) + (\mu_1 - \frac{n\mu_1 + \sqrt{n}}{n + \sqrt{n}})^2$$
$$= \frac{n\sigma^2}{(n + \sqrt{n})^2} + \frac{(\mu_1\sqrt{n} - \sqrt{n}/2)^2}{(n + \sqrt{n})^2} = \frac{n(\mu_2 - \mu_1 + 1/4)}{(n + \sqrt{n})^2}$$

This risk is maximized by that distribution, θ on [0, 1], that maximizes $\mu_2 - \mu_1 = -E(Z(1-Z))$, where Z has distribution θ . This is never positive and is equal to zero if and only if θ gives all its mass to the points Z = 0 and Z = 1. The maximum risk is then $\max_{\theta} R(\theta, d_0) = (1/4)/(\sqrt{n} + 1)^2$.

(b) From pages 93-94, d_0 is a Bayes rule with respect to the distribution that chooses p at random from a Beta distribution, $\mathcal{B}e(\sqrt{n}/2, \sqrt{n}/2)$, and gives mass p to 1 and mass 1-p to 0. The minimum Bayes risk with respect to this prior is $(1/4)/(\sqrt{n}+1)^2$, the same as the maximum risk of the rule d_0 . Hence d_0 is minimax from Theorem 1.

2.11.11. (a) $R(\theta, d_0) = E_{\theta}\{(\theta - X)^2/\theta\} = \theta/\theta = 1.$ (b) The generalized Bayes risk is

$$\sum_{x=0}^{\infty} \int_0^\infty (\theta - d(x))^2 e^{-\theta} \theta^{x-1} / x! \, d\theta.$$

For x = 0, the integral is $+\infty$ unless d(0) = 0. For x > 0, the integral is minimized if d(x) is chosen to be the mean of the gamma distribution, $\mathcal{G}(x, 1)$, namely, d(x) = x. Thus, d_0 is a generalized Bayes rule.

(c) For the prior $\tau_{\alpha,\beta} = \mathcal{G}(\alpha,\beta)$, the posterior distribution is proportional to $e^{-\theta}\theta^x e^{-\theta/\beta}\theta^{\alpha-1}$, so that the posterior distribution is $\mathcal{G}(\alpha + x, \beta/(\beta + 1))$. The Bayes risk is proportional to

$$\sum_{x=0}^{\infty} \int_0^{\infty} (\theta - d(x))^2 e^{-\theta - \theta/\beta} \theta^{\alpha + x - 2} \, d\theta/x!.$$

If $\alpha + x - 1 \leq 0$, the integral is infinite unless d(0) = 0. For $\alpha + x - 1 > 0$, the integral is minimized by the mean of $\mathcal{G}(\alpha + x - 1, \beta/(\beta + 1))$, namely, $(\alpha + x - 1)\beta/(\beta + 1)$. This determines the Bayes rule to be

$$d_{\alpha,\beta}(x) = \max\{0, (\alpha + x - 1)\beta/(\beta + 1)\}$$

(d) Take $\alpha = 1$ and find the risk function of the rule $d_{1,\beta}$

$$R(\theta, d_{1,\beta}) = E_{\theta}(\theta - \beta X/(\beta + 1))^2/\theta$$

= Var($\beta X/(\beta + 1)|\theta$)/ $\theta + (\theta - \beta \theta/(\beta + 1))^2/\theta$
= $(\beta/(\beta + 1))^2 + \theta/(\beta + 1)^2$.

The minimum Bayes risk is thus

$$r(\tau_{1,\beta}, d_{1,\beta}) = ER(\theta, d_{1,\beta})$$

= $(\beta/(\beta+1))^2 + \beta/(\beta+1)^2 = \beta/(\beta+1).$

As $\beta \to \infty$, this risk tends to 1. Since the rule of part (a) has constant risk 1, its Bayes risk is also 1, showing that it is ϵ -Bayes for every $\epsilon > 0$. This implies that it is minimax.

2.11.12. (a) X has the negative binomial distribution, $\mathcal{NB}(r, p) = \mathcal{NB}(r, \theta/(\theta+1))$, where $\theta = p/(1-p)$ represents the odds. Since $E(X|\theta) = rp/(1-p) = r\theta$ and $\operatorname{Var}(X|\theta) = rp/(1-p)^2 = r\theta(\theta+1)$, we have

$$R(\theta, d_0) = \operatorname{Var}(X/r|\theta)/(\theta(\theta+1)) = r\theta(\theta+1)/(r^2\theta(\theta+1)) = 1/r.$$

(b) The generalized Bayes rule minimizes for each x

(1)
$$\int_0^\infty \frac{(\theta - d(x))^2}{\theta(\theta + 1)} \, \theta^x (\theta + 1)^{-(r+x)} \, d\theta.$$

If x = 0, the integral is infinite unless d(0) = 0. For x > 0, the minimum occurs at

$$\begin{split} d(x) &= \int \theta^x (\theta+1)^{-(r+x+1)} \, d\theta / \int \theta^{x-1} (\theta+1)^{-(r+x+1)} \, d\theta \\ &= \int p^x (1-p)^{r-1} \, dp / \int p^{x-1} (1-p)^r \, dp \\ &= (\Gamma(x+1)\Gamma(r) / \Gamma(x+r+1)) / (\Gamma(x)\Gamma(r+1) / \Gamma(x+r+1)) = x/r. \end{split}$$

(A minor point: If r = 1, the integral (1) is infinite no matter what d(x) is chosen to be, so technically d(x) could be anything.)

(c) When θ has the indicated distribution $(p \in \mathcal{B}e(\alpha, \beta))$, the minimum of the Bayes risk occurs at 0 if $\alpha + x - 1 \leq 0$, and otherwise at

$$d_{\alpha,\beta}(x) = \frac{\int \theta^{\alpha+x-1}(\theta+1)^{-(\alpha+\beta+r+x+1)} d\theta}{\int \theta^{\alpha+x-2}(\theta+1)^{-(\alpha+\beta+r+x+1)} d\theta} = \frac{\alpha+x-1}{\beta+r+1}.$$

(d) The risk function of d(x) = x/(r+1) is

$$R(\theta, d) = \left[\operatorname{Var}(X/(r+1)|\theta) + (\theta - r\theta/(r+1))^2 \right] / (\theta(\theta+1))$$

= $r/(r+1)^2 + (\theta/(\theta+1))/(r+1)^2.$

Since $\theta/(\theta + 1) < 1$ for all θ , we have $R(\theta, d) < 1/(r + 1) < 1/r$, the risk of d_0 , so d_0 is not minimax in spite of the fact that it is an equalizer and generalized Bayes. (This shows that d_0 cannot be extended Bayes.) To show that d is minimax, we note that d is a limit of Bayes rules in part (c) for $\alpha = 1$ as $\beta \to 0$. We show that the minimum Bayes risk of $d_{1,\beta}$ tends to 1/(r + 1) as $\beta \to 0$; then, Theorem 2 implies that d is minimax.

$$\begin{split} r(\tau_{1,\beta}, d_{1,\beta}) &= E\{(\theta - X/(\beta + r + 1))^2/(\theta(\theta + 1))\}\\ &= E\{[\operatorname{Var}(X/(\beta + r + 1)|\theta) + (\theta - r\theta/(\beta + r + 1))^2]/(\theta(\theta + 1))\}\\ &= E\{r/(\beta + r + 1)^2 + ((\beta + 1)/(\beta + r + 1))^2(\theta/(\theta + 1))\}\\ &= r/(\beta + r + 1)^2 + ((\beta + 1)/(\beta + r + 1))^2(1/(1 + \beta))\\ &\to r/(r + 1)^2 + 1/(r + 1)^2\\ &= 1/(r + 1). \end{split}$$

2.11.13. The rule d_0 of formula(2.32) is admissible for the problem considered there because it is unique Bayes with respect to the $\mathcal{B}e(\sqrt{n}/2, \sqrt{n}/2)$ prior.

2.11.14. (a) The density functions for θ and X are

$$g(\theta) = \binom{M}{\theta} \frac{B(\alpha + \theta, \beta + M - \theta)}{B(\alpha, \beta)} \qquad \qquad f(x|\theta) = \frac{\binom{n}{x}\binom{M-n}{\theta-x}}{\binom{M}{\theta}},$$

where $B(\alpha, \beta)$ is the beta function, $B(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha + \beta)$. Since $\sum g(\theta) = 1$, we have the identity

$$\sum_{\theta} \binom{M}{\theta} B(\alpha + \theta, \beta + M - \theta) = B(\alpha, \beta)$$

from which we may compute the marginal distribution of X:

$$f(x) = \sum_{\theta} \binom{n}{x} \binom{M-n}{\theta-x} \frac{B(\theta+\alpha, M+\beta-\theta)}{B(\alpha, \beta)} \qquad (\text{let } \tau = \theta - x)$$
$$= \binom{n}{x} \sum_{\tau} \binom{M-n}{\tau} \frac{B(\tau+x-\alpha, (M-n)+(n-x+\beta))}{B(\alpha, \beta)}$$
$$= \binom{n}{x} \frac{B(\alpha+x, \beta+n-x)}{B(\alpha, \beta)}$$

which is beta-binomial, $\mathcal{BB}(\alpha, \beta, n)$.

(b) The conditional distribution of $\tau = \theta - x$ given X = x has density $f(x|\tau + x)g(\tau + x)/f(x)$ which is easily computed to be the beta-binomial, $\mathcal{BB}(\alpha + x, \beta + n - x, M - n)$.

(c) Since the mean of $\mathcal{BB}(\alpha, \beta, n)$ is $n\alpha/(\alpha + \beta)$, the Bayes estimate of θ , being x plus the mean of $\mathcal{BB}(\alpha + x, \beta + n - x, M - n)$, is

$$d_{\alpha,\beta}(x) = x + (M-n)(\alpha+x)/(\alpha+\beta+n)$$

= [(M + \alpha + \beta)x + \alpha(M-n)]/(\alpha + \beta + n)

which is linear in x.

(d) The risk function of the linear estimate d(x) = ax + b is

$$R(\theta, d) = E_{\theta}(\theta - aX - b)^2$$

= Var(aX + b|\theta) + (\theta - an\theta/M - b)^2
= a^2 n \theta(M - \theta)(M - n)/(M^2(M - 1)) + (\theta(1 - an/M) - b)^2

(e) Assume 0 < n < M to avoid trivial cases. The risk in (d) is quadratic in θ and can be made constant by choosing a and b so that the linear and quadratic terms disappear, giving constant risk b^2 . The linear and quadratic terms are proportional to

$$\theta^{2}[-a^{2}n(M-n) + (M-an)^{2}(M-1)]$$
 and $\theta[a^{2}n(M-n) - 2b(M-an)(M-1)]$

Setting the coefficients of the linear and quadratic terms to zero gives a = M/2, b = M/4 when n = 1, and for n > 1:

$$a = (1 \pm \delta)(M-1)/(n-1)$$
 and
 $b = n(M-n)a^2/(2(M-an)(M-1)) = (M-an)/2$

(or the values given in the text), where $\delta = ((M - n)/n(M - 1))^{1/2}$.

(f) To check that d(x) is a Bayes rule, we equate to (c) and solve for α and β to see that both are positive. This occurs if the minus sign is used in the formula for a, and we find

$$\alpha = \beta = b/(a-1) = M\delta n/(2(M - (1+\delta)n)).$$

This is positive if and only if n < M - 1, and so the resulting rule is minimax in this case. For example, if M = 9 and n = 3, we find $\delta = 1/2$, a = 2, and b = 3/2, so that d(x) = 2x + 3/2 is minimax with constant risk 9/4.

If n = M - 1, the above analysis does not work, but one can try to show that the corresponding equalizer d(x) = x + 1/2 is minimax by showing it is extended Bayes (ϵ -Bayes with respect to $\mathcal{BB}(\alpha, \beta, M)$ for $\alpha = \beta$ sufficiently large) or Bayes with respect to the binomial distribution, $\mathcal{B}(M, 1/2)$.

2.11.15. The rule $d(x) \equiv 1/2$ has constant risk function, $R(\theta, d) \equiv 1$. Moreover, the risk at $\theta = 1/2$ of any rule, δ , is 1, $R(1/2, \delta) = 1$, so $\inf_{\delta} \sup_{\theta} R(\theta, \delta) = 1$. Hence, $\sup_{\theta} R(\theta, d) = \inf_{\delta} \sup_{\theta} R(\theta, \delta)$, and d is minimax.

2.11.16. The risk function for the rule $d = \mathbf{x} \in D = \{\mathbf{x} = (x_0, x_1, \dots, x_n) : 0 \le x_j \le 1 \text{ for all } j\}$ is

$$R(\theta, d) = \sum_{j=0}^{n} \binom{n}{j} \theta^{j} (1-\theta)^{n-j} L(\theta, x_j).$$

Since $L(\theta, 0) \equiv 1$, the rule $d_0 = \mathbf{0}$ has constant risk, $R(\theta, \mathbf{0}) = 1$. We are to show that d_0 is the unique minimax rule. We will show that for any rule $\delta \in D^*$ other than d_0 there exists a value of θ such that $R(\theta, \delta) > 1$.

$$R(\theta, \delta) = \int R(\theta, \mathbf{x}) \, d\delta(\mathbf{x})$$
$$= \sum_{j=0}^{n} {n \choose j} \theta^{j} (1-\theta)^{n-j} L(\theta, \delta_{j})$$

where $\delta_j \in \mathcal{A}^*$ is the marginal distribution of x_j . First we note the following lemma. Lemma. For $\delta \in \mathcal{A}^*$, $L(\theta, \delta) \to 1 + \delta(0, 1]$ as $\theta \to 0$. Proof.

$$\begin{split} L(\theta, \delta) &= \int L(\theta, a) \, d\delta(a) = \int_{0^+}^1 L(\theta, a) \, d\delta(a) + \delta(0) \\ &\to \int_{0^+}^1 2 \, d\delta(a) + \delta(0) \\ &= 2\delta(0, 1] + 1 - \delta(0, 1] = 1 + \delta(0, 1]. \quad \blacksquare$$

We now proceed to show that for any rule δ not degenerate at **0**, $R(\theta, \delta) > 1$ for θ sufficiently close to zero. If, δ_0 is not degenerate at zero, then $R(\theta, \delta) \to 1 + \delta_0(0, 1] > 1$ as $\theta \to 0$. If δ_0 is degenerate at zero, then $R(\theta, \delta) \to 1 + \delta_0(0, 1] > 1$ as $\theta \to 0$. If δ_0 is degenerate at zero, then $R(\theta, \delta) \to 1$, unfortunately; so instead we work with

$$R(\theta,\delta) - 1 = \sum_{j=0}^{n} \binom{n}{j} \theta^{j} (1-\theta)^{n-j} (L(\theta,\delta_{j}) - 1)$$

If δ_0 is degenerate at zero but δ_1 is not, then

$$\begin{aligned} (R(\theta,\delta)-1)/\theta &= n(1-\theta)^{n-1}(L(\theta,\delta_1)-1) + \theta \cdot (\text{other terms}) \\ &\to \delta_1(0,1] > 0 \quad \text{as} \quad \theta \to 0. \end{aligned}$$

Hence, $R(\theta, \delta) > 1$ for θ sufficiently close to zero. Similarly, if δ is not degenerate at $\mathbf{0}$, there is a smallest j such that δ_j is not degenerate at zero, and then

$$(R(\theta, \delta) - 1)/\theta^j \rightarrow \delta_j(0, 1] > 0$$

showing that $R(\theta, \delta) > 1$ for θ sufficiently close to zero.