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Schramm’s Question: For which values of k, g does there exist a
stationary k—dependent g—coloring of Z7?

This means: X;j € [q] ={1,...,q} such that

(a) (Xi) =7 (Xit1),

(b) Xi # Xit1,

() (..., Xi—2,Xi—1) and (Xisk, Xitks+1,-..) are independent.



In 2008, Schramm knew:

(a) Impossible for g = 2, any k, since a stationary coloring must be

--+1212---  with probability
--+-2121---  with probability

NI= N[=

(b) Impossible for g = 3,k = 1.

(c) Cannot be a block factor, i.e., X; = f(U;, Uit1, ..., Uitr—1),
where U; are i.i.d.

(d) Cannot be a Markov chain, or a function of a finite state
Markov chain.

Based on these (and other) negative results, Schramm conjectured
that the answer is always No.



However,

Theorem. There exists a stationary 1—dependent 4—coloring of Z
and a stationary 2—dependent 3—coloring of Z.

First, some of the negative results:

Proposition. There is no k—dependent g—coloring that is a
Markov chain.

Proof. Suppose P is the transition matrix for the [g]—valued
Markov chain X;. By k—dependence, X; is independent of Xy for

i > k. So, (Xks1 | Xo) =9 (Xks2 | Xo) = the stationary
distribution. Therefore, PX*1(/ — P) = 0, and the eigenvalues of P
are 0 and 1. However, since X; is a coloring, the diagonal elements
of P are 0, so the trace is 0.



Proposition. There is no 1—dependent 3—coloring.

Proof. Fuxi Zhang observed that if X; is a 1—dependent
g—coloring, then 1(x._1y is a renewal sequence, e.g.,

P(000100) _ P(00 — 1 —0)

P(0001) P(100)  P(00 — 1) P(1—0)
PO PO) P P Q0P

The renewal time T has probability generating function

ps?

EsT = ——
1— s+ ps?

where p = P(Xo = 1). Singularities are at s = (1 + /1 — 4p)/2p.
By Pringsheim’s Theorem, p < %.



First Construction (g = 4).

Identify {1,2,3,4} with {—,+}2, and write X = <§> where

Y, Z are binary + sequences. The distribution p of Y is
1—dependent. There are many possible choices for u, e.g.,
Bernoulli(3) and Y; = sign(U; — Ui_1), U;iid. U[0,1].

More generally, 1—dependent binary sequences are determined by
the sequence u, = pu(+ + -+ + +), where n = # +'s, since e.g.,

p(+ —+) = vf — us.

The sequence u, must satisfy many inequalities. A large collection
can be described in terms of Polya frequency sequences.



Examples of the distribution of X:
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The choice Y; =sign(U; — U;—1), U i.i.d. U[0,1] is particularly
nice, since for example

p++—+-)=PUy < Uy < Us > U3 < Us > Us)
#linear extensions of POS0<1<2>3<4>5
#linear orders of {0,1,...,5}
a(2,1,1,1)
6! ’

Edelman, Hibi and Stanley (1989) proved (a more general version
of) the recursion

a(kl,kz,...):a(kl—1,k2,...)+a(k1,k2—1,...)+---
For example, for the partial orders

0<1<2>3, 0<1>2 0<1<2,
a(2,1) =3, a(l,1)=2, a2)=1.



The Formula.

P =P (1) = oy X (CDYelwoy2)aln)

weDD(m—1)

where

(a) x has length n and y has m runs.

(b) DD(m) is the set of dispersed Dyck words of length m.
Examples:

4+ — 4+ — and + + — — are Dyck words;
0++——-00+ —++ — — is a dispersed Dyck word.

(c) |w| is the number of +'s in w and c(w,y,z) = £1.
(d) yw is obtained from y by eliminating runs in y according to w.
(e) a(y) = #m € Spi+1 such that sign (741 — 7)) = yi.

Question: Why is P(x) > 07



Second Construction (g = 4).

Write P(x) = P(X1 = x1, ..., X, = x,) for the above coloring.
Then the the following recursion holds, with P(() = 1:

1

= — X n . . < [
P(x) 2(n+1);P(X')’ x €4, xi #xip1 V1<i<n,

where X; is obtained from x by deleting x;. If X; is not a proper
coloring, set P(X;) = 0.

Consequence: P(x) > 0 for all x.

What happens if the analogous construction is applied to other g's?
(a) If g = 3, the coloring is 2—dependent.

(b) If g > 5, the coloring is not k—dependent for any k!



Some Details.

For any g and proper x, define

n

B(x) =) _ B().

i=1

Then for proper x € [q]™,y € [q]",

" B(xay) = 2(’" ot 2) B()B(), q=4

m+1
ac[q]
m+n+4
> B(xaby) = 2< "2 )B(X)B(y), q=3,
a,be[q]

> [B(x2) - Bx)] =2]Jlk(a-2) -2, q=2
k=1

x€[q]"



Color Symmetric Construction (g > 4).

Motivated by the second construction for g = 4, try

zn: C(n—2i + 1)P(%)

PO = 5
i=1

n+1)

for x € [q]",xi # xi+1 ¥ 1 < i < n. Motivated by special cases,
take

C(n) = T,,(\/E/2), n=0; D(n) = \/aU"—l(\/a/z)7 n=1,

where T,, U, are the Chebyshev polynomials of the first and
second kind:

_ sinh[(n + 1)t]

Tn(u) = cosh(nt), Un(u) Sinh(?)

, u=cosh(t).

C, D extended to all n by taking C even and D odd.
Note: If g=4, C(n)=1, D(n)=2n.



Examples:

V(g —3)
I

D(0)=0, D(1)=ya D@)=q, DE)=yalqg-1).

Proof of 1—dependence relies on identities such as
2C(m)D(n) = D(m+ n)+ D(n — m)
and
CU+k)D(k+1)=C(k)D(j + k+ 1) — C(1)D().
Also, .
> D(n-2i+1)P(x) =0.
i=1



Bounds on the number of colors needed.

a) On 7', need 4 and this is best possible.

(

(b) On Z2, need at least 9 and 16 suffices.
(c) On Z3, need at least 12 and 64 suffices
(d

) On the d—regular tree need at least de.
Construction of a 16—coloring on Z?2.

On each horizontal and vertical line in Z2?, put an independent
copy of the Z! 4—coloring. The color of (m, n) € Z? is (a, b),
where a, b are the colors it inherits from the horizontal and vertical
lines through it.



Five colors do not suffice on Z?2.

Let p= P(Xp =1) and
=(o o oo s=F(g5 5 5)
where n = the length of the strip and 0 means color other than 1.
Then

f(n) =g(n) — pg(n—1), g(n)="f(n—1)—pg(n—1).
Solving gives

- 1
g(n)s" = .
; (n) 1—(1—p)s+ ps?

By Pringsheim’s Theorem, p <3 — 22 = .171....



Other results.
Combining our 4—coloring with results in Holroyd, Schramm and
Wilson, one can prove the existence of stationary k—dependent

g—colorings that exclude certain other collections of patterns.
(Colorings are those that exclude the pattern aa for any a.)

Some open problems.

1. Uniqueness of the 4—coloring or symmetric g—coloring (g > 5)
on Z.

2. Existence of an automorphism invariant g—coloring on Z?2.

3. Existence of an automorphism invariant g—coloring on the
d—regular tree.

4. Do these colorings have any reasonable structure?



