Solutions to the Exercises of Section 1.6.

1.6.1. If δ_0 is minimax, then by definition, $\sup_{\theta \in \Theta} R(\theta, \delta_0) = \inf_{\delta \in D^*} \sup_{\theta \in \Theta} R(\theta, \delta)$. This implies that $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta)$ for all $\delta \in D^*$. This in turn implies that $R(\theta', \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta)$ for all $\theta' \in \Theta$ and for all $\delta \in D^*$.

Conversely, if $R(\theta', \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta)$ for all $\theta' \in \Theta$ and for all $\delta \in D^*$, then $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta)$ for all $\delta \in D^*$. This in turn implies that $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \inf_{\delta \in D^*} \sup_{\theta \in \Theta} R(\theta, \delta)$. But the left side cannot be less than the right side; so we have equality, showing that δ_0 is minimax.

1.6.2. If δ_0 is ϵ -minimax for some $\epsilon > 0$, then by definition, $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \inf_{\delta \in D^*} \sup_{\theta \in \Theta} R(\theta, \delta) + \epsilon$. ϵ . This implies that $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta) + \epsilon$ for all $\delta \in D^*$. This in turn implies that $R(\theta', \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta) + \epsilon$ for all $\theta' \in \Theta$ and for all $\delta \in D^*$.

Conversely, if for some $\epsilon > 0$, $R(\theta', \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta) + \epsilon$ for all $\theta' \in \Theta$ and for all $\delta \in D^*$, then $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \sup_{\theta \in \Theta} R(\theta, \delta) + \epsilon$ for all $\delta \in D^*$. This in turn implies that $\sup_{\theta \in \Theta} R(\theta, \delta_0) \leq \inf_{\delta \in D^*} \sup_{\theta \in \Theta} R(\theta, \delta) + \epsilon$, showing that δ_0 is ϵ -minimax.

1.6.3. If τ_0 is least favorable, then by definition, $\inf_{\delta \in D^*} r(\tau_0, \delta) = \sup_{\tau \in \Theta^*} \inf_{\delta \in D^*} r(\theta, \delta)$. This implies that $\inf_{\delta \in D^*} r(\tau_0, \delta) \ge \inf_{\delta \in D^*} r(\tau, \delta)$ for all $\tau \in \Theta^*$. This in turn implies that $r(\tau_0, \delta') \ge \inf_{\delta \in D^*} r(\tau, \delta)$ for all $\tau \in \Theta^*$ and for all $\delta' \in D^*$.

Conversely, if $r(\tau_0, \delta') \ge \inf_{\delta \in D^*} r(\tau, \delta)$ for all $\tau \in \Theta^*$ and for all $\delta' \in D^*$, then $\inf_{\delta \in D^*} r(\tau_0, \delta) \ge \inf_{\delta \in D^*} r(\tau, \delta)$ for all $\tau \in \Theta^*$. This in turn implies that $\inf_{\delta \in D^*} r(\tau_0, \delta) \ge \sup_{\tau \in \Theta^*} \inf_{\delta \in D^*} r(\theta, \delta)$. But the left side cannot be greater than the right side; so we have equality, showing that τ_0 is least favorable.