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Abstract. A strong negative dependence property for measures on {0, 1}n –
stability – was recently developed in [5], by considering the zero set of the
probability generating function. We extend this property to the more general
setting of reaction-diffusion processes and collections of independent Markov
chains. In one dimension the generalized stability property is now indepen-
dently interesting, and we characterize the birth-death chains preserving it.
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1. Introduction

In statistical physics a fundamental object of concern is the partition function,
with its zeros having special relevance. For example, by introducing the effect of
an external field, the partition function becomes a polynomial in the external field
variable. As exemplified by the Lee-Yang circle theorem in the case of the Ising
model [12], the general location of partition function zeros can indicate possible
phase transitions.

A related object in probability is the probability generating function. However,
the locations of its zeros were little studied before the recent work of Borcea,
Brändén, and Liggett. In [5], a strong negative dependence theory for measures on
{0, 1}n was obtained; in particular, it was shown that if the generating function
(in n variables) has no zeros with all imaginary parts positive, then the measure is
negatively correlated in a variety of senses: negative association, ultra-log-concave
rank sequence, Rayleigh property, and others.

The classification of linear transformations preserving the set of multivariate
polynomials that are non-vanishing in circular regions was recently resolved in
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[2], with the investigation providing a general account of such polynomials and
unifying several Lee-Yang-type theorems [3].

Our results are as follows: Using this framework we will generalize the neg-
ative dependence result in [5] to measures on {0, 1, 2, . . . }S – S countable – with
application to independent Markov chains and reaction-diffusion processes. The
one-coordinate case is also independently interesting; more specifically, the proba-
bility measures under consideration can be decomposed into a sum of independent
Bernoulli and Poisson random variables.

Call such measures on {0, 1, 2, . . . } t-stable. (The formal definition is given in
Section 3.) In the last section we characterize the birth-and-death chains preserving
this class of measures:

Theorem 1.1. The birth-death chain {Xt; t ≥ 0} preserves the class of t-stable
measures if and only if the birth rates are constant and the death rates satisfy
δk = d1k + d2k

2 for some constants d1, d2.

One example is the pure death chain with rates δk = k(k − 1)/2, which
expresses the number of ancestral geneologies in Kingman’s coalescent – a well-
studied model in mathematical biology [11, 10, 21]. In particular, by taking the
initial number of particles to infinity, we obtain that the number of ancestors at
any fixed time has the distribution of a sum of independent Bernoulli and Poisson
random variables.

2. Stability and Negative Association

We first review the relationship – established in [5] – between negative association
and the zero set of generating functions for measures on {0, 1}n.

Definition 2.1. A polynomial f(x) ∈ C[x] = C[x1, . . . , xn] is called stable if f 6= 0
on the set

Hn = {(x1, . . . , xn) ∈ Cn : Im(xj) > 0 ∀j}.
Let G[x] be the set of all stable polynomials in the variable x.

If f has only real coefficients, it also called real stable. The corresponding set
of real stable polynomials is denoted GR[x].

Note that a univariate real stable polynomial can only have real zeros.
One key fact from complex analysis is the (multivariate) Hurwitz’s theorem

on zeros of analytic functions: (see footnote 3 in [7])

Theorem 2.2. Let Ω be a connected open subset of Cn. Suppose the analytic func-
tions {fk} converge uniformly on compact subsets of Ω (normal convergence in the
vocabulary of complex analysis). If each fk has no zeros in Ω then their limit f is
either identically zero, or has no zeros in Ω. In particular, a normal limit of stable
polynomials with bounded degree is either stable or 0.
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For µ a probability measure on {0, 1}n, let

fµ(x1, . . . , xn) =
1∑

i1,...,in=0

µ(i1, . . . , in)xi11 · · ·xinn = Eµxη(1)1 · · ·xη(n)
n . (2.1)

The last expression is just compact notation for the middle sum – the η(i) are
the coordinate variables for µ. fµ is known as the probability generating function
for µ. With this identification between measures and polynomials, we will freely
abuse notation by referring to measures with stable generating functions as stable
measures (such measures are also termed Strongly Rayleigh [5], by their connection
with the Rayleigh property).

The concept of stability easily generalizes to countably many coordinates –
a measure µ on {0, 1}S is stable if every projection of µ onto finite subsets of
coordinates is stable.

While the definition of stability is purely analytic, it implies two strong prob-
abilistic conditions. Recall that a probability measure µ is negatively associated
(NA) if, for all increasing continuous functions F,G depending on disjoint sets of
coordinates, ∫

FGdµ ≤
∫
Fdµ

∫
Gdµ.

The following was proved in [5]:

Theorem 2.3. Suppose fµ is stable. Then µ is NA.

The second (and less difficult) probabilistic consequence of stability was given
in [15, 22]:

Theorem 2.4. Suppose µ is a measure on {0, 1}S such that fµ is stable. Then for
any T ⊂ S, ∑

i∈T
η(i) d=

∑
i∈T

ζi,

where the ζi are independent Bernoulli variables.

3. Stable measures on {0, 1, 2, . . . }S

Suppose µ is a measure on {0, 1, 2, . . . }n. The generating function of µ is now the
formal power series

fµ(x1, . . . , xn) =
∞∑

i1,...,in=0

µ(i1, . . . , in)xi11 · · ·xinn . (3.1)

If µ has finite support, then fµ is a polynomial. In this case, let N be the maximum
degree of fµ in any of the variables x1, . . . , xn. We will want to represent fµ by



4 Thomas M. Liggett and Alexander Vandenberg-Rodes

a multi-affine polynomial. To do this, we recall the k-th elementary symmetric
polynomial in m variables

e0 = 1, ek(x1, . . . , xm) :=
∑

1≤i1<i2<···<ik≤m

xi1xi2 · · ·xik . (3.2)

Then for a univariate polynomial f(x) =
∑N
k=0 akx

k we define itsN -th polarization
as

PolNf(x1, . . . , xN ) :=
N∑
k=0

(
N

k

)−1

akek(x1, . . . , xN ).

The N -th polarization of a multivariate polynomial is then defined to be the
composition of polarizations in each variable. By considering x1 = · · · = xN = x,
notice that if PolNf ∈ G[x] then f ∈ G[x]. The converse also holds:

Theorem 3.1. (Grace-Walsh-Szegö). Suppose f has degree at most N. Then f is
stable iff PolNf is stable.

Many proofs of this result and its equivalent forms exist; see the appendix of
[3], or [19, chapter 5].

Definition 3.2. We say that a function f(x) defined on Cn is transcendental stable,
or t-stable, if there exist stable polynomials {fm(x)} such that fm → f uniformly
on all compact subsets of Cn (f can then be expressed as an absolutely convergent
power series on Cn). Let GR[x] be the set of all t-stable functions. This is also
known as the Laguerre-Polya class [13].

We will again abuse notation and say that a measure µ on Nn is transcendental
stable (or t-stable) if its generating function lies in GR[x]. Similarly, if µ has finite
support and its generating polynomial is stable then we say that µ is stable. Of
course, a stable measure is automatically t-stable.

The papers by Borcea and Brändén [2, 4] characterized the linear transfor-
mations preserving stable polynomials by establishing a bijection between linear
transformations preserving n-variable stability and t-stable powers series in 2n
variables. We will not require their full result here; however, the following char-
acterization of t-stable powers series – the technical cornerstone upon which the
above bijection rests – will be most useful.

Recall the standard partial order on Nn: α ≤ β if αi ≤ βi for all 1 ≤ i ≤ n.
Also, for α ≤ β ∈ Nn define

(β)α =
β!

(β − α)!
if α ≤ β, (β)α = 0 otherwise. (3.3)

Theorem 3.3 (Theorem 6.1 of [2]). Let f(x) =
∑
α∈Nn cαxα be a formal power

series in x with coefficients in R. Set βm = (m,m, . . . ,m) ∈ Nn. Then f(x) ∈
GR[x] if and only if

fm(x) :=
∑
α≤βm

(βm)αcα
( x
m

)α
∈ GR[x] ∪ {0}, (3.4)



Stability on {0, 1, 2, . . . }S 5

for all m ∈ N. In this case, the polynomials fm(x) → f(x) uniformly on compact
sets.

This classification also has the following immediate consequence:

Corollary 3.4. The class GR[x] is closed under convergence of coefficients. In par-
ticular, the set of t-stable probability measures on Nn is closed under weak conver-
gence.

Proof. Suppose that for each n,

f (n)(x) =
∑
α∈Nn

c(n)
α xα ∈ GR[x],

with c(n)
α → cα for each α. Then for each m the stable polynomials f (n)

m (x), defined
in (3.4) above, converge normally to the polynomial fm likewise obtained from f .
Hurwitz’s Theorem implies that each fm is stable, and applying Theorem 3.3 again
we conclude that f ∈ GR[x]. �

By the following proposition, we can say that a measure on {0, 1, 2, . . . }S is
t-stable if every projection onto a finite subset of coordinates is a t-stable measure.

Proposition 3.5. The class of t-stable measures is closed under projections onto
subsets of coordinates.

Proof. It suffices to consider projections of n coordinates onto n− 1 coordinates.
Suppose that µ is a t-stable measure on Nn. If f(x1, . . . , xn) is its generating
function, notice that the generating function of the projection of µ onto Nn−1 is
f(x1, . . . , xn−1, 1). By Theorem 3.3, it suffices to show that the approximating
polynomials fm(x1, . . . , xn−1, 1) are stable. But this follows by considering the
(complex) stable polynomials fm(x1, . . . , xn−1, 1 + i/k) and applying Hurwitz’s
theorem as k →∞. �

We can now give an extension of Theorem 2.3.

Theorem 3.6. Suppose µ is a t-stable probability measure on {0, 1, 2, . . . }S. Then
µ is NA.

Proof. By the previous proposition and a limiting argument it is sufficient to
show the result for measures on Nn. Let f(x) be the generating function of µ. By
definition, f ∈ GR[x]. Let {fN (x)} be the stable polynomials converging to f as
in Theorem 3.3; we can also normalize them so that fN (1) = 1. Let µN be the
respective probability measures on {0, 1, 2, . . . , N}n. Hence by the Grace-Walsh-
Szegö (GWS) theorem, PolNfN is the generating function for a stable measure
µ̃N on {0, 1}nN . Let

{ζij ; 1 ≤ i ≤ n, 0 ≤ j ≤ N}
be the coordinates of µ̃N , such that ηi =

∑
j ζij is the i-th coordinate of µN . Hence

for bounded increasing functions F and G on {0, 1, 2, . . . }n, depending on disjoint
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sets of coordinates, we have

EµN [F (η1, . . . , ηn)G(η1, . . . , ηn)]

= EµN

[
F

(∑
j

ζ1j , . . . ,
∑
j

ζnj

)
G

(∑
j

ζ1j , . . . ,
∑
j

ζnj

)]

≤ EµN

[
F

(∑
j

ζ1j , . . . ,
∑
j

ζnj

)
EµN

[
G

(∑
j

ζ1j , . . . ,
∑
j

ζnj

)
= EµNF (η1, . . . , ηn)EµNG(η1, . . . , ηn)

The inequality above follows because F (x11 + · · · + x1N , . . . , xn1 + · · · + xnN ) is
an increasing function in the nN variables (similarly with G), and the ζij are all
negatively associated by Theorem 2.3. The normal convergence of fN → f implies
the weak convergence µN → µ, concluding the proof. �

We can also characterize all t-stable measures on one coordinate.

Proposition 3.7. A probability measure on {0, 1, 2, . . . } is transcendental stable if
and only if it has the same distribution as a (possibly infinite) sum of independent
Bernoulli random variables and a Poisson random variable.

Proof. Suppose f is a t-stable generating function for a non-negative, integer val-
ued random variable. By Theorem 3.3, f is a normal limit of univariate polynomials
with all zeros on the negative real axis. An appeal to the classical theory of entire
functions (e.g. [13, VIII, Theorem 1]) indicates that f can be expressed as the
following infinite product:

f(x) = Cxqeσx
∞∏
k=1

[
1− x

ak

]
,

for some q ∈ N, σ ≥ 0, ak < 0, and
∑
|ak|−1 <∞. A little rearrangement – using

the fact that f(1) = 1 – gives the following alternative expression:

f(x) = xqeσ(x−1)
∞∏
k=1

[(1− pk) + xpk],

where pk = 1/(1 − ak). This we recognize as the generating function for the sum
of a non-negative constant q, independent Poisson(σ) and Bernoulli(pk) random
variables. Conversely, any generating function of this form with

∑
pk < ∞ is

automatically t-stable, as ex is the normal limit of the polynomials (1+x/n)n. �

By projecting onto finite subsets of coordinates (taking limits if need be) and
setting all variables in the resulting generating function to be equal, we obtain the
following extension of Theorem 2.4:

Corollary 3.8. Suppose µ is a t-stable measure on NS. Then for any T ⊂ S the
number of particles located in T – according to µ – has the distribution of a sum
of independent Bernoulli and Poisson random variables.
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3.1. Markov processes and stability

Suppose {ηt; t ≥ 0} is a Markov process on Nn. We define the associated linear
operator Tt on power series with bounded coefficients by letting Tt(xα) be the
generating function of {ηt|η0 = α} for each α ∈ Nn, and extending by linearity.
This is well-defined because

∑
k≥0 P (ηt = k) = 1.

Definition 3.9 (Preservation of stability). We say that a Markov process {ηt; t ≥ 0}
on Nn preserves stability if for any stable initial distribution, the distribution at
any later time is t-stable. That is, the associated linear operator Tt maps the set
of stable polynomials with non-negative coefficients into the set of t-stable power
series.

The process ηt preserves t-stability if for any t-stable initial distribution, the
distribution at a later time is again t-stable. That is, Tt maps the set of t-stable
power series with non-negative coefficients into itself.

In fact, these two definitions are equivalent.

Proposition 3.10. A Markov process preserves t-stability if and only if it preserves
stability.

Proof. Only one direction needs proof. Assume the process preserves stability. Let
Tt be the associated linear operator, and f =

∑
α cαx

α be the generating function
of a t-stable distribution; hence cα ≥ 0 for all α and

∑
α cα = 1. By Theorem 3.3

there are stable polynomials fn =
∑
α c

(n)
α xα with c

(n)
α → cα, all c(n)

α ≥ 0, and
with

∑
α c

(n)
α ≤ 1. Suppose that

Tt(xα) =
∑
β

dα,βxβ .

Since probability is conserved,
∑
β dα,β = 1, and hence by dominated convergence,∑

α

c(n)
α dα,β

n→∞−→
∑
α

cαdα,β .

In other words, the coefficients of Ttfn (which is t-stable by assumption), converge
to the coefficients of Ttf . Ttf is then t-stable by Corollary 3.4. �

We now give a couple examples.

3.2. Independent Markov chains

Suppose {Xt(1), Xt(2), . . . } is a collection of independent Markov chains on S with
identical jump rates. Set

ηt(x) =
∑
i≥1

1{Xt(i)=x},

so that the resulting process is a collection of particles on S jumping independently
with the same rates. This is well defined as long as ηt(x) <∞ for all x ∈ S, t ≥ 0
– one possibility is to restrict initial configurations to the space E0 defined below
for reaction-diffusion processes.
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Proposition 3.11. The process {ηt; t ≥ 0} preserves t-stability. Hence, assuming
that the initial distribution is t-stable, the distribution at any time is negatively
associated by Theorem 3.6.

Proof. Let µt be the distribution of ηt, with µ0 t-stable. We need to show that for
each finite T ⊂ S, the projection µt|T is t-stable. Taking finite T ⊂ S1 ⊂ S2 ⊂ · · ·
with each Sn finite and Sn ↗ S, we can approximate µt|T by the sequence µ(n)

t |T ,
with each µ

(n)
t the distribution of the independent Markov chain process on Sn

given initial distribution µ0|Sn
and jumps restricted to staying inside Sn. Hence

by Corollary 3.4 we can assume finite S.
Suppose now that S = [n], and only jumps from site 1 to site 2 are allowed.

In this case, assuming a jump rate q(1, 2), each particle at x independently has
probability p := 1− e−tq(1,2) of moving to y. Hence the associated linear operator
Tt takes

xα1
1 xα2

2 · · ·xαn
n 7→ (px2 + (1− p)x1)α1xα2

2 · · ·xαn
n ,

that is,
Ttf(x1, . . . , xn) = f(px2 + (1− p)x1, x2, . . . , xn),

which preserves the class of stable polynomials. By permuting variables, this ar-
gument also holds for general i, j ∈ [n].

Recalling the Banach space C0(Nn) of functions that vanish at infinity, con-
sider the strongly continuous contraction semi-groups Si,j(t) on C0(Nn) defined
by

Si,j(t)f(η) = Eηf(ηi,jt ),

where {ηi,jt ; t ≥ 0} is the (Feller) process of independent Markov chains which only
allow jumps from site i to site j. Then for a t-stable intial distribution µ, we just
showed that µSi,j(t) – the distribution of ηi,jt assuming initial distribution µ – is
again t-stable. By Trotter’s product theorem [9, p. 33], the process allowing the
jumps {i 7→ j}, {k 7→ l} has semigroup

S(t) = lim
n→∞

[
Si,j

( t
n

)
Sk,l

( t
n

)]n
.

Hence by Corollary 3.4, µS(t) is again t-stable. Including all the possible jumps
one-by-one, we conclude that the whole process {ηt; t ≥ 0} on Nn preserves t-
stability. �

Remark 3.12. LetM be the set of probability measures on NS described by random
configurations η with coordinates

η(k) =
∑
i

1{Yi=k},

where Y1, Y2, . . . are independent random variables with values in S ∪ {∞}. In
[14] it was shown that M is preserved by the process of independent Markov
chains, and that measures in M are NA. Proposition 3.11 is a generalization of
this result, since it is easily checked that the class M is contained in the class of
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t-stable measures. Indeed, if µ ∈M and S = [n], then µ has a generating function
of the form

Ex
∑

i 1{Yi=1}
1 · · ·x

∑
i 1{Yi=n}

n

=
∏
i

[P (Yi =∞) + P (Yi = 1)x1 + · · ·+ P (Yi = n)xn],

by of the independence of the Y ′i s. Furthermore, (non-constant) product measures
for which each coordinate is a sum of independent Bernoulli and Poisson measures
are t-stable, but are not contained in the class M.

3.3. Reaction-diffusion processes

In addition to having the motion of particles following independent Markov chains,
we can also allow particles to undergo a reaction at each site. Let p(i, j) be transi-
tion probabilities for a Markov chain on S. Given a state η ∈ NS , we consider the
following evolution:

1. at rate βiη(i) a particle is created at site i,
2. at rate δiη(i) a particle at site i dies.
3. at rate η(i)p(i, j) a particle at site i jumps to site j.

The most common example is the polynomial model, where the birth-death rates
for each site are

βk =
m−1∑
j=0

bjx(x− 1) · · · (x− j + 1), δk =
m∑
j=1

djx(x− 1) . . . (x− j + 1).

Reaction-diffusion processes originated as a model for chemical reactions [18], and
subsequent work by probabilists has focused on the ergodic properties [8, 6, 1].

To construct the process, we require a strictly positive sequence ki on the
index set S, and a positive constant M such that∑

j

p(i, j)kj ≤Mki, i ∈ S.

Furthermore, the birth rates must satisfy∑
i

βi0ki <∞.

Then we take the state space of the process to be

E0 = {η ∈ NS :
∑
i

η(i)ki <∞}.

See [6, chapter 13.2] for the details of the construction.
In a very simple case we have preservation of t-stability:

Proposition 3.13. Suppose the reaction-diffusion process on NS is well-constructed
with βik = bi and δik = dik – this is the polynomial model with m = 1 and site-
varying reaction rates. Then the process preserves t-stability, and hence – assuming
a t-stable initial configuration – its distribution at any time is negatively associated.
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Proof. The strategy here is the same as with Proposition 3.11. To reduce to a
reaction-diffusion process on a finite number of sites, we approximate using the
construction in [6, Theorem 13.8]. Furthermore, on the locally compact space Nn,
the reaction-diffusion process with at most constant birth and linear death rates is
now a Feller process, as can be seen from [9, Theorem 3.1, Ch. 8]. Hence by Trot-
ter’s product formula and Corollary 3.4 we only need to show that the following
processes preserve stability on Nn:

1. constant birth rate bi at a single site i.
2. linear death rates at a single site i (δik = dik),
3. jumps from site i to site j at rate η(i)p(i, j)

For (1), we note that with a constant birth rate, at time t a Poisson(bit)
number of particles has been added to the system – i.e. the original generating
function is multiplied by eb

it(xi−1), preserving t-stability.
(2) can be thought of as the process in which each particle at site i dies

independently at rate di. Hence the associated linear transform is defined by

Tt(xα1
1 · · ·x

αi
i · · ·x

αn
n ) = xα1

1 · · · [1− e−d
it + e−d

itxi]αi · · ·xαn
n .

As the affine transformation x 7→ ax+ (1− a), (a > 0) maps the upper half plane
onto itself, Tt preserves preserves the class of stable polynomials.

Finally, we note that (3) was already seen to preserve stability from the proof
for independent Markov chains. �

Other reaction-diffusion processes do not preserve stability in general. On one
coordinate, a reaction-diffusion process is just a birth-death chain, so by Theorem
1.1 the only possible generalization would be to quadratic death rates. In this
case, unfortunately, the associated linear transformation Tt will not preserve stable
polynomials with positive roots; indeed, assuming death rates δk = k(k − 1),
quadratic polynomials with a double root inside the interval (0, 1) will not be
mapped to stable polynomials under Tt. A much more complicated example –
which we shall not reproduce here – shows that quadratic death rates on multiple
sites does not preserve the class of stable probability measures.

4. Birth-Death Chains

Our goal in this section is to prove Theorem 1.1. As just noted above, in the case
of quadratic death rates the associated linear transformation does not preserve
all polynomials with real zeros, and hence we cannot rely on the classification
theory in [2]. From the probabilistic point of view, it would be useful to have a
similar theory for linear transformations on polynomials with positive coefficients;
however, in what follows we will make do with several perturbation arguments –
the main idea being that a polynomial’s roots move continuously under changes
to its coefficients.
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Let {Xt; t ≥ 0} be a non-explosive birth and death chain on {0, 1, 2, ...} with
Q−matrix given by

q(k, k + 1) = βk, q(k, k − 1) = δk, and q(k, k) = −βk − δk,

with δ0 = 0. See Chapter 2 of [16] for the relevant definitions. The generating
function at time t is given by

φ(t, z) =
∞∑
k=0

P (Xt = k)zk.

By Theorem 2.14 of [16], the transition probabilities pt(j, k) = P j(Xt = k)
are continuously differentiable in t and satisfy the Kolmogorov backward equations

d

dt
pt(j, k) = βjpt(j + 1, k) + δjpt(j − 1, k)− (βj + δj)pt(j, k).

By Theorem 2.13 of [16], |pt(j, k)− ps(j, k)| ≤ 1− p|t−s|(j, j). It follows that

∂

∂t
φ(t, z) =

∞∑
k=0

d

dt
P (Xt = k)zk

for |z| < 1, provided that X(0) is bounded. Iterating this argument, one sees that
φ(t, x) is C2 on [0,∞)× {z : |z| < 1} if X(0) is bounded.

Proposition 4.1. Suppose the birth-death process {Xt; t ≥ 0} preserves stability.
Then there exist constants b0, b1, b2, d1, d2 so that

βk = b0 + b1k + b2k
2 and δi = d1k + d2k

2.

Proof. Suppose

φ(0, z) = c

n∏
k=1

(z − zk),

where c > 0, n ≥ 3, and −1 < z1, ..., zn < 0. By assumption, the generating
function φ(t, z) of Xt has only real roots for t > 0. If z1 = z2 = w is a root of
φ(0, z) of multiplicity exactly two, and ε is small enough that |zk−w| > ε for k ≥ 3,
Rouché’s Theorem implies that for sufficiently small t > 0, φ(t, z) has exactly two
roots in the disk {z : |z − w| < ε}. Therefore, for small t > 0, there exist real
z(t) so that φ(t, z(t)) = 0 and limt↓0 z(t) = w. By Taylor’s Theorem, there exist
s(t) ∈ [0, t] and y(t) between z(t) and w so that

0 =φ(t, z(t)) = t
∂φ

∂t
(0, w) +

1
2
t2
∂2φ

∂t2
(s(t), y(t))

+ t(z(t)− w)
∂2φ

∂t∂z
(s(t), y(t)) +

1
2

(z(t)− w)2
∂2φ

∂z2
(s(t), y(t)).

Dividing by t and letting t ↓ 0 leads to

2
∂φ

∂t
(0, w)

/
∂2φ

∂z2
(0, w) = − lim

t↓0

(z(t)− w)2

t
≤ 0.
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Noting that

∂2φ

∂z2
(0, w) = 2c

n∏
k=3

(z − zk),

we see that
∂φ

∂t
(0, w) (4.1)

changes sign when z3 crosses w, and hence is zero when z3 = w.
To exploit this fact, we need to compute (4.1). Recall the kth elementary

symmetric polynomials ek(x1, . . . , xn) defined in (3.2). If µ is the distribution of
X0 and X0 ≤ n, then

φ(0, z) =
n∑
k=0

µ(k)zk = c

n∏
k=1

(z − zk) = c

n∑
k=0

(−1)kek(z1, ..., zn)zn−k,

so
µ(k) = c(−1)n−ken−k(z1, ..., zn).

Therefore for |z| < 1,

∂φ

∂t
(0, z) =

∞∑
l=0

n∑
k=0

µ(k)q(k, l)zl = c(1−z)
n∑
k=0

(−1)n−ken−k(z1, ..., zn)[δkzk−1−βkzk].

It follows that the expression on the right is zero if z = z1 = z2 = z3 = w for any
values of w, z4, ..., zn ∈ (−1, 0). In this case,

ek(z1, ..., zn) =
∑
i

wi
(

3
i

)
ek−i(z4, ..., zn),

where i ranges from max(0, k + 3− n) to min(k, 3), so
n∑
k=0

∑
i

(−1)n−k
(

3
i

)
en−k−i(z4, ..., zn)[δkwk+i−1 − βkwk+i] ≡ 0.

Interchanging the order of summation and letting k 7→ k − i, we see that the
coefficient of each of the en−k’s is zero:∑

i

(
3
i

)
(−1)i[δk−i − βk−iw] = 0,

or equivalently δk− 3δk+1 + 3δk+2− δk+3 = 0 and βk− 3βk+1 + 3βk+2−βk+3 = 0,
so that the birth rates βk and death rates δk are quadratic functions of k. �

With the next proposition we resolve the “only if” part of Theorem 1.1.

Proposition 4.2. The birth-death chain preserves stability only if the birth rate is
constant.
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Proof. Assuming that the chain preserves stability, we will show the birth rates
βk satisfy βk ≥ βk+1 for each k, so by Proposition 4.1 βk is constant.

By iterating the Kolmogorov backward equations, one can obtain the follow-
ing approximations for small t > 0:

pt(k, k + 1) = t(βk + o(1)), pt(k, k + 2) =
t2

2
(βkβk+1 + o(1)).

Similarly,
pt(k, k − j) = O(1)tj ,

where O(1) denotes a uniformly bounded quantity, and o(1)→ 0, as t→ 0.
Suppose that we start the chain with k particles; the initial distribution has

generating function f(x) = xk. We also can assume that βk, βk+1 > 0. Then the
generating function for small t > 0 will be:

ft(x) = · · ·+ (1 + o(1))xk + (βk + o(1))txk+1 + (βkβk+1 + o(1))
t2

2
xk+2 + · · ·

Since ft(x) is t-stable, by Theorem 3.3 the following polynomial has all real, neg-
ative roots:

ft,k+2(x) = · · ·+ (1 + o(1))xk +
2(βk + o(1))

k + 2
txk+1 +

βkβk+1 + o(1)
(k + 2)2

t2xk+2.

As the hidden coefficients are o(1), Rouché’s Theorem implies that k roots of ft,k+2

are also o(1). Thus the remaining two roots a, b satisfy

a+ b =
2(k + 2) + o(1)

βk+1t

ab =
(k + 2)2 + o(1)
βkβk+1t2

.

Solving for real a, b implies that the discriminant

4t−2(k + 2)2[β−2
k+1 − (βkβk+1)−1 + o(1)] ≥ 0, for small t > 0.

Taking t→ 0, we conclude that βk ≥ βk+1. �

We now concentrate on the “if” part of Theorem 1.1. For what follows, recall
the notation in (3.3).

Lemma 4.3. Suppose p(k) is a polynomial of degree at most r. then
n∑
k=l

(−1)k
(
n

k

)(
k

l

)
p(k) = 0 for all l < n− r.

Proof. First use the easy identity(
n

k

)(
k

l

)
=
(
n

l

)(
n− l
k − l

)
.
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Now for 0 ≤ q ≤ r,
n∑
k=l

(−1)k
(
n

l

)(
n− l
k − l

)
(k − l)q

=
n∑

k=l+q

(−1)k
(
n

l

)(
n− l − q
k − l − q

)
(n− l)q−1

=
(
n

l

)
(n− l)q−1(1− 1)n−l−q = 0.

As any polynomial of degree at most r can be written as a linear combination of
the polynomials in k:

{1, (k − l)1, . . . , (k − l)r},
this concludes the proof. �

Proposition 4.4. The birth-death chain with quadratic death rates βk = 0, δk =
k(k − 1) preserves stability.

Proof. Let φ(t, z) be the generating function of the chain at time t. Setting τ =
inf{t ≥ 0; φ(t, z) is not stable}, by Hurwitz’s Theorem φ(τ, z) is stable. Hence by
time-homogeneity of the birth-death chain, it suffices to prove that for any stable
initial distribution there exists an ε > 0 such that φ(t, z) is stable for all 0 < t < ε.
Suppose first that

φ(0, z) = c(z − w)n, w < 0, φ(0, 1) = 1. (4.2)

We will show that for all small enough t > 0, φ(t, z) has n real zeros at a distance
of order t1/2. Indeed, by Taylor expanding φ(t, z) in t we will see that

dk

dsk

∣∣∣∣
s=0

φ(s, w + αt
1
2 ) = O(t

n
2−k), and (4.3)

φ(t, w + αt1/2) = ctn/2p(α) + o(tn/2), (4.4)

where p(α) is essentially the n’th Hermite polynomial, which has n distinct real
zeros [20].

By (4.4), we see that for small enough t, φ(t, z) changes sign n times near w,
and hence has n real zeros.

The general case then follows easily. For example, if

φ(0, z) = c(z − w1)n1(z − w2)n2 = φ1(0, z)φ2(0, z),

then

dk

dsk

∣∣∣∣
s=0

φ(s, w1+αt
1
2 ) =

k∑
j=0

dj

dsj

(
k

j

)∣∣∣∣
s=0

φ1(s, w1+αt
1
2 )
dk−j

dsk−j

∣∣∣∣
s=0

φ2(s, w1+αt
1
2 ).

By (4.3), the terms with j 6= k contribute o(tn1/2) to the Taylor expansion around
w1+αt1/2, and can be ignored. The remaining terms thus give the same expression
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for φ(t, w1 +αt1/2) as in (4.4), and so again for small times t there are n1 real zeros
nearby w1. Similarly, there are n2 real zeros near w2 also, so stability is preserved.

We now show (4.3) and (4.4) for φ(0, z) of the form (4.2). Let µt be the
distribution at time t (and hence with φ(t, z) as its generating function).

Our first step is to compute all the derivatives

dm

dtm
φ(t, z)

∣∣∣∣
t=0

=
n∑
k=0

dm

dtm
µt(k)

∣∣∣∣
t=0

zk.

Recall the notation in (3.3). By repeated use of the Kolmogorov backward
equation and shifting the variable k by 1, we obtain:

n∑
k=0

[
(k + 1)2

dm−1

dtm−1
µt(k + 1)zk − (k)2

dm−1

dtm−1
µt(k)zk

]∣∣∣∣
t=0

=
n∑
k=0

(k)2
dm−1

dtm−1
µt(k)(1− z)zk−1

∣∣∣∣
t=0

=
n∑
k=0

(1− z)(k)2
[
(k − 1)2zk−2 − (k)2zk−1

] dm−2

dtm−2
µt(k)

∣∣∣∣
t=0

...

=
n∑
k=0

(1− z)
1∑

i1=0

· · ·
1∑

im−1=0

(k)2(k − i1)2 · · · (k − i1 − · · · − im−1)2

× zk−1−
∑m−1

l=1 il(−1)
∑m−1

l=1 (1−il)µ(k).

This last expression follows by an induction argument.
Using the equivalence between binary strings i1i2 . . . im−1 of length m − 1

and subsets A ⊂ [m−1], we can rewrite the last expression for the m-th derivative
as

n∑
k=0

(1− z)
m−1∑
j=0

∑
A⊂[m−1]
|A|=j

Kk
Az

k−1−j(−1)m−1−jµ(k), (4.5)

where we let

Kk
A = (k)2(k − |A ∩ [1]|)2(k − |A ∩ [2]|)2 · · · (k − |A ∩ [m− 1]|)2.

By the definition of Kk
A, we see that when |A| = j, Kk

A = 0 for k ≤ j, hence in the
above z is always raised to a non-negative integer power. Now we consider

z = w + αt
1
2 ,

and expand (4.5) with the binomial formula:

(1− z)
n∑
k=0

m−1∑
j=0

∑
A⊂[m−1]
|A|=j

Kk
A

k−1−j∑
l=0

(−1)m−1−j
(
k − 1− j

l

)
(αt

1
2 )lwk−1−j−lµ(k).
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Notice that

µ(k)wk−1−j−l = c(−1)n−k
(
n

k

)
wn−j−l−1,

and reorder the summations to obtain

= c(−1)n+m−1(1− z)
m−1∑
j=0

(−1)j
n−1−j∑
l=0

(αt
1
2 )lwn−j−l−1 (4.6)

×
n∑

k=l+j+1

(−1)k
(
n

k

)(
k − 1− j

l

) ∑
A⊂[m−1]
|A|=j

Kk
A.

When |A| = j, Kk
A contains the factor k(k − 1) · · · (k − j) = (k)j+1. Hence

we can rewrite ∑
A⊂[m−1]
|A|=j

Kk
A = (k)j+1p(k),

where p(k) is a polynomial of degree exactly 2m− j − 1. Thus
n∑

k=l+j+1

(−1)k
(
n

k

)(
k − 1− j

l

) ∑
A⊂[m−1]
|A|=j

Kk
A

=
n∑

k=l+j+1

(−1)k
(
n

k

)(
k − 1− j

l

)
(k)j+1p(k)

=
n∑
k=l

(−1)k
(
n

k

)(
k

l

)
(k − l)j+1p(k),

which by Lemma 4.3 is zero for l < n− 2m.
We have shown that

dm

dtm
φ(t, w + αt

1
2 )
∣∣∣∣
t=0

= o(t
n−2m

2 ) + c(αt
1
2 )n−2m(−1)n+m−1(1− z)×

m−1∑
j=0

(−1)jw2m−j−1
n∑

k=n−2m+j+1

(−1)k
(
n

k

)(
k − 1− j
n− 2m

)(
m− 1
j

)
(k)j+1p

′(k),

(4.7)

where p′(k) is a monic polynomial of degree exactly 2m − j − 1. Doing the same
trick as above with Lemma 4.3, the sum over k can be written as(

m− 1
j

) n∑
k=n−2m

(−1)k
(
n

k

)(
k

n− 2m

)
p′′(k),

with p′′(k) a new monic polynomial of degree 2m. By Lemma 4.3 again, we may
choose any monic polynomial of degree 2m, in particular, p′′(k) = (k−n+2m)2m.
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Then all terms in the sum cancel save for k = n. After much simplification we can
rewrite (4.7) as

dm

dtm
φ(t, w + αt

1
2 )
∣∣∣∣
t=0

= c(αt
1
2 )n−2m(−1)m[w(w − 1)]m

(
n

2m

)
(2m)! + o(t

n−2m
2 ).

(4.8)

We can finally Taylor expand φ(t, w + αt1/2) up to κ = bn2 c:

φ(t, w + αt1/2) = ctn/2
κ∑
k=0

(−1)kαn−2k[w(w − 1)]k
n!

k!(n− 2k)!
+ o(tn/2). (4.9)

Absorbing
√
w(w − 1) into α, we recognize a variant of the n’th Hermite polyno-

mial:

Hn(α) =
κ∑
k=0

(−1)k
αn−2kn!
k!(n− 2k)!

,

which is known (e.g. [20, §3.3]) to have n distinct real roots. �

Proof of “if” direction in Theorem 1.1. By Proposition 3.13, the birth-death chain
with constant birth and linear death rates preserves t-stability, and we just showed
that the pure quadratic death chain preserves stability (and hence t-stability).
However, the latter chain is no longer a Feller process, so we cannot immediately
apply Trotter’s product formula – as we did with reaction-diffusion processes and
independent Markov chains – to combine the two processes. Indeed, it is well
known that pure quadratic death chain comes down from infinity in finite time, in
the sense that lim infk→∞ pt(k, 1) > 0 for each t > 0 [11].

We rectify this situation by considering the Banach space l1(N) of absolutely
summable sequences. Let X(1)

t , X
(2)
t , and X

(3)
t be the birth-death chains with

respective rates {β(1)
k = b0, δ

(1)
k = d1k}, {β(2)

k = 0, δ(2)k = d2k(k − 1)}, and
{β(3)

k = b0, δ
(3)
k = d1k + d2k(k − 1)}. With

P (i)(t)f(x) =
∑
y

f(y)P (X(i)
t = x|X(i)

0 = y)

as the (adjoint) strongly continuous contraction semigroups on l1(N), we consider
the infinitesimal generators as the l1 limit

Ω(i)f = lim
t↓0

P (i)(t)f − f
t

.

See [17] for the theory of adjoint semigroups of Markov chains.
Let

D0 = {f ∈ l1(N); f(x) = 0 for all but finitely many x},
De = {f ∈ l1(N); |f(x)| ≤ Ce−x}, C depending only on f , and

D(Ω(i)) = {f ∈ l1(N); lim
t↓0

t−1(P (i)(t)f − f) exists as an l1 limit.}
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By explicit calculation, it can be seen that D0 ⊂ De ⊂ D(Ω(i)) for each i, P (i)(t) :
D0 → De, and for f ∈ De,

Ω(i)f(x) = δ
(i)
x+1f(x+ 1) + β

(i)
x−1f(x− 1)− [β(i)

x + δ(i)x ]f(x).

By [9, Prop. 3.3 of Ch. 1], De is a core for all three generators. Also,

Ω(1) + Ω(2) = Ω(3) on De,

so we can apply Trotter’s product formula to conclude preservation of t-stability
for X(3)

t . �
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preserving stability. Invent. Math. 177 (2009), 541–569.
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