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Schramm’s Question: For which values of k , q does there exist a
stationary k−dependent q−coloring of Z?

This means: Xi ∈ [q] = {1, . . . , q} such that
(a) (Xi) =

d (Xi+1),
(b) Xi 6= Xi+1,
(c) (. . . ,Xi−2,Xi−1) and (Xi+k ,Xi+k+1, . . . ) are independent.



In 2008, Schramm knew:

(a) Impossible for q = 2, any k , since a stationary coloring must be

{
· · · 1212 · · · with probability 1

2 ;

· · · 2121 · · · with probability 1
2 .

(b) Impossible for q = 3, k = 1.
(c) Cannot be a block factor, i.e., Xi = f (Ui ,Ui+1, . . . ,Ui+r−1),
where Ui are i.i.d.
(d) Cannot be a Markov chain, or a function of a finite state
Markov chain.

Based on these (and other) negative results, Schramm conjectured
that the answer is always No.



However,

Theorem. There exists a stationary 1−dependent 4−coloring of Z
and a stationary 2−dependent 3−coloring of Z.

First, some of the negative results:

Proposition. There is no k−dependent q−coloring that is a
Markov chain.

Proof. Suppose P is the transition matrix for the [q]−valued
Markov chain Xi . By k−dependence, Xi is independent of X0 for
i > k . So, (Xk+1 | X0) =

d (Xk+2 | X0) = the stationary
distribution. Therefore, Pk+1(I − P) = 0, and the eigenvalues of P
are 0 and 1. However, since Xi is a coloring, the diagonal elements
of P are 0, so the trace is 0.



Proposition. There is no 1−dependent 3−coloring.

Proof. Fuxi Zhang observed that if Xi is a 1−dependent
q−coloring, then 1{Xi=1} is a renewal sequence, e.g.,

P(000100)

P(1)
=

P(00− 1− 0)

P(1)
= P(00)P(0),

P(0001)

P(1)

P(100)

P(1)
=

P(00− 1)

P(1)

P(1− 0)

P(1)
= P(00)P(0).

The renewal time T has probability generating function

EsT =
ps2

1− s + ps2
,

where p = P(X0 = 1). Singularities are at s = (1±√
1− 4p)/2p.

By Pringsheim’s Theorem, p ≤ 1
4 .



First Construction (q = 4).

Identify {1, 2, 3, 4} with {−,+}2, and write X =

(
Y

Z

)
, where

Y ,Z are binary ± sequences. The distribution µ of Y is
1−dependent. There are many possible choices for µ, e.g.,
Bernoulli(12) and Yi = sign(Ui − Ui−1), Ui i.i.d. U[0, 1].

More generally, 1−dependent binary sequences are determined by
the sequence un = µ(+ + · · ·++), where n = # +’s, since e.g.,

µ(+−+) = u21 − u3.

The sequence un must satisfy many inequalities. A large collection
can be described in terms of Polya frequency sequences.



Examples of the distribution of X :

2P

(
+
z

)
= µ(+), 22P

(
+ −
z1 z2

)
= µ(+−),

23P

(
+ − +
z1 z2 z3

)
= µ(+−+)− (−1)z1+z3µ(+ + +),

24P

(
+ − + −
z1 z2 z3 z4

)
= µ(+−+−)

−(−1)z1+z3µ(+ + +−)− (−1)z2+z4µ(+−−−),

25P

(
+ − + − +
z1 z2 z3 z4 z5

)
= µ(+−+−+)

−(−1)z1+z3µ(+ + +−+)− (−1)z2+z4µ(+−−−+)

−(−1)z3+z5µ(+−+++)

+(−1)z1+z5 [1 + (−1)z2+z4]µ(+ + +++).



The choice Yi = sign(Ui − Ui−1), Ui i.i.d. U[0, 1] is particularly
nice, since for example

µ(+ +−+−) = P(U0 < U1 < U2 > U3 < U4 > U5)

=
#linear extensions of POS 0 < 1 < 2 > 3 < 4 > 5

#linear orders of {0, 1, . . . , 5}

=
α(2, 1, 1, 1)

6!
.

Edelman, Hibi and Stanley (1989) proved (a more general version
of) the recursion

α(k1, k2, . . . ) = α(k1 − 1, k2, . . . ) + α(k1, k2 − 1, . . . ) + · · · .

For example, for the partial orders

0 < 1 < 2 > 3, 0 < 1 > 2, 0 < 1 < 2,

α(2, 1) = 3, α(1, 1) = 2, α(2) = 1.



The Formula.

P(x) = P

(
y

z

)
=

1

2m(n + 1)!

∑

w∈DD(m−1)

(−1)|w |c(w , y , z)α(yw ),

where
(a) x has length n and y has m runs.
(b) DD(m) is the set of dispersed Dyck words of length m.
Examples:

+−+− and + +−− are Dyck words;

0 + +−−00 +−++−− is a dispersed Dyck word.

(c) |w | is the number of +’s in w and c(w , y , z) = ±1.
(d) yw is obtained from y by eliminating runs in y according to w .
(e) α(y) = #π ∈ Sn+1 such that sign (πi+1 − πi) = yi .

Question: Why is P(x) ≥ 0?



Second Construction (q = 4).

Write P(x) = P(X1 = x1, . . . ,Xn = xn) for the above coloring.
Then the the following recursion holds, with P(∅) = 1:

P(x) =
1

2(n + 1)

n∑

i=1

P(x̂i), x ∈ [4]n, xi 6= xi+1 ∀ 1 ≤ i < n,

where x̂i is obtained from x by deleting xi . If x̂i is not a proper
coloring, set P(x̂i) = 0.

Consequence: P(x) ≥ 0 for all x .

What happens if the analogous construction is applied to other q’s?

(a) If q = 3, the coloring is 2−dependent.

(b) If q ≥ 5, the coloring is not k−dependent for any k!



Some Details.

For any q and proper x , define

B(x) =

n∑

i=1

B(x̂i).

Then for proper x ∈ [q]m, y ∈ [q]n,

∑

a∈[q]

B(xay) = 2

(
m + n + 2

m + 1

)
B(x)B(y), q = 4,

∑

a,b∈[q]

B(xaby) = 2

(
m + n + 4

m + 2

)
B(x)B(y), q = 3,

∑

x∈[q]n

[B(1x2)− B(1x1)] = 2
n∏

k=1

[k(q − 2)− 2], q ≥ 2.



Color Symmetric Construction (q ≥ 4).

Motivated by the second construction for q = 4, try

P(x) =
1

D(n + 1)

n∑

i=1

C (n − 2i + 1)P(x̂i )

for x ∈ [q]n, xi 6= xi+1 ∀ 1 ≤ i < n. Motivated by special cases,
take

C (n) = Tn(
√
q/2), n ≥ 0; D(n) =

√
qUn−1(

√
q/2), n ≥ 1,

where Tn,Un are the Chebyshev polynomials of the first and
second kind:

Tn(u) = cosh(nt), Un(u) =
sinh[(n + 1)t]

sinh(t)
, u = cosh(t).

C ,D extended to all n by taking C even and D odd.
Note: If q = 4, C (n) ≡ 1, D(n) = 2n.



Examples:

C (0) = 1, C (1) =

√
q

2
, C (2) =

q − 2

2
, C (3) =

√
q(q − 3)

2
,

D(0) = 0, D(1) =
√
q, D(2) = q, D(3) =

√
q(q − 1).

Proof of 1−dependence relies on identities such as

2C (m)D(n) = D(m + n) + D(n −m)

and

C (j + k)D(k + l) = C (k)D(j + k + l)− C (l)D(j).

Also,
n∑

i=1

D(n − 2i + 1)P(x̂i ) = 0.



Bounds on the number of colors needed.

(a) On Z
1, need 4 and this is best possible.

(b) On Z
2, need at least 9 and 16 suffices.

(c) On Z
3, need at least 12 and 64 suffices

(d) On the d−regular tree need at least de.

Construction of a 16−coloring on Z
2.

On each horizontal and vertical line in Z
2, put an independent

copy of the Z
1 4−coloring. The color of (m, n) ∈ Z

2 is (a, b),
where a, b are the colors it inherits from the horizontal and vertical
lines through it.



Five colors do not suffice on Z
2.

Let p = P(X0 = 1) and

f (n) = P

(
0 0 · · · 0 0
0 0 · · · 0 0

)
, g(n) = P

(
0 0 · · · 0 −
0 0 · · · 0 0

)
,

where n = the length of the strip and 0 means color other than 1.
Then

f (n) = g(n)− pg(n − 1), g(n) = f (n − 1)− pg(n − 1).

Solving gives

∞∑

n=0

g(n)sn =
1

1− (1− p)s + ps2
.

By Pringsheim’s Theorem, p ≤ 3− 2
√
2 = .171 . . . .



Other results.

Combining our 4−coloring with results in Holroyd, Schramm and
Wilson, one can prove the existence of stationary k−dependent
q−colorings that exclude certain other collections of patterns.
(Colorings are those that exclude the pattern aa for any a.)

Some open problems.

1. Uniqueness of the 4−coloring or symmetric q−coloring (q ≥ 5)
on Z.

2. Existence of an automorphism invariant q−coloring on Z
2.

3. Existence of an automorphism invariant q−coloring on the
d−regular tree.

4. Do these colorings have any reasonable structure?


