Solutions to the Exercises of Section 2.2.

2.2.1. Since the distribution τ degenerate at θ has risk $r(\tau, \delta) = R(\theta, \delta)$, we have $\sup_{\tau \in \Theta^*} r(\tau, \delta) \ge \sup_{\theta \in \Theta} R(\theta, \delta)$. Suppose that $\sup_{\tau \in \Theta^*} r(\tau, \delta) > \sup_{\theta \in \Theta} R(\theta, \delta)$. This implies there exists a τ such that $R(\theta, \delta) < r(\tau, \delta)$ for all $\theta \in \Theta$. But $r(\tau, \delta)$ is the expectation of $R(\theta, \delta)$ over θ using the distribution τ and so is also less than $r(\tau, \delta)$, a contradiction that completes the proof.

2.2.2. We are given that the game has a value,

$$\inf_{\delta} \sup_{\tau} r(\tau, \delta) = \sup_{\tau} \inf_{\delta} r(\tau, \delta),$$

that τ_0 is least favorable,

$$\inf_{\delta} r(\tau_0, \delta) = \sup_{\tau} \inf_{\delta} r(\tau, \delta),$$

and that δ_0 is minimax,

$$\sup_{\tau} r(\tau, \delta_0) = \inf_{\delta} \sup_{\tau} r(\tau, \delta).$$

We are to show that δ_0 is Bayes with respect to τ_0 , i.e. that

$$r(\tau_0, \delta_0) \le \inf_{\delta} r(\tau_0, \delta).$$

This follows in one line:

$$r(\tau_0, \delta_0) \le \sup_{\tau} r(\tau, \delta_0) = \inf_{\delta} \sup_{\tau} r(\tau, \delta) = \sup_{\tau} \inf_{\delta} r(\tau, \delta) = \inf_{\delta} r(\tau_0, \delta)$$

2.2.3. We are given that the game has a value,

$$\inf_{\delta} \sup_{\tau} r(\tau, \delta) = \sup_{\tau} \inf_{\delta} r(\tau, \delta),$$

and that δ_0 is minimax,

$$\sup_{\tau} r(\tau, \delta_0) = \inf_{\delta} \sup_{\tau} r(\tau, \delta).$$

We are to show that δ_0 is extended Bayes, i.e. we must show that for every $\epsilon > 0$ there exists a prior, τ , such that

$$r(\tau, \delta_0) \le \inf_{\delta} r(\tau, \delta) + \epsilon.$$

The proof is by contradiction. Suppose the conclusion is false. Then there exists an $\epsilon > 0$ such that for every prior τ ,

$$r(\tau, \delta_0) > \inf_{\delta} r(\tau, \delta) + \epsilon.$$

Then, taking the supremum on both sides, we have

$$\sup_{\tau} r(\tau, \delta_0) \geq \sup_{\tau} \inf_{\delta} r(\tau, \delta) + \epsilon = \inf_{\delta} \sup_{\tau} r(\tau, \delta) + \epsilon > \inf_{\delta} \sup_{\tau} r(\tau, \delta)$$

contradicting the assumption that δ_0 is minimax.