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Pemantle’s problem (2000): Let ηt be a symmetric exlusion

process on Z1 with transition probabilities

p(x, y) = p(y, x) = p(y − x)

and η0 : · · · 1 1 1 0 0 0 · · · , and let

Nt =
∑

x>0

ηt(x).

Is it true that

Nt − ENt

[var(Nt)]1/2
⇒ N(0, 1)?



Negative Correlations

Andjel (1988): If A ∩ B = ∅, then

P η(ηt ≡ 1 on A, ηt ≡ 1 on B) ≤ P η(ηt ≡ 1 on A)P η(ηt ≡ 1 on B).

The same proof does not give

P η(ηt ≡ 1 on A, ηt ≡ 0 on B) ≥ P η(ηt ≡ 1 on A)P η(ηt ≡ 0 on B).

Now we know:

Theorem. For any symmetric exclusion process with deter-

ministic (or product) initial distribution,

(a) ηt is negatively associated (NA), i.e.,

Ef(ηt)g(ηt) ≤ Ef(ηt)Eg(ηt)

for all f, g ↑ depending on disjoint sets of coordinates, and

(b) ∀T, ∃ independent Bernoulli random variables ζ(x) so

that
∑

x∈T

ηt(x) and
∑

x∈T

ζ(x)

have the same distribution.

Corollary. If var(Nt) → ∞, then Nt satisfies the CLT.



The Strong Rayleigh Property

The generating polynomial of a p.m. µ on {0, 1}n is

f(z1, ..., zn) = Eµ

n
∏

i=1

z
η(i)
i .

Then

∂f

∂zi

∣

∣

∣

∣

zk≡1

= Eµη(i),
∂2f

∂zi∂zj

∣

∣

∣

∣

zk≡1

= Eµη(i)η(j).

Pairwise negative correlations is equivalent to

(*) f(z)
∂2f

∂zi∂zj
(z) ≤ ∂f

∂zi
(z)

∂f

∂zj
(z)

for zk ≡ 1.

Definitions. (a) µ is Strong Rayleigh (SR) if (*) holds for

all z ∈ Rn.

(b) µ is stable if f 6= 0 if ℑ(zk) > 0 for all k.

Remark. If µ = να is a product measure, then

f(z) =

n
∏

i=1

[αizi + (1 − αi)],

so µ is SR — (*) holds with equality — and stable.



Results about the Strong Rayleigh Property

Theorem. (Brändén (2007)) SR is equivalent to stability.

Why is this true? Think of it as an analogue of the qua-

dratic formula for the roots of ax2 + bx + c: Stability is a

statement about whether there are roots in the upper half

plane. SR is like a discriminant condition.

Theorem. SR =⇒ NA.

Proof. Based on the Feder-Mihail (1992) proof of NA for the

uniform spanning tree measure. Easier if
∑

x η(x) is constant.

Key use of SR property: If µ is SR on {0, 1}n, then so is

its “symmetric homogenization” on {0, 1}2n, which satisfies
∑

x η(x) constant.

Theorem. If the initial distribution of a symmetric exclusion

process is SR, then so is the distribution at time t.

Proof. It is sufficient to prove it for exclusion on two sites, i.e.

that stability is preserved by the transformation:

µ → Tµ = pµ + (1 − p)µi,j .

(µi,j is obtained from µ by permuting η(i), η(j).)



Suppose f is stable. Need to show that if ℑ(zk) > 0 for all

k, then Tf(z) 6= 0. Fix zk for k 6= i, j. Need to show that

T preserves stability of polynomials of the form h(z, w) =

a+bz+cw+dzw. with complex a, b, c, d. If not all coefficients

are zero, h is stable iff

ℜ(bc − ad) ≥ |bc − ad|,

ℑ(ab) ≥ 0, ℑ(ac) ≥ 0, ℑ(bd) ≥ 0, ℑ(cd) ≥ 0.

Theorem. If the distribution of {η(i), 1 ≤ i ≤ n} is SR, then

there exist independent Bernoulli {ζ(i), 1 ≤ i ≤ n} so that

∑

i

η(i) and
∑

i

ζ(i)

have the same distribution.

Proof. f(z, z, ..., z) = Ez
∑

η(i) is not zero if Im(z) > 0 or if

Im(z) < 0 or if z > 0. So all roots are negative:

Ez
∑

η(i) =
∏

i

[αiz + (1 − αi)],

where the roots are −(1 − αi)/αi.



Back to the CLT for the Exclusion Process

Theorem. Suppose σ2 =
∑

n n2p(n) < ∞. Then

Nt − ENt

[var(Nt)]1/2
⇒ N(0, 1).

Furthermore,

lim
t→∞

ENt√
t

=
σ√
2π

and 0 < c1 ≤ var(Nt)√
t

≤ c2 < ∞.

Proof. Need to consider the first two moments of Nt. Let

Xt, Yt be independent copies of the random walk. By duality,

ENt =
∑

x>0

P (ηt(x) = 1) =
∑

x>0

P x(Xt ≤ 0) = E0X+
t .

Similarly,

∑

x>0

[

P (ηt(x) = 1)
]2

= E(0,0) min(X+
t , Y +

t ).

So,
∑

x>0

var(ηt(x)) ∼ σ

2
√

π

√
t.



Let

K(t) = −
∑

x,y>0;x 6=y

cov(ηt(x)ηt(y)).

Then if f(x, y) = 1{x,y≤0},

K(t) =
∑

x,y>0;x 6=y

[U(t) − V (t)]f(x, y)

=
∑

x,y>0;x 6=y

∫ t

0

V (t − s)(U − V )U(s)f(x, y)ds

≤
∫ t

0

∑

x<y

p(x, y)
[

P 0(x ≤ Xs < y)
]2

γ(t − s, x, y)ds,

where

γ(t, x, y) = P 0(Xt < x)P 0(Xt < y) + P 0(Xt ≥ x)P 0(Xt ≥ y).

Using γ(t, x, y) ≤ 1 leads to

lim sup
t→∞

K(t)√
t

≤ σ

2
√

π
.

Being more careful, one gets

lim sup
t→∞

K(t)√
t

<
σ

2
√

π
.



Poisson Convergence

Theorem. Suppose the Bernoulli random variables {ηn(x)}
are strong Rayleigh for each n. If

lim
n→∞

∑

x

Eηn(x) = λ, lim
n→∞

∑

x

[Eηn(x)]2 = 0,

and

lim
n→∞

∑

x 6=y

Cov(ηn(x), ηn(y)) = 0,

then
∑

x

ηn(x) ⇒ Poisson(λ).

Application to Symmetric Exclusion

Recall that the extremal invariant measures µα are in one to

one correspondence with harmonic functions α(x) for P with

0 ≤ α(x) ≤ 1, and

µα = lim
t→∞

ναS(t).

Furthermore, µα = να iff α is constant.

Theorem. µα is SR, and hence NA



Example

Let P be simple random walk on the binary tree:

l(x) : 2 1 0 0 1 2

Theorem. Suppose

α(x) =

{

1
3·2l(x) if x ∈ L,

1 − 1
3·2l(x) if x ∈ R.

Then with respect to µα,

∑

x∈L:l(x)=n

η(k) ⇒ Poisson (1/3)

σ−1
n

[

∑

x∈L:l(k)<n

η(x) − n

3

]

⇒ N(0, 1),

where 23
189 ≤ σ2

n/n ≤ 1
3 asymptotically.


