Large Sample Theory Ferguson

Exercises, Section 19, The Cramér-Rao Lower Bound.

1. (Relation of Kullback-Leibler information to Fisher information.) Let $f_{\theta}(x)$ be the density of a one-parameter exponential family of distributions in natural parametrization, $f_{\theta}(x) = \exp\{\theta T(x) - c(\theta)\}h(x)$. Let θ_0 be an interior point of the natural parameter space. Find the Kullback-Leibler information number, $K(f_{\theta_0}, f_{\theta})$, for an arbitrary θ and show that as $\theta \to \theta_0$, $K(f_{\theta_0}, f_{\theta}) \sim (\theta - \theta_0)^2 \mathcal{I}(\theta_0)/2$, where $\mathcal{I}(\theta)$ is Fisher information.

2. (a) Prove the following version of the Information Inequality that is valid without assuming derivatives. Assume that the support of $f(x|\theta)$ does not depend on θ , and let $\hat{\theta}(x)$ be a statistic with finite expectation, $g(\theta) = E_{\theta}(\hat{\theta})$, for all θ . Then for all θ' and θ ,

$$\operatorname{Var}_{\theta}(\hat{\theta}(X)) \ge \frac{(g(\theta') - g(\theta))^2}{\operatorname{Var}_{\theta}(f(X|\theta') / f(X|\theta))}$$

(b) Dividing the numerator and denominator on the right by $(\theta' - \theta)^2$ and letting $\theta' \to \theta$ gives the usual Information Inequality. This shows that we can define Fisher information more generally by $\mathcal{I}(\theta) = \lim_{\theta' \to \theta} (\theta' - \theta)^{-2} \operatorname{Var}_{\theta}(f(X|\theta')/f(X|\theta))$. Using this definition, find Fisher information for the double exponential distribution, $f(x|\theta) = (1/2) \exp\{-|x-\theta|\}$. Does the maximum likelihood estimate achieve the Cramér-Rao bound in the limit as the sample size goes to infinity?

(c) Find Fisher information for density $f(x|\theta) = \theta I(0 < x < \theta) + (1+\theta) I(\theta < x < 1)$, where the parameter space is $\Theta = (0, 1)$. Can you find an estimate of θ asymptotically as good as is indicated by Fisher information?

3. (a) Find Fisher information for the two-parameter extreme-value distribution with distribution function $F(x|\mu,\sigma) = \exp\{-e^{-(x-\mu)/\sigma}\}$. Using Maple, one finds that $-\int_0^\infty \log(y)e^{-y} dy = \gamma = \text{Euler's constant} = .57722\cdots = -\mathbf{F}(1).$

(b) Find the Cramér-Rao lower bound to the variance of an unbiased estimate of μ/σ based on a sample of size n.

4. (Sequential Information Inequality.) Let X_1, X_2, \ldots be a sequence of i.i.d. random variables whose density, $f(x|\theta)$, exists and satisfies the conditions of Theorem 19. Let N be a stopping time (i.e. N is a random variable taking positive integer values such that for all n, the event $\{N = n\}$ depends only on the variables X_1, \ldots, X_n). Let $\{\hat{\theta}_n(X_1, \ldots, X_n\}_{n=1}^{\infty}$ be a sequence of estimates of θ with finite expectations and consider the estimate $\hat{\theta}_N =$ $\sum_{1}^{\infty} \hat{\theta}_n(X_1, \ldots, X_n) I\{N = n\}$. Let $g(\theta) = E_{\theta} \hat{\theta}_N$. Show that

$$\operatorname{Var}_{\theta}(\hat{\theta}_N) \ge \frac{g'(\theta)^2}{\mathcal{I}(\theta)E_{\theta}N}.$$

(You may use Wald's equations: If Y_1, Y_2, \ldots are i.i.d. with finite mean, μ , and if N is a stopping time depending on the Y's such that $EN < \infty$, then $E(Y_1 + \cdots + Y_N) = \mu E(N)$. If in addition $\mu = 0$ and the variance is finite, then $E(Y_1 + \cdots + Y_N)^2 = Var(Y_1)E(N)$.) 5. Consider the linear regression model with observations $Y_i = \alpha + \beta x_i + \epsilon_i$ for i = 1, ..., n, where the x_i are known constants, α and β are unknown parameters, and ϵ_i are independent normal random errors with mean zero and known variance, σ^2 .

(a) Find the Fisher information matrix, $\mathcal{I}_n(\alpha,\beta)$ for this problem.

(b) Using the Fisher information matrix, find the Cramér-Rao lower bound for the variance of an unbiased estimate of β . Is it attained?

(c) What is the Cramér-Rao lower bound for the variance of an unbiased estimate of β when α is known? Is it attained?