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A very large and active part of probability theory is concerned with
the formulation and analysis of models for the evolution of large
systems arising in the sciences, including physics and biology. These
models have in their description randomness in the evolution rules,
and interactions among various parts of the system. This article
describes some of the main models in this area, as well as some
of the major results about their behavior that have been obtained
during the past forty years. An important technique in this area,
as well as in related parts of physics, is the use of correlation in-
equalities. These express positive or negative dependence between
random quantities related to the model. In some types of models,
the underlying dependence is positive, while in others it is negative.
We will give particular attention to these issues, and to applica-
tions of these inequalities. Among the applications are central limit
theorems that give convergence to a Gaussian distribution.

voter models | contact process | Glauber dynamics | exclusion process | cor-

relation inequalities | central limit theorems

Models for interacting systems
During the past half century, mathematical models for the
evolution of large interacting systems arising in a number of
scientific areas have been proposed and analyzed. Here are
some of these areas, together with a sampling of the many
papers and books in which such models have been discussed:
magnetic systems [1], high energy scattering [2], dynamics of
mutation in a structured population [3], tumor growth [4, 5],
competition between different strains of viruses [6], mutations
of pathogens [7], biopolymers [8], epidemics [9, 10], ecology
[11, 12], hydrology [13], cooperative behavior [14, 15, 16], spa-
tial distribution of unemployment [17], and the analysis of
traffic flow [18, 19, 20].

The main objective in the study of these models is to de-
scribe their long time behavior. Usually, the models contain
one or more parameters. An important issue is to determine
how the long time behavior depends on these parameters. Of-
ten there is a sharp transition in the nature of the behavior at
some particular parameter value. This situation is described
by saying that a phase transition occurs there.

Some of the analysis of these systems has been mathe-
matical, while other approaches have been based on simula-
tions and heuristics. R. L. Dobrushin [21] and F. Spitzer [22]
are usually credited with initiating the mathematical devel-
opments about 40 years ago. The modern theory of models of
this type is treated in my two monographs [23, 24].

Typically, the model is a random process ηt with state

space {0, 1}Z
d

of binary configurations on the d-dimensional
integer lattice Zd. The interpretation of the values 0 and 1 at
a site x ∈ Zd depends on the model, and on the area that mo-
tivated it. The process satisfies the Markov property, which
means that once one knows the state of the system at a given
time t, the evolution of the system after that time does not
depend on its behavior before time t. It follows that the evo-
lution rules can be described by specifying how the process
will behave in an infinitesimal time period (t, t+dt) as a (ran-
dom) function of the state ηt at time t. This is analogous

to describing a deterministic function y(t) by a differential
equation that it satisfies.

In the present context, the evolution rules are given by cer-
tain transition rates. To say that the transition η → ζ from
one configuration to another occurs at rate λ > 0 means that
in a short time period of length ε, the transition occurs with
probability approximately λε. Usually, the transition rate will
depend on η, and this dependence leads to interactions among
various parts of the system.

Our focus here will be on models on the graph Zd. How-
ever, in many contexts, such as communications and social
systems, it is more natural to consider more general graphs.
For related evolutions on random graphs, see [25], for exam-
ple. Some of the results mentioned below have extensions to
cases in which Zd is replaced by a general countable set.

A very useful tool in the mathematical analysis of inter-
acting systems is that of correlation inequalities – inequalities
that assert that the state of one random quantity has a pos-
itive (or negative) influence on the state of another. These
inequalities often make it possible to treat dependent random
quantities as if they were independent. This is of course a
great simplification. We will see a number of specific instances
of this simplification in the present paper.

Here is the plan for this paper: I will begin by describ-
ing some of the most important models in this area – voter,
contact, magnetic and exclusion – and give a sampling of the
most important results about them. Then I will discuss the
associated correlation inequalities (positive for the first three
models and negative for exclusion), and present some conse-
quences that follow from them.

Before getting started, I need to introduce a bit of nota-
tion and terminology from probability theory. The probability
of an event A is denoted by P (A). If it appears with a su-
perscript, as in P η(A), the superscript η is the initial state of
the process. Similarly, EηX is the expected value, or mean
value, of the random quantity X, when the initial state of the
system is η.

Bernoulli random variables are random variables that take
only two values, typically 0 and 1. Thus a probability distri-

bution on {0, 1}Z
d

gives the joint distribution of a collection
of (generally not independent) Bernoulli random variables in-
dexed by Zd.
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Voter models. The simplest models in this area are known as
voter models. They were introduced in [26] and [27]. Later
it was realized that they are very similar to the earlier “step-
ping stone” model of population genetics introduced in [3]. A
biased version was proposed as a model for tumor growth in
[4].

In [27], the idea was to model conflict between popula-
tions. Sites x for which η(x) = 1 represent areas controlled
by one population; those for which η(x) = 0 are controlled by
the other. A site controlled by one group is taken over by the
other at a rate that is proportional to the number of neighbors
controlled by the opposing group.

The voter interpretation of [26] was not our motivation in
that paper – the actual motivation was of a more mathemat-
ical nature. The idea was to identify a class of models that
had properties such as [2] below that permitted an essentially
complete mathematical analysis of the process.

Even though I do not claim that this is a good model
for electoral behavior, I will describe the process in electoral
terms. Each site in Zd represents a person, who at any given
time, has one of two possible opinions on an issue, labelled
0 and 1. Each person waits a unit exponentially distributed
time T , i.e., one for which P (T > t) = e−t. At that time, he
chooses one of his 2d neighbors at random, and adopts that
neighbor’s opinion.

Here is the main question: Is it the case that the system
reaches a consensus (in the voter interpretation), or that one
population takes over the entire space (in the spatial conflict
interpretation), in the sense that

lim
t→∞

P η(ηt(x) = ηt(y)) = 1 [1]

for all x, y ∈ Zd and all initial configurations η?
The key to the answer lies in a connection between the

voter model and a classical random walk X(t), which moves
on Zd in the following way: It waits where it is for a unit expo-
nential time, and then moves to a randomly chosen neighbor,
and continues in this way. Here is a special case of the connec-
tion. Suppose that initially each voter independently chooses
opinion 1 with probability α and opinion 0 with probability
1 − α. Then the probability that the individuals at x and y
share the same opinion at time t can be expressed in terms of
a probability related to the random walk:

P (ηt(x) = ηt(y)) =

1− 2α(1− α)P y−x
`
X(s) 6= 0 for all s < t

´
.

[2]

A classical result in probability theory states that X(t) is
recurrent (i.e., hits 0 eventually with probability 1) if d = 1
or 2, but not if d ≥ 3. It follows that the limiting statement
[1] holds if and only if d ≤ 2.

A key issue for all the models we consider is understand-
ing the nature of their stationary distributions. A probability

distribution µ on {0, 1}Z
d

is said to be stationary for ηt if the
process with that initial distribution continues to have distri-
bution µ at all later times. The importance of stationary dis-
tributions comes from the fact that any limiting distribution
of the process as t→∞ is stationary. Thus the identification
of stationary distributions is the first step in the analysis of
the limiting behavior of ηt.

When [1] holds, the voter model has only trivial station-
ary distributions: If µ is stationary, then it concentrates on
configurations representing consensus;

µ{η : η ≡ 0 or η ≡ 1} = 1.

When d ≥ 3, the situation is quite different [26]. Both opin-
ions can coexist in equilibrium:

Theorem 1. Suppose d ≥ 3.
(a) For every 0 ≤ α ≤ 1, there is a stationary distribution

µα in which the proportion of 1’s is exactly α. It is obtained
by starting the system with all voters having opinion 1 inde-
pendently with probability α, and then passing to the limit as
t→∞.

(b) Every stationary distribution can be expressed as an
average of the distributions µα.

For extensions of this result to voter models on a general
countable set, see Chapter V of [23].

Rather than starting the system with a distribution in
which all voters are equivalent, one could start the voter model
with a single voter with opinion 1, and ask for the behavior
of the number Nt of voters with that opinion at time t. It
turns out that ENt = 1 for all t, and it is then easy to check
that P (Nt ≥ 1)→ 0 as t→∞. In [28], it is proved that this
probability has the following order of magnitude as t→∞:

P (Nt ≥ 1) ∼

8><>:
1/
√
t if d = 1;

log t/t if d = 2;

1/t if d ≥ 3.

Furthermore, conditioned on the event {Nt ≥ 1} of non-
extinction of opinion 1, NtP (Nt ≥ 1) converges to a unit
exponential distribution if d ≥ 2.

In the biased version of the voter model that was proposed
to model tumor growth, rates for the transitions 0 → 1 are
larger than the corresponding rates for the transitions 1→ 0.
The interpretation now is that 1’s correspond to cancerous
cells and 0’s to normal cells. The process starts with a single
cancerous cell. There is positive probability that the tumor
disappears, but as a result of the bias, there is also a positive
probability that it continues to grow forever. One of the im-
portant results for this model [29] is that the growth of the
tumor is linear in time, and that it takes on a deterministic
asymptotic shape as t→∞.

Contact models. The contact process was introduced in [9].
Here the interpretation is one of spread of infection. Later it
was realized that the model is closely related to a field theory
in high energy physics [2]. This is surprising, since nothing
in the description of the model suggests that there might be
such a connection.

With the infection interpretation, sites with the value 1
are infected, while those with the value 0 are healthy. In-
fected sites remain infected for a unit exponential time, inde-
pendently of the states of their neighbors, and then become
healthy. Healthy sites become infected at rate

λ× (the number of infected neighbors),

where λ is a positive parameter. This transition mechanism
is deceptively similar to that of the voter model, but the anal-
ysis is much harder because connections such as [2] no longer
hold.

Now a type of phase transition occurs. For small values
of λ, the infection dies out, in the sense that

lim
t→∞

P η(ηt(x) = 1) = 0

for all initial configurations η and all sites x. For larger λ,
this is not the case, and there is a probability distribution ν

on {0, 1}Z
d

with a positive density of infected sites that is
stationary for the evolution. The threshold value λd that sep-
arates the regimes of survival and extinction of the infection
cannot be computed exactly, even in one dimension, but it
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can be approximated numerically. It does satisfy the rigorous
bounds [9, 30]

1

2d− 1
≤ λd ≤

2

d
.

Thus 1 ≤ λ1 ≤ 2, for example. Somewhat better bounds are
available in low dimensions: 1.539 ≤ λ1 ≤ 1.942. For large d,
the lower bound above is asymptotically correct: 2dλd → 1 as
d→∞.

At this point, it is reasonable to ask the following ques-
tion: Since real systems are finite, why is it reasonable to
study infinite models at all? The contact process provides a
clear answer to this question. If the set of sites for the mathe-
matical model is taken to be the finite box {1, . . . , N}d instead
of Zd, then the infection dies out for all values of λ. This is a
consequence of an elementary result about finite state Markov
chains. However, how long it takes to die out depends strongly
on the value of λ. If λ < λd (where λd is the critical value for
the process on Zd), then the extinction time is logarithmic in
the system size Nd, while if λ > λd, it is exponential in the
system size [31]. Therefore, if one observes a large finite sys-
tem for a large finite time, one will see the infection die out in
the subcritical case, but survive in the supercritical case. So,
the process on Zd is a better model for a large finite system
than a process on a finite set would be!

Magnetic models. In this case, it is more natural to let the
possible values of η(x) be ±1 rather than 0 and 1, since they
represent magnetic spins. The central objects of study in sta-
tistical mechanics are the Gibbs distributions for the Ising

model, which are probability distributions µ on {−1,+1}Z
d

.
They are described by specifying the conditional probabilities
for the state at x ∈ Zd, given the states at other sites:

µ(η(x) = +1 | η(y) = ζ(y) for all y 6= x) =

eβ
P

y∼x ζ(y)

eβ
P

y∼x ζ(y) + e−β
P

y∼x ζ(y)
,

where the sums are over the neighbors y of x. Here β is a
positive parameter that represents the reciprocal of the tem-
perature of the system. Classical results include the fact that
these conditional probabilities determine µ uniquely for all β
in one dimension, while in higher dimensions the Gibbs dis-
tribution is unique for small β, but not for large β.

The transition rates for the random evolution, which is
known as the Glauber dynamics [1], are chosen so that the
Gibbs distributions are stationary (and in fact reversible) for
the evolution. There are many choices with this property; in
a simple one, the rate of flipping the state at x from η(x) to
−η(x) is taken to be

e−βη(x)
P

y∼x η(y)

when the configuration is η. Note that these rates are large if
η(x) differs from the states at most of its neighbors, and small
if it largely agrees with them. This means that spins prefer
to align themselves with their neighbors, which is certainly
reasonable to expect in this context.

A natural question is whether all stationary distributions
for the time evolution are Gibbs distributions. This is known
to be the case if d = 1 (which is easy since the Gibbs distri-
bution is unique) or d = 2 (which is much harder – see [32]).
This remains an open problem in higher dimensions.

While the original motivation for these models comes from
physics, they have also led to important techniques known as
Markov Chain Monte Carlo or Gibbs sampling. Here the ob-
jective is to simulate a Gibbs distribution on a large but finite

set of sites. Rather than doing it directly, which is difficult
given the large size of the system, the evolution is run for a
long time t, and the distribution at that time is used as an ap-
proximation to the limiting Gibbs distribution. This is a huge
field with many applications. Two references are [33] and [34].
The latter is an example of an application in computational
biology.

Exclusion processes. These are of a different nature than the
models described so far. Transitions change the values at two
sites rather than only one. Now the states 0 and 1 represent
occupancy by particles (or cars in the traffic flow context).
Particles move on Zd in such a way that there is at most one
particle per site. A particle at x moves to y, if it is vacant
(hence the name exclusion), at rate p(y − x), where p(x) ≥ 0
for each x and

P
x p(x) = 1. An alternative description is

that a particle at x waits a unit exponential time, and then
chooses a y to try to move to with probability p(y − x). If y
is vacant, it moves there, while if y is occupied, it remains at
x.

While exclusion processes seem natural in the contexts of
particle motion and traffic flow, it is interesting to note that
perhaps the earliest appearance of them was in a biological
situation – see [8]. In this case, the “particles” are ribosomes
that move along a messenger RNA template reading genetic
information.

Again we are interested in stationary distributions. A

probability distribution on {0, 1}Z
d

is called exchangeable if
it does not change when finitely many coordinates of η are
permuted. It is not hard to check that all exchangeable dis-
tributions are stationary for the exclusion process. It is harder
to determine when these are all the stationary distributions.
Here is one of the early results about this problem [35, 36]:

Theorem 2. Suppose p(·) is symmetric, i.e., p(−x) = p(x) for
all x. Then all stationary distributions are exchangeable.

For extensions of this result to exclusion processes on a general
countable set, see Chapter VIII of [23].

The above conclusion is often false for asymmetric sys-
tems. For example, take the case in which d = 1, p(1) = p,
p(−1) = 1− p, and p(x) = 0 otherwise. If p > 1

2
, so particles

experience a drift to the right, there are stationary distribu-
tions with respect to which there are only finitely many par-
ticles to the left of the origin, and only finitely many empty
sites to the right of the origin. In one example, the coordinates
{η(x), x ∈ Z1} are independent, with

P (η(x) = 1) =
px

px + (1− p)x . [3]

In fact, all stationary distributions can be constructed from
these and the exchangeable ones in this case. Generalizations
of this statement to one dimensional systems with long range
jumps can be found in [37]. In this more general context, ex-
plicit formulas such as [3] are usually not available. This is a
source of much of the difficulty that arises in the analysis.

To describe a rather surprising consequence of the asym-
metry, we will continue with the one-dimensional nearest-
neighbor case. Suppose the initial distribution is of the fol-
lowing type: negative sites are independently occupied with
probability λ, and nonnegative sites with probability ρ. If
λ = ρ, this distribution is exchangeable, and hence station-
ary. What happens in the limit as t → ∞ if λ 6= ρ? Here
is the answer [38, 39], which is substantially more complex in
the asymmetric case:

Theorem 3. (a) If p = 1
2

, then

lim
t→∞

P (ηt(x) = 1) =
λ+ ρ

2
.
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(b) If p > 1
2

, then

lim
t→∞

P (ηt(x) = 1) =

8>>><>>>:
1
2

if λ ≥ 1
2

and ρ ≤ 1
2
;

λ if λ ≤ 1
2

and λ+ ρ < 1;

ρ if ρ ≥ 1
2

and λ+ ρ > 1;
1
2

if λ ≤ 1
2

and λ+ ρ = 1.

These results can be predicted by the behavior of associ-
ated partial differential equations (PDE’s) – the heat equation

∂u

∂t
=

1

2

∂2u

∂x2

if p = 1
2
, and Burgers’ equation

∂u

∂t
+ (2p− 1)

∂

∂x
[u(1− u)] = 0 [4]

if p > 1
2
. The more elaborate and interesting limiting behav-

ior in the asymmetric case is a consequence of the nonlinearity
in equation [4].

The connection between the exclusion process and the
PDE arises in the following way: If the evolution equations
for the exclusion process are simplified by assuming that the
coordinate variables ηt(x) are independent for different x’s,
the result is a discrete form of the corresponding PDE. If one
solves the PDE with the initial condition

u(x, 0) =

(
λ if x < 0;

ρ if x ≥ 0,

then limt→∞ u(t, x) takes the form given in Theorem 3.
The limiting (in distribution) occupation variables η∞(x)

in Theorem 3 are independent for different x’s in all of these
cases except p > 1

2
, λ ≤ 1

2
and λ+ρ = 1, when the covariances

are given by

Cov(η∞(x), η∞(y)) =
1

4
(ρ− λ)2, x 6= y.

Exclusion processes on finite sets have been of substantial
interest as well – see [40], for example. To describe one recent
result, suppose S is a set with n points, and place n distin-
guishable particles on it, one at each point. For each pair
x, y ∈ S, interchange the particles at x and y at a rate that
depends on the locations of the two particles. There are var-
ious Markov chains that are embedded in this structure. By
following the motion of only one of the particles, one obtains
a chain with n states. More generally, following the positions
of k ≤ n particles gives rise to a chain with many more states:
n(n − 1) · · · (n − k + 1). In this case, if one makes the par-
ticles indistinguishable, the k particles move according to a
symmetric exclusion process on S.

For a concrete example, consider shuffling a standard 52
card deck. Then n = 52, and S is the set of possible positions
of a card in the deck. The shuffling is done by interchanging
the kth and lth cards at a rate that depends on k and l. For
example, the rate might be higher if the two cards are closer
together in the deck than if they are farther apart. If one
follows the position of the ace of spades, say, the chain has 52
possible states. If one follows the positions of all 52 cards, the
corresponding chain has 52! ≈ 1068 states.

The rate of convergence to the stationary distribution
(which is a perfectly shuffled deck in the shuffling context)
is determined by the smallest non-trivial eigenvalue of a ma-
trix made up of the transition rates. This eigenvalue can be
computed easily when the chain has 52 states, say, but cannot
be computed for a chain of anything like 1068 states. Recently,

P. Caputo, T. Richthammer and I [41] were able to prove the
1992 conjecture of D. Aldous that the principal eigenvalues for
the large (n! states) and small (n states) chains are the same
for any n and any choice of rates. It follows that computing
the eigenvalue for the smaller chain is enough to determine
the rate of convergence to equilibrium for the larger chain.

Here is the barest outline of our approach. The proof is
by induction on n. To carry out the induction step, it is nec-
essary to take the set of size n with transition rates associated
to pairs of points in that set, and construct from it a set of
size n− 1, together with a new collection of rates on pairs of
those points. This is done by generalizing the series, parallel,
and star-triangle reductions used in electrical network theory.
Using the induction hypothesis on the smaller set, the prob-
lem becomes one of showing that a particular n! × n! matrix
is positive semi-definite. This is done by a careful analysis of
the structure of a related large matrix.

Correlation inequalities

There is a natural (partial) order on {0, 1}Z
d

:

η ≤ ζ if η(x) ≤ ζ(x) for all x.

A real valued continuous function f on {0, 1}Z
d

is said to be
increasing if η ≤ ζ implies f(η) ≤ f(ζ). An important prob-
lem is to determine the evolutions and initial distributions for
which

Ef(ηt)g(ηt) ≥ Ef(ηt)Eg(ηt)

for all increasing f and g and all t > 0. This means that the
random variables f(ηt) and g(ηt) are positively correlated in
the usual sense. This section is devoted to a discussion of this
question, together with the analogous question for negative
correlations.

Positive association. A probability distribution µ on {0, 1}Z
d

is said to be positively associated if

Ef(η)g(η) ≥ Ef(η)Eg(η) for all increasing f and g, [5]

when η has distribution µ. The best known result related to
this concept is the FKG theorem [42], which gives a sufficient
condition (known as the FKG lattice condition) for positive
association. It is easy to check this condition when the coordi-
nates η(x) are independent (in which case positive association
was known earlier – [43]), and can often be verified for Gibbs
distributions. However, the FKG lattice condition can essen-
tially never be checked for the distribution at time t of any of
the evolutions we are considering. In fact, it is often false, even
if it turns out that the distribution is positively associated.

To check that the distribution at time t of an evolution is
positively associated, one uses the following result [44], which
applies to a very general class of processes on {0, 1}S , in-
cluding the voter, contact and magnetic (but not exclusion)
models described above:

Theorem 4. Suppose the process satisfies the following two
properties:

(a) Individual transitions affect the state at only one site.
(b) For every continuous increasing function f and every

t > 0, the function η → Eηf(ηt) is increasing.
Then, if the initial distribution is positively associated, so is
the distribution at all later times.

It follows from this that the limiting distribution as t →
∞, if it exists, is also positively associated.
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Negative association. In the analogous definition for negative
association, [5] is replaced by

Ef(η)g(η) ≤ Ef(η)Eg(η) for all increasing f and g

that depend on disjoint sets of coordinates.
[6]

This last constraint is necessary, since if f = g, the opposite
inequality [5] automatically holds for any µ.

One might hope that negative association is related to the
exclusion process in much the same way that positive associ-
ation is related to voter, contact and magnetic models. Here
is the reason: In the exclusion process, particles are neither
created nor destroyed. Therefore, if one knows that a cer-
tain subset of Zd has many particles, it is likely that disjoint
subsets have relatively fewer particles. It turns out that in
order for something like this to actually be true, p(·) must be
symmetric: p(−x) = p(x) for all x.

While the intuition is fairly clear, it took 35 years to find
the correct version of the connection between the symmetric
exclusion process and negative association [45, 46, 47]. Here
is one consequence of the general statement for the symmetric
exclusion process that is proved in [47]:

Theorem 5. Suppose that initially, the random variables
{η(x), x ∈ Zd} are independent. Then

(a) the distribution of the process at time t > 0 is nega-
tively associated,
and

(b) if S is a subset of Zd, the number
P
x∈S ηt(x) of

particles in S at time t has the same distribution as a sumP
x∈S ζt(x) of appropriately chosen independent Bernoulli

random variables.

Part (b) is a very useful property for proving limit theorems,
as we will see in the next section.

Given the form of Theorem 4, one might suspect that neg-
ative association itself is preserved by the symmetric exclusion
evolution. This is not the case [48]. The key to Theorem 5 is
finding another property that is preserved, and that implies
properties (a) and (b) in this result.

The property that works is a rather unintuitive one known
as stability. To describe it, suppose the exclusion process is
evolving on a finite set S = {1, . . . , n}. The random variables
{η(x), x ∈ S} are said to be stable if the (generating) function
of n complex variables

f(z1, . . . , zn) = Ez
η(1)
1 · · · zη(n)

n

is not zero whenever all the zi’s have strictly positive imagi-
nary parts. It turns out that the property of stability is pre-
served by the symmetric exclusion process. The fact that
independent Bernoulli random variables are stable is easy to
check. The fact that stable random variables are negatively
associated is much more difficult to establish. On the other
hand, the fact that stable random variables have property (b)
of Theorem 5 is easy to see: Take z1, . . . , zn to be equal. Then

f(z, . . . , z) = Ezη(1)+···+η(n)

is the generating function the sum η(1) + · · · + η(n). This is
a polynomial in one variable of degree n, whose zeros cannot
have positive imaginary parts by the stability property, and
therefore cannot have negative imaginary part, since the zeros
occur in conjugate pairs. They are therefore real, and in fact
≤ 0, since the polynomial is strictly positive on the positive
real axis. Therefore, it can be factored in the form

f(z, . . . , z) = (p1z + 1− p1) · · · (pnz + 1− pn), [7]

where 0 ≤ pi ≤ 1 for each i. Now take ζ(i) to be independent
with P (ζ(i) = 1) = pi. Then ζ(1) + · · ·+ ζ(n) has generating
function [7] as well, so η(1) + · · ·+ η(n) and ζ(1) + · · ·+ ζ(n)
have the same distribution.

Consequences of correlation inequalities
In this section, we describe a few of the many results concern-
ing interacting systems that are related to correlation inequal-
ities.

Voter models. It follows from Theorem 4 that when d ≥ 3,
the nontrivial stationary distributions µα for the voter model
are positively associated. In fact, using [2], one can show that
the covariances for the coordinate random variables relative
to µα are given by

Cov(η(x), η(y)) = α(1− α)
G(y − x)

G(0)

where

G(x) =

Z ∞
0

P 0(X(t) = x)dt,

which is the expected total amount of time the random walk
spends at x.

Looking ahead to comments about central limit theorems
for contact and magnetic models below, note thatX

x

Cov(η(x), η(0)) =∞.

This is an indication that the (positive) correlations among
voter opinions are quite strong.

Contact models. It took 15 years to prove that the critical
contact process (the one with λ = λd) dies out. The proof
[49, 50] uses several times the fact that collections of indepen-
dent Bernoulli random variables are positively associated.

The nontrivial stationary distribution ν for the supercrit-
ical (λ > λd) contact process does not satisfy the FKG lattice
condition [51]. However, it is positively associated by Theo-
rem 4. Theorem 4.20 of Chapter I of [23] and Theorem 2.30
of Part I of [24] combine to show that the covariances of η(x)
and η(y) relative to ν decay exponentially rapidly as a func-
tion of the distance |y−x|. It then follows from results in [52]
or [53] that ν satisfies the following central limit theorem:

Theorem 6. Let Sn =
P
|x|≤n η(x). Then

Sn − ESnp
V ar(Sn)

⇒ N(0, 1).

In this statement,⇒ denotes convergence in distribution, V ar
stands for variance, and N(0, σ2) represents the Gaussian dis-
tribution with mean 0 and variance σ2.

The FKG lattice condition is equivalent to the statement
that the distribution is positively associated, even after con-
ditioning on the values of {η(x), x ∈ S} for any S. This raises
the question of whether ν is associated after some special type
of conditioning. It is not when the conditioning is on the event
η(0) = 1. In fact if d = 1, the conditional distribution satis-
fies [6] rather than [5] if f depends on {η(x), x < 0} and g
depends on {η(x), x > 0} [54]. The intuition behind this is
that if the origin is known to be infected, the infection must
have come from somewhere. If it did not come from the left,
it must have come from the right.

Nevertheless, ν is positively associated after conditioning
on the event {η(x) = 0, x ∈ S} [55, 56]. A consequence of
this (together with other known properties of the contact
process) is that if {η(x), x ∈ Zd} have distribution ν and
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λ ≥ 2, then there exist independent Bernoulli random vari-
ables {ζ(x), x ∈ Zd} with density

P (ζ(x) = 1) =
λ− 2

λ

so that ζ(x) ≤ η(x) for all x [57]. As in Theorem 5(b), this is a
connection between non-independent Bernoulli random vari-
ables and independent ones that is very useful is analyzing
the former collection.

For example, consider the site percolation model, in which
one asks whether there is positive probability that infinitely
many sites are connected to the origin by paths that travel
only through sites for which η(x) = 1 (respectively ζ(x) = 1).
Classical results for independent percolation imply that if
d ≥ 2 and λ is sufficiently large, percolation occurs for the
above ζ’s. The comparison result implies that it also occurs
for the non-independent η’s. Motivated by [57] and the biolog-
ical application in [58], properties that have long been known
for independent percolation have recently been extended to
percolation in ν for d = 2 in [59].

Magnetic models.Suppose that initially all spins are +1.
Then for every t > 0, the covariances Cov(ηt(x), ηt(y)) de-
cay exponentially rapidly as a function of |y − x| by Propo-
sition 4.18 of Chapter I of [23]. The random variables ηt(x)
are positively associated by Theorem 4. It then again follows
that the spin variables satisfy the central limit theorem. If
the (distributional) limiting random variables η∞(x) satisfyX

x

Cov(η∞(x), η∞(0)) <∞, [8]

the same argument applies. Condition [8] holds often, but
not always.

Exclusion processes.Assume throughout that the model is
symmetric, p(−x) = p(x) for all x, since it is only then that
useful correlation inequalities are available.

The proof of part of Theorem 2 begins with an extension
of the symmetry property, which is known as duality. Con-
sider two copies of the exclusion process, ηt and ζt, with initial
configurations η and ζ respectively. Then

P η(ηt ≥ ζ) = P ζ(η ≥ ζt) [9]

for all t > 0. When η has infinitely many particles and ζ has
finitely many particles, this duality property reduces many
problems for the infinite system to corresponding problems
for the finite system.

By Theorem 5(a),

P ζ(ζt(x1) = 1, . . . , ζt(xn) = 1) ≤

P ζ(ζt(x1) = 1) · · ·P ζ(ζt(xn) = 1)
[10]

for distinct points x1, . . . , xn ∈ Zd. The right side can be in-
terpreted as the probability that n independent (by [9] and
the fact that it is a product of probabilities) particles start-
ing at x1, . . . , xn will be in the set {x : ζ(x) = 1} at time t.
Thus problems relating to n particles moving with the exclu-
sion interaction can often be reduced to problems relating to
n independent particles, which is a great simplification.

Consider now the problem of the motion of a tagged parti-
cle. The tagged particle is initially placed at the origin; other
sites are initially occupied with probability 1

2
each. The prob-

lem concerns the asymptotic behavior of the position X(t) of
the tagged particle at time t. The presence of the other par-
ticles has the effect of slowing down the tagged particle. The
question is, by how much is it slowed down? The following
situation is special, but particularly interesting in view of the
unusual scaling [60]:

Theorem 7. Suppose d = 1 and p(1) = p(−1) = 1
2

. Then X(t)
obeys the central limit theorem

X(t)

t1/4
⇒ N

`
0,
p

2/π
´
. [11]

In essentially all other cases, X(t) is asymptotically Gaus-

sian, but with a variance that is of order t rather than
√
t

[61, 62, 63]. The proof of [11] is based on [10] as well. A key
point is that the variance of the sum of negatively correlated
Bernoulli random variables is at most equal to its mean.

The two applications above use only the weak form [10]
of negative association that has been known since 1974. Here
is an application of the more elaborate version proved in [47]
only recently. Suppose d = 1, and that initially all negative
sites are occupied and all positive sites are vacant. Let W (t)
be the number of particles that are to the right of the origin
at time t:

W (t) =
X
x>0

ηt(x).

By Theorem 5, for each t > 0, the summands above are nega-
tively correlated, and there are independent Bernoulli random
variables ζt(x) so that W (t) has the same distribution asX

x>0

ζt(x).

This makes it possible to apply classical central limit theorems
to the sum directly, once one proves that V ar(W (t))→∞ as
t→∞. This fact is intuitively obvious, but is not particularly
easy to prove. The difficulty comes from the fact that in the
expression

V ar(W (t)) =
X
x,y>0

Cov(ηt(x), ηt(y)),

the summands corresponding to x = y are positive, while
those corresponding to x 6= y are negative, and may cancel
the positive contributions and lead to a bounded variance.

The proof that V ar(W (t))→∞ is again based on compar-
isons between finite interacting systems and the corresponding
independent systems. Here is the result proved in [64]:

Theorem 8. If
P
x x

2p(x) <∞, then

W (t)− EW (t)p
V ar(W (t))

⇒ N(0, 1), [12]

with both the mean and the variance of W (t) being of order√
t.

The central limit theorem [12] has been extended to some
choices of p(·) with infinite variance in [65].

Discussion
In this paper, I have described some of the important results
from the area of probability theory that is known as inter-
acting particle systems – an area with motivations from, and
connections to, a number of the sciences. Among the various
techniques that have been important in the analysis of models
in this area are:

(a) Coupling, in which two or more copies of the process
are defined on the same probability space. This leads to con-
clusions about one of the processes based on known properties
of the others.
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(b) Duality, in which algebraic relations between two pro-
cesses are exploited. Examples are given by equations [2] and
[9]. Duality is used in the proofs of Theorems 1 and 2.

(c) Renormalization, in which finite boxes in Zd are re-
garded as individual sites. This is a key tool in the proof of
the extinction of the critical contact process, for example.

(d) The correlation inequalities discussed here.
I have focussed on the latter technique in this paper for a

number of reasons, including (i) the fact that major progress
has been made in the past two years in the case of negative as-
sociation, and (ii) my own involvement in the proof and use of
both positive and negative correlations in interacting particle
systems in recent years.

In various ways, correlation inequalities often allow one
to treat dependent random variables as if they were indepen-
dent, and therefore to apply classical results on independent
random variables to obtain results in situations in which de-

pendence occurs. Applications of this technique that we have
discussed here include:

(a) the proof of Theorem 2 and its extensions on station-
ary distributions for the symmetric exclusion process,

(b) extinction of the critical contact process,
(c) the existence of percolation for the non-trivial station-

ary distribution of the contact process,
and

(d) central limit theorems for a tagged particle in the ex-
clusion process, and for the number of particles in large boxes
for several models.
Even in the proofs of the central limit theorems, the way in
which the correlation inequalities are used varies from case to
case. This is a very versatile tool.
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