
A contact process with mutations on a tree

by Thomas M. Liggett∗, Rinaldo B. Schinazi, Jason Schweinsberg†

University of California at Los Angeles,

University of Colorado at Colorado Springs

and University of California at San Diego

December 18, 2006

Abstract

Consider the following stochastic model for immune response. Each pathogen gives birth
to a new pathogen at rate λ. When a new pathogen is born, it has the same type as its
parent with probability 1 − r. With probability r, a mutation occurs, and the new pathogen
has a different type from all previously observed pathogens. When a new type appears in
the population, it survives for an exponential amount of time with mean 1, independently
of all the other types. All pathogens of that type are killed simultaneously. Schinazi and
Schweinsberg (2006) have shown that this model on Z

d
behaves rather differently from its

non-spatial version. In this paper, we show that this model on a homogeneous tree captures
features from both the non-spatial version and the Z

d
version. We also obtain comparison

results between this model and the basic contact process.

1 Introduction

Schinazi and Schweinsberg (2006) have recently introduced a non-spatial and a spatial version
of the following stochastic model for immune response. For the non-spatial version (Model 2 in
their paper), each pathogen gives birth to a new pathogen at rate λ. When a new pathogen is
born, it has the same type as its parent with probability 1 − r. With probability r, a mutation
occurs, and the new pathogen has a different type from all previously observed pathogens. When
a new type appears in the population, it survives for an exponential amount of time with mean
1, independently of all the other types. All pathogens of that type are killed simultaneously.

For the spatial version (Model S2 in Schinazi and Schweinsberg (2006)), let S be the square
lattice Z

d or the homogeneous tree Td in which every vertex has d + 1 neighbors. Let x be a site
in S occupied by a pathogen and y be one of its nearest neighbors. There are 2d such neighbors
in Z

d and d + 1 in Td. After a random exponential time with rate λ, the pathogen on x gives
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birth on y, provided y is empty (if y is occupied nothing happens). With probability 1 − r the
new pathogen on y is of the same type as the parent pathogen on x. With probability r the new
pathogen is of a different type. We assume that every new type that appears is different from all
types that have ever appeared. As in the non-spatial model, we assume that each type survives
for an exponential amount of time with mean 1, independently of all other types, and that all
pathogens of a type are killed simultaneously.

Biological motivation has been provided in Schinazi and Schweinsberg (2006). There is also
some obvious motivation for such a model for the spread of a virus in computer networks. In
particular, when a virus is discovered in a computer network it is usually destroyed at once. It is
also interesting to test the influence of particular network topologies on the spread of a virus; see
for instance Pastor-Sattoras and Vespignani (2001), Berger et. al. (2005), Ganesh et. al. (2005),
and Draief et al. (2006).

Schinazi and Schweinsberg (2006) have shown that the pathogens survive in the non-spatial
model with positive probability if and only if λ > 1 and r > 0; see their Theorem 1.2. In contrast,
for the spatial model on Z

d they have shown that if λ is large enough then the pathogens survive
with positive probability for large r and die out with probability 1 for small r; see their Theorem
4. Given that a ball of radius R has of the order of dR sites in the homogeneous tree Td one
might conjecture that the behavior of the spatial model on Td is similar to that of the non-spatial
model (there are so many sites on the tree that space may not be a limitation). As the reader
will see in the next section, this is not so. In fact, the model on the tree captures both features
from the model on Z

d and from the non-spatial model. These results will be stated in Section 2
and proved in Sections 4 and 5.

The basic contact process may be thought of as being a particular case of this model with
r = 1. See Liggett (1999) for background and results on the contact process. For r = 1, all
pathogens are of different types and therefore only one pathogen dies at a time. Hence, one
might conjecture that the model with r = 1 has a better chance of surviving than any model
with r < 1. This turns out to be true but requires nontrivial arguments. This will be done in
Section 3. This comparison result applies to any graph.

2 Phase transitions

We say that the pathogens survive on a graph S if there is a positive probability that at all times
there is at least one pathogen somewhere in S. If the pathogens do not survive they are said to
die out.

Theorem 1. Consider the contact process with mutations on the homogeneous tree Td with d ≥ 2,
started with a single pathogen of type 1.

1. If λ > 1
d−1 then the pathogens survive for all r > 0.

2. If λ ≤ 1
d−1+2r then the pathogens die out. In particular, if λ ≤ 1

d+1 , the pathogens die out
for all r ≥ 0.

3. If
1−d+

√
(d−1)(7+9d)

2(d2−1) < λ < 1
d−1 the pathogens die out for r close to 0 and survive for r close

to 1.
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These results will be proved in Sections 4 and 5.
Note that for all d ≥ 2, the left-hand side of the inequality in Theorem 1.3 is strictly smaller

than the right-hand side. Therefore, Theorem 1.3 shows that for intermediate values of λ there
is a phase transition in r. Moreover, the difference between the right and left sides of Theorem
1.3 is asymptotic to 2

3d2 as d ↑ ∞. Combining Theorem 1.1 and 1.2 , we see that the set of λ’s
for which there is a phase transition in r is of size asymptotically at most 2

d2 . So, up to a factor
of three, we have found the correct size of this set.

We now turn to another type of phase transition. Let At be the set of sites that are occupied
by any pathogen. The process is started with a single pathogen at the site x. Recall that
pathogens are said to survive if

P (At 6= ∅,∀t > 0) > 0. (1)

The pathogens are said to survive weakly if (1) holds and

P (x /∈ At for sufficiently large t) = 1. (2)

That is, with positive probability, there are pathogens somewhere in S for all times, but almost
surely a given site gets infected only finitely many times. If P (x ∈ At for arbitrarily large t) > 0,
then the process is said to survive strongly.

The interest in interacting particles on trees was sparked by Pemantle (1992). He proved
that, in contrast to what happens on Z

d, there exists an intermediate range of λ’s for which the
basic contact process on a homogeneous tree survives weakly; see Liggett (1999) for a complete
description of the results and people involved. We next give a partial result in the same direction
for the contact process with mutations.

Theorem 2. Consider the contact process with mutations on the homogeneous tree Td. If 1
d−1 <

λ < 1
2
√

d
then the pathogens survive weakly for all r > 0.

This proves that for d ≥ 6, there is a range of λ for which the contact process with mutations
survives weakly. We believe this result to hold for all d ≥ 2. Theorem 2 will be proved at the
end of Section 3.

3 Comparison between the contact process with mutations and

the basic contact process

Let S be a connected undirected graph. Let At be the set of sites occupied by a pathogen at time
t for the contact process with mutations on S. A typical state is a finite subset A of S, together
with a partition {Ai} of A; Ai is the set of sites of type i. Denote the semigroup and generator of
the process by Sr(t) and Lr. Note that the mutation model with r = 1 can be viewed as a version
of the basic contact process, but only if all initial types are distinct; otherwise they are not the
same. To make the comparison with the basic contact process, it is convenient to make it have
the same birth mechanism as the multitype version. We will carry along the information about
types, but ignore that information in the death mechanism – each individual dies separately at
rate 1. We will use primes when referring to this process. Thus the generators are given by

Lrg(A) =
∑

i

[g(A\Ai) − g(A)] + λ
∑

i

∑

x∈Ai,y /∈A,x∼y

[rg(UyA) + (1 − r)g(V y
i A) − g(A)]
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and

L′
rg(A) =

∑

x∈A

[g(A\{x}) − g(A)] + λ
∑

i

∑

x∈Ai,y /∈A,x∼y

[rg(UyA) + (1 − r)g(V y
i A) − g(A)]

where UyA = V y
i A = A ∪ {y} as sets, but with different partitions: In UyA, {y} is added as a

new set in the partition, while in V y
i A, y is added to Ai. Here x ∼ y means thar x and y are

neighbors in S.
We begin with a result about the basic contact process, which is an extension of Theorem 6.2

of Harris (1974). His result is the following statement in the special case S = Zd and C = Zd.
The proof below is an adaptation of the proof of Proposition 5.9 of Chapter III of Liggett (1985).
(As a historical note, we point out that Harris proved his result using coupling rather than duality.
He didn’t discover contact process duality until two years later.) Here PA refers to probabilities
when A is the initial state of the process at time zero.

Lemma 3. For all A,B,C ⊂ S and every t > 0,

PA∩B(A′
t ∩ C 6= ∅) + PA∪B(A′

t ∩ C 6= ∅) ≤ PA(A′
t ∩ C 6= ∅) + PB(A′

t ∩ C 6= ∅).

Proof. By checking cases, one sees that

1{C∩(A∩B)6=∅} + 1{C∩(A∪B)6=∅} ≤ 1{C∩A 6=∅} + 1{C∩B 6=∅}

for all A,B,C. Replacing C by A′
t and taking expectations gives

PC(A′
t ∩ (A ∩ B) 6= ∅) + PC(A′

t ∩ (A ∪ B) 6= ∅) ≤ PC(A′
t ∩ A 6= ∅) + PC(A′

t ∩ B 6= ∅).

Now use duality (Theorem 1.7 of Chapter VI of Liggett (1985)).

Here is the basic comparison result:

Theorem 4. For every A,C ⊂ S, 0 ≤ r ≤ 1, and t ≥ 0,

PA(At ∩ C 6= ∅) ≤ PA(A′
t ∩ C 6= ∅).

Proof. Let f(A) = 1{A∩C 6=∅}. The integration by parts formula gives

PA(A′
t ∩ C 6= ∅) − PA(At ∩ C 6= ∅) = S′

r(t)f(A) − Sr(t)f(A)

=

∫ t

0
Sr(s)

(

L′
r − Lr)S

′
r(t − s)f(A)ds.

The easiest way to check this identity is to integrate the derivative with respect to s of
Sr(s)S

′
r(t − s)f from 0 to t, recalling that while the two semigroups do not commute, each

semigroup commutes with its own generator. By the lemma, g(A) = S′
r(t − s)f(A) (note that

g(A) depends on A only through the set of occupied sites – not on its partition by type) satisfies

g(A ∩ B) + g(A ∪ B) ≤ g(A) + g(B) (3)

for all A,B. Thus it suffices to show that (L′
r −Lr)g ≥ 0 for all g that depend on A only through

the set of occupied sites and satisfy (3). Of course, Lrg(A) does depend on the types. So, write
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A = ∪iA
i, where {Ai} is the partition of A according to type. Then since the terms corresponding

to births agree for the two generators,

(L′
r − Lr)g(A) =

∑

x∈A

[g(A\{x}) − g(A)] −
∑

i

[g(A\Ai) − g(A)]

=
∑

i

[

∑

x∈Ai

[g(A\{x}) − g(A)] − g(A\Ai) + g(A)

]

.

We will check that this is nonnegative by checking that each summand (in the sum on i) is
nonnegative. So, we need to check that if B ⊂ A, then

∑

x∈B

g(A\{x}) ≥ g(A\B) + (|B| − 1)g(A).

To deduce this from (3), write B = {u1, ..., uk}. Then (3) implies that

g(A\{uj}) ≥ g(A\{u1, ..., uj}) − g(A\{u1, ..., uj−1}) + g(A) (4)

for each j. Now sum (4) for 1 ≤ j ≤ k to complete the proof.

Remark 5. By taking C = S in Theorem 4, we get that for any graph S and any λ > 0, if
the basic contact process dies out, then the contact process with mutations dies out for every
r ∈ [0, 1].

Proof of Theorem 2. By Theorem 1.1, the contact process with mutations survives for λ > 1
d−1 .

Therefore, it remains only to verify (2) when λ < 1
2
√

d
. Recall that x is the location of the

pathogen at time zero. Following Section 1.4 of Liggett (1999), define a function ℓ : Td → Z such
that ℓ(x) = 0 and, for each y ∈ Td, we have ℓ(z) = ℓ(y) − 1 for exactly one neighbor z of y,
while ℓ(z) = ℓ(y)+ 1 for the other d neighbors of y. We can think of ℓ(y) as being the generation
number of y, with x belonging to generation zero.

For 0 < ρ < 1, define

wρ(A) =
∑

x∈A

ρℓ(x).

For the basic contact process, we have

E[wρ(A
′
t)] ≤ exp[(λdρ + λρ−1 − 1)t]wρ(A

′
0). (5)

This can be seen from the differential equation in (4.4) on p. 80 of Liggett (1999). Alternatively,
equation (4.6) on p. 81 of Liggett (1999) gives (5) with equality for the branching random walk,
so the inequality follows from comparing the contact process with the branching random walk.

Since initially there is just one pathogen at x, we have wρ(A
′
0) = 1. Also, since (5) holds for

all ρ, we can optimize the bound by choosing ρ = 1/
√

d. If λ < 1
2
√

d
, then γ = λdρ+λρ−1−1 < 0.

Since wρ(A
′
t) ≥ 1 whenever x ∈ A′

t, it follows that

P (x ∈ A′
t) ≤ E[wρ(A

′
t)] ≤ exp(γt).
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Since γ < 0, we have
∫ ∞

0
P (x ∈ A′

t) dt < ∞.

Using Theorem 4 with A = C = {x} to compare the basic contact process and the contact process
with mutations, we get P (x ∈ At) ≤ P (x ∈ A′

t) for all t. Thus,

E

[
∫ ∞

0
1{x∈At} dt

]

=

∫ ∞

0
P (x ∈ At) dt < ∞. (6)

On the event that x is infected infinitely many times, almost surely the Lebesgue measure of the
set of infected times is infinite. Therefore, (2) follows from (6).

Remark 6. Because P (x ∈ At) ≤ P (x ∈ A′
t), we have

lim
t→∞

P (x ∈ At) = 0 (7)

whenever this result holds for the basic contact process. In particular, if λ < λ2, where λ2 is the
upper critical value for the contact process, that is, the infimum over the set of λ for which the
contact process survives strongly, then (7) holds for all r ∈ [0, 1]. Pemantle (1992) showed that
λ2 ≥ 0.309 when d = 5 and λ2 ≥ 0.354 when d = 4. These bounds, combined with Theorem
1.1, show that when d = 4 or d = 5, there is a range of λ such that for all r ∈ [0, 1], the contact
process with mutations survives but (7) holds. For d ≥ 6, Theorem 2 gives the stronger result of
weak survival for a range of λ.

Remark 7. Unlike the case of the contact process, many monotonicity statements for At are
either false or hard to prove. To illustrate, we note that the following statement is false, even
when S has only two elements:

“For all λ, t and r, PA(At 6= ∅) is increasing in A for sets A of a single type.”

To see this, let S = {x, y}, f(A) = limλ→∞ PA(At 6= ∅) for a fixed t > 0, and for simplicity take
r = 1/2. Then it is not hard to check that

f({x, y}) = e−t, f({x}, {y}) = (1 + t)e−t, f({x}) =

(

1 +
t

2

)

e−t.

(Here {x, y} is the configuration with two particles of the same type, {x}, {y} is the configuration
with two particles of different types, and {x} is the configuration in which x is occupied and y is
vacant.) Therefore,

f({x, y}) < f({x}) < f({x}, {y}).
In particular, we do not know whether the survival probability P {x}(At 6= ∅ ∀t) is monotone in
r for fixed λ, even though Theorem 4 suggests that this is probably the case.
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4 Proofs of Theorems 1.1 and 1.2

We start with the proof of Theorem 1.1. The proof requires some extra care because of the
monotonicity issues mentioned in Remark 7.

To prove this result, we first establish that our particle system dominates a particle system
that obeys the same rules except that only one birth can ever happen on any given site, and no
births can occur on sites y for which ℓ(y) < 0, where ℓ is the function defined in the proof of
Theorem 2. Note that this second restriction amounts to running the process on the rooted d-ary
tree with x as the root, so that x has d neighbors and the other vertices have d + 1 neighbors.
Therefore, it will suffice to give a condition for this modified particle system to survive.

To couple the two particle systems, we construct them from the same collection of Poisson
processes. For each nonzero integer k, let (T k

i )∞i=1 be the times of a Poisson process of rate 1 on
[0,∞). For each pair of adjacent vertices v and w in Td, let (T v,w

i )∞i=1 be the times of a Poisson
process of rate λ on [0,∞) and let (ξv,w

i )∞i=1 be a sequence of i.i.d. Bernoulli random variables
that are one with probability r and zero with probability 1−r. All of these processes are assumed
to be independent of one another.

To construct the two particle systems, we start with an individual of type one at x. At the
times T v,w

i , if site v is occupied and site w is vacant, the individual at site v gives birth at site w,
except that for the second particle system, this birth is suppressed if there was a previous birth
at site w or if ℓ(w) < 0. If ξv,w

i = 0, then the new individual born at site w has the same type
as the individual at site v. If ξv,w

i = 1, then this individual has a new type. If this new type is
the kth type that appears simultaneously in both particle systems, then we label it type k. If it
is the kth type to appear in one particle system but not the other, then we label the type −k.
Therefore, the types indexed by positive integers are coupled, while those indexed by negative
integers are not. At the times T k

i , all individuals of type k (if there are any) die.
Let At be the set of occupied sites in the first particle system at time t, and let Bt be the set

of occupied sites in the second particle system. For nonzero integers k, let Ak
t be the set of sites

at time t inhabited by a type k individual in the first process, and let Bk
t be the set of sites at

time t inhabited by a type k individual in the second process. The following lemma is sufficient
to imply that the first process survives for all t whenever the second process does.

Lemma 8. For all t, we have Bk
t = ∅ for all k < 0 and Bk

t ⊂ Ak
t for all k > 0.

Proof. Fix any vertex w ∈ Td. Let v0, v1, . . . , vs be the vertices on the unique path from x to w,
with v0 = x and vs = w. Suppose w ∈ Bt for some t. This means that for j = 1, . . . , s, the virus
must have spread from vj−1 to vj by time t. Therefore, ℓ(vj) ≥ 0 for j = 0, 1, . . . , s.

If T 1
1 < T v0,v1

1 , then the individual at v0 dies before the virus spreads to v1. In this case, the
site v1 can never become infected in the second process because, by the rules of the second process,
v0 can never be reinfected. Alternatively, if T 1

1 > T v0,v1
1 , then the site v1 becomes infected in both

particle systems at time τ1 = T v0,v1
1 , and by definition the site is assigned the same (positive)

type number in both particle systems. Therefore, if v1 is ever infected in the second particle
system, then it is infected in both particle systems by particles of the same positive type at the
same time τ1.

Proceeding by induction, suppose it is true that if vj is ever infected in the second particle
system, then it is infected in both particle systems by a particle of the same type mj > 0 at
the same time τj. Then, if min{Tmj

i : T
mj

i > τj} < min{T vj ,vj+1

i : T
vj ,vj+1

i > τj}, the individual
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at vj dies before spreading the infection to vj+1, and the site vj+1 can never become infected in
the second particle system because vj can never be reinfected. Otherwise, the site vj+1 becomes
infected in both particle systems at time τj+1 = min{T vj ,vj+1

i : T
vj ,vj+1

i > τj} and therefore gets
the same type number in both particle systems. Thus, if vj+1 is ever infected in the second
particle system, then it is infected in both particle systems at the same time by particles of the
same positive type.

By induction, we conclude that for all w ∈ Td, if w is ever infected in the second particle
system, then it is infected in both particle systems at the same time by particles having the same
positive type. This implies Bk

t = ∅ for all k < 0. This also implies that the particle on site w will
die at the same time in both particle systems. Since the site can never become reinfected in the
second particle system, the result Bk

t ⊂ Ak
t for all k follows.

Lemma 9. Let U be the tree such that 1 is the root of the tree and ℓ is a child of k if the first
type ℓ individual in the second particle system has a type k individual as its parent. Then U is a
Galton-Watson tree.

Proof. To prove this lemma, we will modify the Poisson process construction of the second particle
system. Rather than working with the Poisson processes (T v,w

i )∞i=1 and (ξv,w
i )∞i=1, we will define,

for each positive integer k, a Poisson process (T k,v,w
i )∞i=1 of rate λ on [0,∞) and a sequence

(ξk,v,w
i )∞i=1 of i.i.d. random variables that are one with probability r and zero with probability

1−r. All of the processes are again assumed to be independent. We construct the particle system
as before, except that when there is a type k individual at the site v, the times at which this
individual attempts to give birth on the site w are the times T k,v,w

i , and the random variables

ξk,v,w
i determine whether the new individual born has a new type or a different type. Note also

that is sufficient to consider only the vertices v such that all vertices w on the path from x to v
satisfy ℓ(w) ≥ 0. These vertices form a tree T ∗

d , which we can think of as being rooted at x, in
which x has d neighbors and the other vertices have d + 1 neighbors.

For all positive integers k, let Xk denote the number of children of the vertex labeled k (if
there is one) in the tree U . Fix a vertex u ∈ Td, and let v0, v1, . . . , vk be the vertices on the
unique path from x to u. Then, a type 1 individual gives birth to a new type on u if and only if,
for j = 1, . . . , k− 1, the type 1 individual on site vj−1 gives birth to another type 1 individual on
site vj , and then the type 1 individual on site k − 1 gives birth to an individual of a new type on
site k, all before the type 1 individuals die. These events depend only on T 1

1 and the processes
(T 1,v,w

i )∞i=1 and (ξ1,v,w
i )∞i=1, so there is a function f such that X1 = f(T 1

1 , (T 1,v,w
i )∞i=1, (ξ

1,v,w
i )∞i=1).

Now, suppose there is a type k individual born at some time. Let τk be the time at which
the first type k individual is born, and let vk be the vertex at which the first type k individual is
born. Note that τk and vk depend only on the evolution of the first k− 1 types and therefore are
functions of T j

1 , (T j,v,w
i )∞i=1, and (ξj,v,w

i )∞i=1 for j = 1, . . . , k−1. Also, note that type k individuals
and their children can only be born in the subtree rooted at vk (consisting of the vertices w such
that the path from w to x includes vk), which is empty until time τk. This means that the type
k individuals evolve in the subtree rooted at vk just as the as the type 1 individuals evolve in
T ∗

d . More precisely, let φ be a graph automorphism mapping T ∗
d to the subtree of T ∗

d rooted at

vk such that φ(x) = vk. Also, let Jk = min{i : T k
i > τk} and Jk,v,w = min{i : T k,v,w

i > τk}. Then

Xk = f
(

T k
Jk − τk, (T

k,φ(v),φ(w)

i+Jk,φ(v),φ(w)−1
− τk)

∞
i=1, (ξ

k,φ(v),φ(w)

i+Jk,φ(v),φ(w)−1
)∞i=1

)

.
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From this fact and the translation invariance of Poisson processes, it follows that the conditional
distribution of Xk given X1, . . . ,Xk−1 is the same as the unconditional distribution of X1. This
is enough to establish that U is a Galton-Watson tree.

Proof of Theorem 1.1. When r = 1, the result is a known fact about the basic contact process
(see, for example, Theorem 4.1 on p. 79 of Liggett (1999)). Assume now that r < 1. By
Lemma 8, it suffices to prove that the second process survives with positive probability whenever
λ > 1/(d−1). Note that the second process survives for all times if and only if the Galton-Watson
tree U is infinite. Therefore, we need to show that this Galton-Watson process is supercritical
when λ > 1/(d − 1)

The mean of the offspring distribution can be computed explicitly. We will take k = 1 and
count the expected number of type 1 individuals born, not counting the one alive at time zero.
Note that for all j ≥ 1, there are dj vertices x ∈ T ∗

d such that ℓ(x) = j. Also, if a type one vertex
is born on a given site x, the probability that a type 1 vertex is born on a child of this site (that
is, a neighboring vertex y such that ℓ(y) = ℓ(x) + 1) is the probability that this birth, which
happens at rate λ(1 − r), happens before either a mutant is born on this site, which happens at
rate λr, or the type dies, which happens at rate 1. Therefore, this probability is λ(1− r)/(λ+1).
It follows that the probability that a type 1 individual is born on a given vertex x ∈ T ∗

d with
ℓ(x) = j is [λ(1 − r)/(λ + 1)]j . Therefore, the expected number of type 1 individuals born is

∞
∑

j=1

dj

(

λ(1 − r)

λ + 1

)j

.

Since the expected number of new types born to type 1 individuals is r/(1−r) times the expected
number of type one individuals born, the mean of the offspring distribution of the tree U is

r

1 − r

∞
∑

j=1

(

dλ(1 − r)

λ + 1

)j

,

which is infinite if r < (d − 1)/d and λ ≥ 1/(d − 1 − dr). Otherwise, we have

r

1 − r

∞
∑

j=1

(

dλ(1 − r)

λ + 1

)j

=
r

1 − r

(

dλ(1 − r)

λ + 1 − dλ(1 − r)

)

=
dλr

1 − (d − 1)λ + dλr
,

which (when the mean of the offspring distribution is finite) is greater than one if and only if
λ > 1/(d − 1). This completes the proof of Theorem 1.1.

We now turn to Theorem 1.2.

Proof of Theorem 1.2. When r = 1, the result is a known fact about the contact process. By
using a comparison between the contact process and the branching random walk, one can deduce
this result from Theorem 4.8 in Section 1.4 of Liggett (1999). When r = 0, all pathogens have
the same type and therefore die out after an exponential time. Assume now that 0 < r < 1.

We first construct the original particle system from Poisson processes in a slightly different
way. For each positive integer k, let (T k

i )∞i=1 be the times of a rate one Poisson process on [0,∞).
For each pair of adjacent vertices v and w in Td and each positive integer k, let (T k,v,w)∞i=1 be
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a Poisson process of rate λ on [0,∞). For each positive integer k and each vertex v in Td, let
(ξk,v)∞i=1 be a sequence of i.i.d. random variables that are one with probability r and zero with

probability 1− r. All type k individuals die at the times T k
i . If, at time T k,v,w

i , there is a type k
individual at site v and the site w is vacant, then the individual at site v gives birth onto the site
w at this time. To determine the type of this new individual, we examine the random variable
ξk,w
j if this is the jth time that a type k individual has given birth onto w. If ξk,w

j = 0, then the
new individual also has type k. Otherwise, it has a new type. No types are assigned negative
numbers, and the ℓth type to appear will be called type ℓ. Let Ak

t be the set of sites having type
k at time t, and let At be the set of occupied sites at time t.

To make our comparison argument work, we will define for each positive integer k an additional
process consisting only of type k individuals. We will define the new process from the same
collection of Poisson processes as the original process. If the first type k individual in the original
process is born at site vk at time τk, then the new process will be empty until time τk, at which
time a type k individual appears at the site vk. Thereafter, the new process evolves with the same
rules as the original process, except that individuals of types other than k are killed instantly
after being born. Let Dk

t be the set of occupied sites in this process at time t.
Let ζk = min{T k

i : T k
i > τk}, which is the time at which the type k individuals die in both

processes, so Ak
t = Dk

t = ∅ for t ≥ ζk. For all w ∈ Td, let g(w) = min{j : ξk,w
j = 0}. Note that for

both processes, there is a type k individual born at site w if and only if there are at least g(w)
times before ζk when a type k individual gives birth on site w. Also, note that once a type k
individual is born on site w, there can be no further births on site w until time ζk, so there can
never be more than g(w) times at which a type k individual gives birth on site w. Let hA,w(t) be
the number of times in the original process that a type k individual gives birth on the site w by
time t, and let hD,w(t) be the number of times in the additional process that an individual gives
birth on the site w by time t.

We claim that hA,w(t) ≤ hD,w(t) for all t ∈ [τk, ζk] and all w ∈ Td, and that Ak
t ⊂ Dk

t for all
t ∈ [τk, ζk]. Since we clearly have hA,w(t) ≤ hD,w(t) and At

k ⊂ Dk
t when t = τk and the type k

individuals die at the same time in both processes, we need only to show that these results do not
break down at any of the times T k,v,w

i when type k births may take place. Suppose t = T k,v,w
i ,

and that we have hA,w(t−) ≤ hD,w(t−) and Ak
t− ⊂ Dk

t−. If v /∈ Ak
t−, then there can be no birth

in the original process at time t, and therefore hA,w(t) ≤ hD,w(t) and Ak
t ⊂ Dk

t . Suppose instead
v ∈ Ak

t− ⊂ Dk
t−. Then there are four possibilities.

• If w ∈ At− and w ∈ Dk
t−, then there is no birth at time t in either process, so hA,w(t) ≤

hD,w(t) and Ak
t ⊂ Dk

t .

• If w ∈ At− and w /∈ Dk
t−, then hA,w(t) = hA,w(t−) and hD,w(t) = hD,w(t−) + 1. Again it is

clear that hA,w(t) ≤ hD,w(t) and Ak
t ⊂ Dk

t .

• If w /∈ At− and w /∈ Dk
t−, then there is a birth at time t in both processes. Therefore,

hA,w(t) = hA,w(t−) + 1 and hD,w(t) = hD,w(t−) + 1, so we have hA,w(t) ≤ hD,w(t). If
the individual born in the original process has type k, then hA,w(t) = g(w), which implies
hD,w(t) = g(w) and therefore a type k individual is born in both processes. Thus, we still
have Ak

t ⊂ Dk
t .

• If w /∈ At− and w ∈ Dk
t−, then it is clear that Ak

t ⊂ Dk
t . Also, the individual at site w

at time t− in the additional process must have type k, as only type k individuals appear
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in this process. This means that hD,w(t−) = g(w). Since hA,w(t) ≤ g(w) for all t, the
inequality hA,w(t) ≤ hD,w(t) holds also.

These observations imply the claim.
Now, let Yk be the number of new types born to type k individuals at the site w in the original

process, and let Zk be the number of new types born to type k individuals at the site w in the
additional process. Note that Yk = min{g(w) − 1, hA,w(ζk)} and Zk = min{g(w) − 1, hD,w(ζk)}.
Therefore, it follows from the claim that Yk ≤ Zk. Also, because Td is a transitive graph, the
conditional distribution of Zk given Z1, . . . , Zk−1 and given that a type k individual appears at
some time is the same as the distribution of Z1.

Using the original process, define the tree V such that 1 is the root of the tree and ℓ is a
child of k if the first type ℓ individual has a type k individual as its parent. Note that the vertex
k has Yk descendants in the tree V . Since Yk ≤ Zk for all k, it follows that the distribution of
the total progeny of V is stochastically dominated by the distribution of the total progeny in a
Galton-Watson tree whose offspring distribution is the same as the distribution of Z1. Therefore,
if E[Z1] ≤ 1, then V is finite almost surely, which implies that the process dies out almost surely.

The computation for E[Z1] differs from the computation in the proof of Theorem 1.1 in two
ways. First, there are (d+1) ·dj−1 vertices at a distance j from x. Second, because new types die
immediately, if there is a type one present on a given site, a type one will be born on a child at
rate λ(1− r)/(λ(1− r)+ 1) because this birth only must happen before the type dies. Therefore,
the expected number of new types born to type 1 individuals in this model is

(d + 1)r

d(1 − r)

∞
∑

j=1

(

dλ(1 − r)

λ(1 − r) + 1

)j

.

This is infinite when λ ≥ 1/[(d − 1)(1 − r)]. Otherwise, we have

(d + 1)r

d(1 − r)

∞
∑

j=1

(

dλ(1 − r)

λ(1 − r) + 1

)j

=
(d + 1)r

d(1 − r)

(

dλ(1 − r)

λ(1 − r) + 1 − dλ(1 − r)

)

=
(d + 1)rλ

1 − (d − 1)(1 − r)λ
,

which is less than or equal to one if and only if λ ≤ 1/(d − 1 + 2r).

5 Proof of Theorem 1.3

In this section, we adapt the proof of Theorem 2.2(ii) of Pemantle (1992) to prove that the process
sometimes survives even for λ < 1/(d − 1). We begin with the following general result.

Lemma 10. Let Xt be a pure jump Markov process on a countable set S with transition rates
q(x, y), x 6= y, set q(x) =

∑

y:y 6=x q(x, y), and let f be a nonnegative function on S. Suppose that
there exist positive ǫ and M so that

(i) f(y) − f(x) ≥ −M whenever q(x, y) > 0
and

(ii)
∑

y:|f(y)−f(x)|≤M q(x, y)[f(y) − f(x)] ≥ ǫq(x) for all x ∈ S.
Then there is an α > 0 so that Ex exp[−αf(Xt)] is a decreasing function of t for all x ∈ S. In
particular, if f(x) > 0, τ is the hitting time of {y : f(y) = 0}, and this set is absorbing, then
P x(τ < ∞) < 1.
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Proof. Choose γ > 0 so that eu ≤ 1 + u + u2 for |u| ≤ γ, and write for 0 < α ≤ γ/M

d

dt
Exe−αf(Xt)

∣

∣

∣

∣

t=0

=
∑

y

q(x, y)

[

e−αf(y) − e−αf(x)

]

≤ e−αf(x)
∑

y:|f(y)−f(x)|≤M

q(x, y)

[

eα[f(x)−f(y)] − 1

]

≤ e−αf(x)
∑

y:y 6=x,|f(y)−f(x)|≤M

q(x, y)

[

α[f(x) − f(y)] + α2M2

]

≤ e−αf(x)

[

− ǫαq(x) + α2M2q(x)

]

,

which is ≤ 0 provided that αM2 ≤ ǫ. Setting α = min(γ/M, ǫ/M2) and using the Markov
property gives the monotonicity result. To check the final statement, use the fact that if P x(τ <
∞) = 1, then f(Xt) is eventually 0. This would contradict the monotonicity statement.

Returning to the mutation process, for a configuration A, let N(A) be the number of types
in A, and C(A) be the number of components of A. We will apply the lemma with f(A) =
αN(A)+βC(A) for an appropriate choice of α > 0 and β > 0. Note that N(A) can only increase
by 1 or decrease by 1 at each transition. On the other hand, C(A) can decrease by at most
d (if a particle is born at a site with all neighbors occupied), but can increase by arbitrarily
large amounts (if a type that is connected to a large number of other types dies). So f(At)
has bounded downward jumps but unbounded upward jumps, unlike the situation Pemantle
considered. Nevertheless, by choosing M sufficiently large, which we now do, we satisfy (i) of the
lemma.

Turning to assumption (ii), we consider first the contributions coming from changes in N(A).
The number of types decreases by one at rate N(A), since each type dies at rate 1. The number
of types increases by one at rate

λr#((x, y) : x ∈ A, y /∈ A) = λr[(d − 1)|A| + 2C(A)].

This is exactly the same as Pemantle’s computation, except that there is an extra factor of r
coming from the fact that each new particle is of a new type with probability r. Combining these
observations leads to

∑

B

q(A,B)[N(B) − N(A)] = −N(A) + λr[(d − 1)|A| + 2C(A)].

The rate at which C(A) decreases as the result of particle births is at most (d + 1)λC(A),
as shown by Pemantle. The major difference between Pemantle’s situation and ours comes next.
Consider one component C of A with k ≥ 2 types, in which type i is connected to ji other types.
As Pemantle showed,

k
∑

i=1

(ji − 1) = k − 2. (8)
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If the ith type dies, ji − 1 new components are formed. Thus we need to find a lower bound for

∑

i:ji≤M+1

(ji − 1).

In doing so, we will use (8), together with the simple inequalities

ji ≤ (d − 1)|Ai| + 2, (9)

|C| =
k

∑

i=1

|Ai| ≥
∑

i:ji>M+1

|Ai| +
∑

i:ji≤M+1

1 (10)

and (using (8) and the fact that ji ≥ 1)

k − 2 ≥
∑

i:ji>M+1

(ji − 1) ≥ (M + 1)
∑

i:ji>M+1

1. (11)

Putting these together gives:

∑

i:ji≤M+1

(ji − 1) = (k − 2) −
∑

i:ji>M+1

(ji − 1)

≥ (k − 2) −
∑

i:ji>M+1

[

(d − 1)|Ai| + 1
]

≥ (k − 2) −
∑

i:ji>M+1

1 − (d − 1)

[

|C| −
∑

i:ji≤M+1

1

]

= (k − 2) − (d − 1)|C| + (d − 1)k − d
∑

i:ji>M+1

1

≥ kd − 2 − (d − 1)|C| − d
k − 2

M + 1

≥ kd
M

M + 1
− (d − 1)|C| − 2.

We have used (9) in the first inequality, (10) in the second, and (11) in the third. Note that
this inequality is trivially true in the case k = 1 in which the entire component is of one type.
Summing the above inequality over all components gives

N(A)
∑

i=1

(ji − 1)1{ji≤M+1} ≥ N(A)d
M

M + 1
− (d − 1)|A| − 2C(A).

It follows that

∑

B:|C(B)−C(A)|≤M

q(A,B)[C(B) − C(A)] ≥ N(A)d
M

M + 1
− (d − 1)|A| − 2C(A) − (d + 1)λC(A).

Now take f(A) = αN(A) + βC(A). Note that when M is sufficiently large, we can only
have |f(B) − f(A)| > M with q(A,B) > 0 when the death of a single type leads to the creation
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of many components. That is, |f(B) − f(A)| > M if and only if N(B) − N(A) = −1 and
C(B) − C(A) > (M + α)/β. It follows that for sufficiently large M ,

∑

B:|f(B)−f(A)|≤M

q(A,B)[f(B) − f(A)]

≥
∑

B

q(A,B)[N(B) − N(A)] +
∑

B:|C(B)−C(A)|≤M/β

q(A,B)[C(B) − C(A)]

≥ α

[

− N(A) + λr(d − 1)|A| + 2λrC(A)

]

+ β

[

N(A)d
M

M + β
− (d − 1)|A| − 2C(A) − (d + 1)λC(A)

]

= N(A)

[

− α + βd
M

M + β

]

+ |A|
[

αλr(d − 1) − β(d − 1)

]

+ C(A)

[

2λrα − 2β − β(d + 1)λ

]

.

Since the total jump rate q(A) is bounded above by a multiple of |A|, and N(A) ≤ |A|,
assumption (ii) in the lemma will be satisfied if, in the expression above, the coefficient of |A| is
strictly positive, the sum of the coefficients of N(A) and |A| is strictly positive, and the coefficient
of C(A) is nonnegative. This will be true for large M if

αλr > β, β > α[1 − λr(d − 1)], and 2λrα ≥ β[2 + λ(d + 1)].

There exist positive α and β satisfying these inequalities if λr(d− 1) ≥ 1, or if λr(d− 1) < 1 and

2 + λ(d + 1)

2λr
<

1

1 − λr(d − 1)
,

i.e., if λ is greater than the positive root of

λ2r(d2 − 1) + λ(2rd − d − 1) − 2 = 0.

Applying the lemma, we now have the following result.

Theorem 11. The contact process with mutations survives if

λ >
d + 1 − 2rd +

√

(d + 1)2 + 4r(d + 1)(d − 2) + 4d2r2

2r(d2 − 1)
. (12)

Combining this result with Theorem 1.2, we see that for

1 − d +
√

(d − 1)(7 + 9d)

2(d2 − 1)
< λ <

1

d − 1
,

the process dies out for small r and survives for r close to 1. Note also that while Theorem 11
gives a better lower bound than Theorem 1.1 when r is close to one, the lower bound in Theorem
1.1 is better for small r, as the expression on the right-hand side of (12) approaches infinity as
r → 0.
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