
Solutions to the Exercises of Section 2.11.

2.11.1. Proof. Let ε be an arbitrary positive number. Since r(τn, δn) → C , we can find an integer n
such that r(τn, δn) ≥ C − ε . Then, as in the proof of Theorem 1,

V ≤ sup
θ

R(θ, δ0) ≤ C ≤ r(τn, δn) + ε ≤ inf
δ

r(τn, δ) + ε ≤ V + ε.

Since this holds for all ε > 0, we have

V ≤ sup
θ

R(θ, δ0) ≤ C ≤ V .

This shows that the value exists and is equal to C and that δ0 is minimax.

2.11.2. Proof. Let τ0 be least favorable and let θ0 be in the support of τ0 . (This means for every
ε > 0 that τ0(θ0 − ε, θ0 + ε) > 0.) Suppose that R(θ0, δ0) < V . Since R(θ, δ0) is continuous, there exists an
ε > 0 such that R(θ, δ0) < V for all θ in (θ0 − ε, θ0 + ε), a set of positive measure. But since δ0 is minimax,
we must have R(θ, δ0) ≤ V for all θ . Hence,

V = r(τ0, δ0) =
∫

R(θ, δ0) dτ0(θ) < V.

This contradiction completes the proof.

2.11.3. Proof: Let δ0 be an equalizer rule with R(θ, δ0) ≡ c . If δ0 were not minimax, then there would
exist a rule δ′ such that supθ R(θ, δ′), call it v , would be strictly less than supθ R(θ, δ0) = c . For any ε
such that 0 < ε < c− v and any prior, π , we have

r(π, δ0) = c > v + ε ≥ r(π, δ′) + ε.

Thus, δ0 cannot be ε-Bayes with respect to any prior distribution, and so δ0 cannot be an extended Bayes
rule.

2.11.4. If d is an equalizer rule, then R(θ, d) ≡ c for some constant c . Hence, r(τ, d) = c for all τ ∈ Θ∗ ,
and hence supτ r(τ, d) = c . If d were not minimax, then there would exist a rule d0 with smaller maximum
risk: supτ r(τ, d0) = c1 < c . This implies R(θ, d0) ≤ c1 < c = R(θ, d) for all θ , showing that d is not
admissible.

2.11.5. Take Θ = {1, 2, . . .} and A = {0, 1, 2, . . .} and L(θ, a) = 1 if θ < a , L(θ, a) = −1 if 0 < a < θ ,
and L(θ, a) = 0 if a = θ or if a = 0. Then d ≡ 0 is an equalizer rule (L(θ, 0) ≡ 0), and d is admissible
since nature can do better than zero against any δ 
= d by taking θ large enough. Hence, d is minimax
from 2.11.4. But the value does not exist since the lower value is still −1 as in (2.24) on pg. 83, and the
upper value is now zero. Furthermore, d cannot be Bayes with respect to any τ , since r(τ, d) ≡ 0 and the
statistician can do better than zero against τ by choosing a sufficiently large.

2.11.6. In the problem with Θ = {θ1, θ2} , A = [0, π/2] and loss L(θ1 , a) = − cos(a), L(θ2, a) = − sin(a),
the loss is convex in a for each θ so that attention may be restricted to the nonrandomized rules. The
observations are X = 0 or 1, with P (X = 1|θ1) = 1/3, and P (X = 1|θ2) = 2/3. The nonrandomized rules
are of the form (a0, a1) where aj is the action we take if X = j is observed, j = 0 or 1. For d = (a0, a1),
we have

R(θ1, d) = −(1/3) cos(a1) − (2/3) cos(a0)
R(θ2, d) = −(2/3) sin(a1) − (1/3) sin(a0).

If τ0 gives probability 1/2 to each state of nature, then

r(τ0, d) = −(1/6)(cos(a1) + 2 sin(a1) + 2 cos(a0) + sin(a0)).



The values of a0 and a1 that minimize this may be found by taking derivatives and equating to zero. This
gives tan(a1) = 2 and tan(a0) = 1/2, which gives the Bayes rule with respect to τ0 , call it d0 . From this,
we find sin(a1) = 2/

√
5 = cos(a0) and cos(a1) = 1/

√
5 = sin(a0), so that the risk function of d0 is

R(θ1, d0) = −(1/3)(1/
√

5 + 4/
√

5) = −
√

5/3.

R(θ2, d0) = −(1/3)(4/
√

5 + 1/
√

5) = −
√

5/3.

Thus, the Bayes risk of d0 is also −
√

5/3, so from Theorem 2.11.1 we may conclude that d0 is minimax
and τ0 is least favorable.

2.11.7. (a) Since A = [0, 1] and X takes on two values, say X = 1 if heads and X = 0 if tails, D is
the unit square, where d = (a0, a1) represents the decision to choose aj if X = j .

(b) If d = (x, y) ∈ D , then

R(1/3, d) = (2/3)x2 + (1/3)y2

R(2/3, d) = (1/3)(1 − x) + (2/3)(1 − y).

(c) A prior distribution may be represented by p , the probability that θ = 1/3. The Bayes risk of
d ∈ D is

r(p, d) = p[2x2 + y2]/3 + (1 − p)[(1 − x) + 2(1 − y)]/3.

Setting derivatives with respect to x and y to zero gives 4px− (1 − p) = 0 and 2py − 2(1 − p) = 0, from
which we find the Bayes rule to be

x = (1 − p)/4p if p > 1/5 and x = 1 if p > 1/5.
y = (1 − p)/p if p > 1/2 and y = 1 if p ≤ 1/2.

The set of such (x, y) as p ranges from 0 to 1 consists of two lines, the line y = 4x from (0,0) to (1/4,1)
(for p > 1/2), and the line y = 1 from (1/4,1) to (1,1) (for p ≤ 1/2).

(d) We search for an equalizer rule on the line y = 4x . Set R(1/3, (x, 4x)) = R(2/3, (x, 4x)) and solve
for x : (2/3)x2 + (1/3)(4x)2 = (1/3)(1 − x) + (2/3)(1 − 4x) implies that 6x2 + 3x− 1 = 0. Since this gives
x = (

√
33− 3)/12 = .2287 · · · and y = (

√
33− 3)/3 = .9148 · · · and both are in A , this is the minimax rule.

The minimax risk is 1 − 3x = .3139 · · ·.
2.11.8. The risk function of the rule d(x) = x/n is

R(θ, d) = E{(X/n− θ)2/(θ(1 − θ))|θ} = Var(X/n|θ)/(θ(1 − θ))
= {θ(1 − θ)/n}/(θ(1 − θ)) = 1/n,

a constant, so that d is an equalizer rule. From Exercise 1.8.9, d is a Bayes rule for the uniform prior
distribution on θ . Therefore, from Theorem 3, the rule d is minimax.

2.11.9. (a)

R(θ, d) = Eθ(
(θ − d(X))2

(1 − θ)
)

=
∞∑

x=0

(θ2 − 2θd(x) + d(x)2)θx

= d(0)2 + θ(d(1)2 − 2d(0)) +
∞∑

x=2

(d(x)2 − 2d(x− 1) + 1)θx

(b) d is an equalizer rule if and only if

d(1)2 = 2d(0) and

d(x)2 = 2d(x− 1) − 1 for x = 2, 3, . . .
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We are to show that the only solution in A to these equations is given by d(0) = 1/2 and d(x) = 1 for
x ≥ 1. For x ≥ 2, the lower equations imply that 2d(x − 1) = d(x)2 + 1 = (d(x) − 1)2 + 2d(x) ≥ 2d(x),
so that the d(x) are nonincreasing from x = 1 on. Hence, the d(x) converge, say, to some number c , and
applying limx→∞ to the lower equations gives c2 = 2c− 1, from which we conclude that c must be equal to
one. The only nonincreasing sequence in [0,1] that converges to one is the sequence identically one. Hence,
d(1) = d(2) = · · · = 1, and from the top equation, d(0) = 1/2 is the unique equalizer rule.

(c) From part (a),

r(τ, d) = E R(θ, d)

= d(0)2 + µ1(d(1)2 − 2d(0)) +
∞∑

x=2

(d(x)2 − 2d(x− 1) + 1)µx

We may find the Bayes rule by taking the derivative with respect to each d(x) separately, and setting equal
to zero, to find

dτ(x) = µx+1/µx for x = 0, 1, 2, . . .

(d) For d to be a Bayes rule with respect to τ , we must have d(x) = µx+1/µx for x = 0, 1, 2, . . ., which
reduces to µ1 = µ2 = µ3 = · · · = 1/2. There is a distribution, τ , with these moments, namely, the two
point distribution, τ (0) = 1/2, and τ (1) = 1/2. Unfortunately, 1 is not in the parameter space, so d is not
a Bayes rule. To show that it is extended Bayes, we look at the distributions, τε , that give weight 1/2 to
0 and weight 1/2 to 1 − ε . For this distribution, µx = (1 − ε)x/2 and the Bayes rule with respect to τε is
dε(0) = (1 − ε)/2, and dε(x) = 1 − ε for x = 1, 2, . . .. To compute the minimum Bayes risk, note since dε

takes on only two values,

R(θ, dε) = (1 − θ)
(θ − (1 − ε)/2)2

1 − θ
+ θ

(θ − (1 − ε))2

1 − θ

and since θ takes on only two values,

r(τε, dε) =
1
2

(
1 − ε

2
)2 +

1
2

(ε− 1 − ε

2
)2 =

(1 − ε)2

4
.

Since the constant risk of the rule d is 1/4, and since the minimum Bayes risk of τε converges to 1/4 as
ε → 0, d is extended Bayes and hence minimax.

2.11.10. (a) The risk function of the rule d0 is

R(θ, d0) = Eθ(µ1 −
X +

√
n

n +
√
n

)2 = Var(
X +

√
n

n +
√
n

) + (µ1 −
nµ1 +

√
n

n +
√
n

)2

=
nσ2

(n +
√
n)2

+
(µ1

√
n−√

n/2)2

(n +
√
n)2

=
n(µ2 − µ1 + 1/4)

(n +
√
n)2

This risk is maximized by that distribution, θ on [0, 1] , that maximizes µ2 − µ1 = −E(Z(1 −Z)), where Z
has distribution θ . This is never positive and is equal to zero if and only if θ gives all its mass to the points
Z = 0 and Z = 1. The maximum risk is then maxθ R(θ, d0) = (1/4)/(

√
n + 1)2 .

(b) From pages 93-94, d0 is a Bayes rule with respect to the distribution that chooses p at random from
a Beta distribution, Be(√n/2,

√
n/2), and gives mass p to 1 and mass 1− p to 0. The minimum Bayes risk

with respect to this prior is (1/4)/(
√
n + 1)2 , the same as the maximum risk of the rule d0 . Hence d0 is

minimax from Theorem 1.

2.11.11. (a) R(θ, d0) = Eθ{(θ −X)2/θ} = θ/θ = 1.
(b) The generalized Bayes risk is

∞∑
x=0

∫ ∞

0

(θ − d(x))2e−θθx−1/x! dθ.
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For x = 0, the integral is +∞ unless d(0) = 0. For x > 0, the integral is minimized if d(x) is chosen to be
the mean of the gamma distribution, G(x, 1), namely, d(x) = x . Thus, d0 is a generalized Bayes rule.

(c) For the prior τα,β = G(α, β), the posterior distribution is proportional to e−θθxe−θ/βθα−1 , so that
the posterior distribution is G(α + x, β/(β + 1)). The Bayes risk is proportional to

∞∑
x=0

∫ ∞

0

(θ − d(x))2e−θ−θ/βθα+x−2 dθ/x!.

If α+x− 1 ≤ 0, the integral is infinite unless d(0) = 0. For α+ x− 1 > 0, the integral is minimized by the
mean of G(α + x− 1, β/(β + 1)), namely, (α + x− 1)β/(β + 1). This determines the Bayes rule to be

dα,β(x) = max{0, (α + x− 1)β/(β + 1)}.

(d) Take α = 1 and find the risk function of the rule d1,β

R(θ, d1,β) = Eθ(θ − βX/(β + 1))2/θ

= Var(βX/(β + 1)|θ)/θ + (θ − βθ/(β + 1))2/θ

= (β/(β + 1))2 + θ/(β + 1)2.

The minimum Bayes risk is thus

r(τ1,β, d1,β) = ER(θ, d1,β)

= (β/(β + 1))2 + β/(β + 1)2 = β/(β + 1).

As β → ∞ , this risk tends to 1. Since the rule of part (a) has constant risk 1, its Bayes risk is also 1,
showing that it is ε-Bayes for every ε > 0. This implies that it is minimax.

2.11.12. (a) X has the negative binomial distribution, NB(r, p) = NB(r, θ/(θ+1)), where θ = p/(1−p)
represents the odds. Since E(X|θ) = rp/(1 − p) = rθ and Var(X|θ) = rp/(1 − p)2 = rθ(θ + 1), we have

R(θ, d0) = Var(X/r|θ)/(θ(θ + 1)) = rθ(θ + 1)/(r2θ(θ + 1)) = 1/r.

(b) The generalized Bayes rule minimizes for each x

(1)
∫ ∞

0

(θ − d(x))2

θ(θ + 1)
θx(θ + 1)−(r+x) dθ.

If x = 0, the integral is infinite unless d(0) = 0. For x > 0, the minimum occurs at

d(x) =
∫

θx(θ + 1)−(r+x+1) dθ/

∫
θx−1(θ + 1)−(r+x+1) dθ

=
∫

px(1 − p)r−1 dp/

∫
px−1(1 − p)r dp

= (Γ(x + 1)Γ(r)/Γ(x + r + 1))/(Γ(x)Γ(r + 1)/Γ(x + r + 1)) = x/r.

(A minor point: If r = 1, the integral (1) is infinite no matter what d(x) is chosen to be, so technically d(x)
could be anything.)

(c) When θ has the indicated distribution (p ∈ Be(α, β)), the minimum of the Bayes risk occurs at 0 if
α + x− 1 ≤ 0, and otherwise at

dα,β(x) =
∫
θα+x−1(θ + 1)−(α+β+r+x+1 dθ∫
θα+x−2(θ + 1)−(α+β+r+x+1 dθ

=
α + x− 1
β + r + 1

.
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(d) The risk function of d(x) = x/(r + 1) is

R(θ, d) = [Var(X/(r + 1)|θ) + (θ − rθ/(r + 1))2]/(θ(θ + 1))

= r/(r + 1)2 + (θ/(θ + 1))/(r + 1)2.

Since θ/(θ + 1) < 1 for all θ , we have R(θ, d) < 1/(r + 1) < 1/r , the risk of d0 , so d0 is not minimax
in spite of the fact that it is an equalizer and generalized Bayes. (This shows that d0 cannot be extended
Bayes.) To show that d is minimax, we note that d is a limit of Bayes rules in part (c) for α = 1 as β → 0.
We show that the minimum Bayes risk of d1,β tends to 1/(r + 1) as β → 0; then, Theorem 2 implies that
d is minimax.

r(τ1,β, d1,β) = E{(θ−X/(β + r + 1))2/(θ(θ + 1))}
= E{[Var(X/(β + r + 1)|θ) + (θ − rθ/(β + r + 1))2]/(θ(θ + 1))}
= E{r/(β + r + 1)2 + ((β + 1)/(β + r + 1))2(θ/(θ + 1))}
= r/(β + r + 1)2 + ((β + 1)/(β + r + 1))2(1/(1 + β))

→ r/(r + 1)2 + 1/(r + 1)2

= 1/(r + 1).

2.11.13. The rule d0 of formula(2.32) is admissible for the problem considered there because it is unique
Bayes with respect to the Be(

√
n/2,

√
n/2) prior.

2.11.14. (a) The density functions for θ and X are

g(θ) =
(
M

θ

)
B(α + θ, β + M − θ)

B(α, β)
f(x|θ) =

(
n
x

)(
M−n
θ−x

)
(
M
θ

) ,

where B(α, β) is the beta function, B(α, β) = Γ(α)Γ(β)/Γ(α + β). Since
∑

g(θ) = 1, we have the identity

∑
θ

(
M

θ

)
B(α + θ, β + M − θ) = B(α, β)

from which we may compute the marginal distribution of X :

f(x) =
∑

θ

(
n

x

)(
M − n

θ − x

)
B(θ + α,M + β − θ)

B(α, β)
(let τ = θ − x)

=
(
n

x

) ∑
τ

(
M − n

τ

)
B(τ + x− α, (M − n) + (n − x + β))

B(α, β)

=
(
n

x

)
B(α + x, β + n− x)

B(α, β)

which is beta-binomial, BB(α, β, n).
(b) The conditional distribution of τ = θ− x given X = x has density f(x|τ + x)g(τ + x)/f(x) which

is easily computed to be the beta-binomial, BB(α + x, β + n− x,M − n).
(c) Since the mean of BB(α, β, n) is nα/(α + β), the Bayes estimate of θ , being x plus the mean of

BB(α + x, β + n− x,M − n), is

dα,β(x) = x + (M − n)(α + x)/(α + β + n)
= [(M + α + β)x + α(M − n)]/(α + β + n)

which is linear in x .
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(d) The risk function of the linear estimate d(x) = ax + b is

R(θ, d) = Eθ(θ − aX − b)2

= Var(aX + b|θ) + (θ − anθ/M − b)2

= a2nθ(M − θ)(M − n)/(M2(M − 1)) + (θ(1 − an/M) − b)2

(e) Assume 0 < n < M to avoid trivial cases. The risk in (d) is quadratic in θ and can be made
constant by choosing a and b so that the linear and quadratic terms disappear, giving constant risk b2 . The
linear and quadratic terms are proportional to

θ2[−a2n(M − n) + (M − an)2(M − 1)] and θ[a2n(M − n) − 2b(M − an)(M − 1)]

Setting the coefficients of the linear and quadratic terms to zero gives a = M/2, b = M/4 when n = 1, and
for n > 1:

a = (1 ± δ)(M − 1)/(n− 1) and

b = n(M − n)a2/(2(M − an)(M − 1)) = (M − an)/2

(or the values given in the text), where δ = ((M − n)/n(M − 1))1/2 .
(f) To check that d(x) is a Bayes rule, we equate to (c) and solve for α and β to see that both are

positive. This occurs if the minus sign is used in the formula for a , and we find

α = β = b/(a− 1) = Mδn/(2(M − (1 + δ)n).

This is positive if and only if n < M − 1, and so the resulting rule is minimax in this case. For example, if
M = 9 and n = 3, we find δ = 1/2, a = 2, and b = 3/2, so that d(x) = 2x+ 3/2 is minimax with constant
risk 9/4.

If n = M − 1, the above analysis does not work, but one can try to show that the corresponding
equalizer d(x) = x+ 1/2 is minimax by showing it is extended Bayes (ε-Bayes with respect to BB(α, β,M)
for α = β sufficiently large) or Bayes with respect to the binomial distribution, B(M, 1/2).

2.11.15. The rule d(x) ≡ 1/2 has constant risk function, R(θ, d) ≡ 1. Moreover, the risk at θ = 1/2 of
any rule, δ , is 1, R(1/2, δ) = 1, so infδ supθ R(θ, δ) = 1. Hence, supθ R(θ, d) = infδ supθ R(θ, δ), and d is
minimax.

2.11.16. The risk function for the rule d = x ∈ D = {x = (x0, x1, · · · , xn) : 0 ≤ xj ≤ 1 for all j} is

R(θ, d) =
n∑

j=0

(
n

j

)
θj(1 − θ)n−jL(θ, xj).

Since L(θ, 0) ≡ 1, the rule d0 = 0 has constant risk, R(θ, 0) = 1. We are to show that d0 is the unique
minimax rule. We will show that for any rule δ ∈ D∗ other than d0 there exists a value of θ such that
R(θ, δ) > 1.

R(θ, δ) =
∫

R(θ,x) dδ(x)

=
n∑

j=0

(
n

j

)
θj(1 − θ)n−jL(θ, δj )

where δj ∈ A∗ is the marginal distribution of xj . First we note the following lemma.

Lemma. For δ ∈ A∗ , L(θ, δ) → 1 + δ(0, 1] as θ → 0 .

Proof.

L(θ, δ) =
∫

L(θ, a) dδ(a) =
∫ 1

0+
L(θ, a) dδ(a) + δ(0)

→
∫ 1

0+
2 dδ(a) + δ(0)

= 2δ(0, 1] + 1 − δ(0, 1] = 1 + δ(0, 1].
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We now proceed to show that for any rule δ not degenerate at 0 , R(θ, δ) > 1 for θ sufficiently close to
zero. If, δ0 is not degenerate at zero, then R(θ, δ) → 1 + δ0(0, 1] > 1 as θ → 0. If δ0 is degenerate at zero,
then R(θ, δ) → 1, unfortunately; so instead we work with

R(θ, δ) − 1 =
n∑

j=0

(
n

j

)
θj(1 − θ)n−j(L(θ, δj ) − 1)

If δ0 is degenerate at zero but δ1 is not, then

(R(θ, δ) − 1)/θ = n(1 − θ)n−1(L(θ, δ1) − 1) + θ · (other terms)
→ δ1(0, 1] > 0 as θ → 0.

Hence, R(θ, δ) > 1 for θ sufficiently close to zero. Similarly, if δ is not degenerate at 0 , there is a smallest
j such that δj is not degenerate at zero, and then

(R(θ, δ) − 1)/θj → δj(0, 1] > 0,

showing that R(θ, δ) > 1 for θ sufficiently close to zero.
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