
Continuous Time Markov Processes:

An Introduction

Thomas M. Liggett

Department of Mathematics, UCLA

Current address: Department of Mathematics, University of California,
Los Angeles CA 90095

E-mail address: tml@math.ucla.edu



1991 Mathematics Subject Classification. Primary 60J25, 60J27, 60J65;
Secondary 35J05, 60J35, 60K35

Key words and phrases. Probability theory, Brownian motion,
Markov chains, Feller processes, the voter model, the contact
process, exclusion processes, stochastic calculus, Dirichlet

problem

This work was supported in part by NSF Grant #DMS-0301795.

Abstract. This is a textbook intended for use in the second semester
of the basic graduate course in probability theory and/or in a semester
topics course to follow the one year course.



Contents

Preface xi

Chapter 1. One Dimensional Brownian Motion 1

§1.1. Some motivation 1

§1.2. The multivariate Gaussian distribution 2

§1.3. Processes with stationary independent increments 5

§1.4. Definition of Brownian motion 5

§1.5. The construction 9

§1.6. Path properties 14

§1.7. The Markov property 20

§1.8. The strong Markov property and applications 26

§1.9. Continuous time martingales and applications 36

§1.10. The Skorokhod embedding 44

§1.11. Donsker’s Theorem and applications 48

Chapter 2. Continuous Time Markov Chains 53

§2.1. The basic setup 53

§2.2. Some examples 55

§2.3. From Markov chain to infinitesimal description 57

§2.4. Blackwell’s example 61

§2.5. From infinitesimal description to Markov chain 64

§2.6. Stationary measures, recurrence and transience 74

§2.7. More examples 81

vii



viii Contents

Chapter 3. Feller Processes 87
§3.1. The basic setup 87
§3.2. From Feller process to infinitesimal description 93
§3.3. From infinitesimal description to Feller process 97
§3.4. A few tools 102
§3.5. Applications to Brownian motion and its relatives 112

Chapter 4. Interacting Particle Systems 125
§4.1. Some motivation 125
§4.2. Spin systems 126
§4.3. The voter model 140
§4.4. The contact process 151
§4.5. Exclusion processes 164

Chapter 5. Stochastic Integration 181
§5.1. Some motivation 181
§5.2. The Itô integral 183
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Preface

Students are often surprised when they first hear the following definition:
“A stochastic process is a collection of random variables indexed by time”.
There seems to be no content here. There is no structure. How can anyone
say anything of value about a stochastic process? The content and struc-
ture are in fact provided by the definitions of the various classes of stochastic
processes that are so important for both theory and applications. There are
processes in discrete or continuous time. There are processes on countable
or general state spaces. There are Markov processes, random walks, Gauss-
ian processes, diffusion processes, martingales, stable processes, infinitely
divisible processes, stationary processes, and many more. There are entire
books written about each of these types of stochastic process.

The purpose of this book is to provide an introduction to a particularly
important class of stochastic processes – continuous time Markov processes.
My intention is that it be used as a text for the second half of a year-long
course on measure theoretic probability theory. The first half of such a course
typically deals with the classical limit theorems for sums of independent
random variables (laws of large numbers, central limit theorems, random
infinite series), and with some of the basic discrete time stochastic processes
(martingales, random walks, stationary sequences). Alternatively, the book
can be used in a semester-long special topics course for students who have
completed the basic year-long course. In this case, students will probably
already be familiar with the material in Chapter 1, so the course would start
with Chapter 2.

The present book stresses the new issues that appear in continuous time.
A difference that arises immediately is in the definition of the process. A
discrete time Markov process is defined by specifying the law that leads from
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xii Preface

the state at one time to that at the next. This approach is not possible in
continuous time. In most cases, it is necessary to describe the transition law
infinitesimally in time, and then prove under appropriate conditions that
this description leads to a well defined process for all time.

We begin with an introduction to Brownian motion, which is certainly
the most important continuous time stochastic process. It is a special case
of many of the types listed above – it is Markov, Gaussian, a diffusion, a
martingale, stable, and infinitely divisible. It plays a fundamental role in
stochastic calculus, and hence in financial mathematics. Through Donsker’s
theorem, it provides a framework for far reaching generalizations of the clas-
sical central limit theorem. While we will concentrate on this one process in
Chapter 1, we will also discuss there the extent to which results and tech-
niques apply (or do not apply) more generally. The infinitesimal definition
discussed in the previous paragraph is not necessary in the case of Brownian
motion; however it sets the stage for the set up that is required for processes
that are defined in that way.

Next we discuss the construction problem for continuous time Markov
chains. (The word “chain” here refers to the countability of the state space.)
The main issue is to determine when the infinitesimal description of the
process (given by the Q-matrix) uniquely determines the process via Kol-
mogorov’s backward equations.

With an understanding of these two examples – Brownian motion and
continuous time Markov chains – we will be in a position to consider the
issue of defining the process in greater generality. Key here is the Hille-
Yosida theorem, which links the infinitesimal description of the process (the
generator) to the evolution of the process over time (the semigroup). Since
usually only the generator is known explicitly, we will discuss how one de-
duces properties of the process from information about the generator. The
main examples at this point are variants of Brownian motion, in which the
relative speed of the particle varies spatially, and/or there is a special be-
havior at the boundary of the state space.

As an application of the theory of semigroups and generators, we then
provide an introduction to a somewhat more recently developed area of prob-
ability theory – interacting particle systems. This is a class of probabilistic
models that come up in many areas of application – physics, biology, com-
puter science, and even a bit in economics and sociology. Infinitely many
agents evolve in time according to certain probabilistic rules that involve
interactions among the agents. The nature of these rules is dictated by the
area of application. The main issue here is the nature of the long time
behavior of the process.
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Next we give an introduction to stochastic integration with respect to
Brownian motion and other continuous martingales. Not only is this an
important probabilistic tool, but in recent years, it has become an essential
part of financial mathematics. We define the Itô integral and study its
properties, which are quite different from those of ordinary calculus as a
consequence of the lack of smoothness of Brownian paths. Then we use it
to construct local time for Brownian motion, and apply it to give a new
perspective on the Brownian relatives from Chapter 3.

In the final chapter, we return to Brownian motion, and describe one of
its great successes in analysis – that of providing a solution to the classical
Dirichlet problem, which asks for harmonic functions (those satisfying ∆h =
0) in a domain in Rn with prescribed boundary values. Then we discuss the
Poisson equation 1

2∆h = −f . Solutions to the Dirichlet problem and Poisson
equation provide concrete answers to many problems involving Brownian
motion in Rn. Examples are exit distributions from domains, and expected
occupation times of subsets prior to exiting a domain.

The prerequisite for reading this book is a semester course in measure
theoretic probability, that includes the material in the first four chapters of
[18], for example. In particular, students should be familiar with laws of
large numbers, central limit theorems, random walks, the basics of discrete
time Markov chains, and discrete time martingales. To facilitate referring
to this material, I have included the main definitions and results (mostly
without proofs) in the Appendix. Over 150 exercises are placed within the
sections as the relevant material is covered.

Chapters 1 and 2 are largely independent of one another, but should be
read before Chapter 3. The main places where Chapter 2 relies on material
from Chapter 1 are in the discussions of the Markov and strong Markov
properties. Rather than prove these in some generality, our approach will
be to prove them in the concrete context of Brownian motion. By making
explicit the properties of Brownian motion that are used in the proofs, we are
able simply to refer back to those proofs when these properties are discussed
in Chapters 2 and 3.

The hearts of Chapters 2 and 3 are Sections 2.5 and 3.3 respectively.
The prior sections in these chapters are intended to provide motivation for
the transition from infinitesimal description to time evolution. Therefore,
the earlier sections need not be covered in full detail. I often state the main
results from the earlier sections without proving many of them, in order
to allow more time for the transition from infinitesimal description to time
evolution. The last three chapters can be covered in any order.

This book is based on courses I have taught at UCLA over many years.
Unlike many universities, UCLA operates on the quarter system. I have
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typically covered most of the material in Chapters 1-3 and 6 in the third
quarter of the graduate probability course, and Chapters 4 and 5 in special
topics courses. There is more than enough material here for a semester
course, even if Chapter 1 is skipped because students are already familiar
with one dimensional Brownian motion.

As is usually the case with a text of this type, I have benefitted greatly
from the work of previous authors, including those of [12], [18], [20], [21],
[22], [27], [35], [37], [38], and [42]. I also appreciate the comments and
corrections provided by P. Caputo, S. Roch, and A. Vandenberg-Rodes, and
especially T. Richthammer, who read much of the book very carefully.

Thomas M. Liggett



Chapter 1

One Dimensional
Brownian Motion

1.1. Some motivation

The biologist Robert Brown noticed almost two hundred years ago that bits
of pollen suspended in water undergo chaotic behavior. The bits of pollen
are much more massive than the molecules of water, but of course there are
many more of these molecules than there are bits of pollen. The chaotic
motion of the pollen is the result of many infinitesimal jolts by the water
molecules. By the central limit theorem, the law of the motion of the pollen
should be closely related to the normal distribution. We now call this law
Brownian motion.

During the past half century or so, Brownian motion has turned out
to be a very versatile tool for both theory and applications. As we will
see in Chapter 6, it provides a very elegant and general treatment of the
Dirichlet problem, which asks for harmonic functions on a domain with
prescribed boundary values. It is also the main building block for the theory
of stochastic calculus, which is the subject of Chapter 5. Via stochastic
calculus, it has played an important role in the development of financial
mathematics.

As we will see later in this chapter, Brownian paths are quite rough –
they are of unbounded variation in every time interval. Therefore, integrals
with respect to them cannot be defined in the Stieltjes sense. A new type
of integral must be defined, which carries the name of K. Itô, and more
recently, of W. Doeblin. This new integral has some unexpected properties.

1



2 1. One Dimensional Brownian Motion

Here is an example: If B(t) is Brownian motion at time t, then

(1.1)
∫ t

0
B(s)dB(s) =

1
2
[
B2(t)− t

]
.

Of course, if B(t) could be used as an integrator in the Stieltjes sense, and
this were the Stieltjes integral, the right side would not have the term −t in
it.

There are also the important applications connected with the classical
limit theorems of probability theory. If ξ1, ξ2, ... are i.i.d. random variables
with mean zero and variance one and Sn = ξ1 + · · · + ξn, the CLT says
that Sn/

√
n converges in distribution to the standard normal. How can

one embed the CLT into a more general theory that includes as one of its
consequences the fact that max{0, S1, ..., Sn}/

√
n converges in distribution

to the absolute value of a standard normal? The answer involves Brownian
motion in a crucial way, as we will see later in this chapter. Here is an early
hint: For t ≥ 0 and n ≥ 1, let

(1.2) Xn(t) =
S[nt]√
n
,

where [·] is the integer part function. Then Xn(1) = Sn/
√
n, and

max
0≤t≤1

Xn(t) =
max{0, S1, ..., Sn}√

n
.

So, we have written both functionals of the partial sums in terms of the
stochastic process Xn(t). Once we show that Xn converges in an appropriate
sense to Brownian motion, we will have a limit theorem for

max{0, S1, ..., Sn},

as well as for many other functions of the Sn’s.
This chapter represents but a very small introduction to a huge field.

For further reading, see [34] and [38].

1.2. The multivariate Gaussian distribution

Before defining Brownian motion, we will need to review the multivariate
Gaussian distribution. Recall that a random variable ξ has the standard
Gaussian distribution N(0, 1) if it has density

1√
2π
e−x

2/2, −∞ < x <∞.

It is said to be univariate Gaussian if it can be written in the form ξ = aζ+b,
where ζ is standard Gaussian and a, b are real. Note that this definition
allows ξ to have zero variance. The Gaussian distribution with mean m and
variance σ2 (obtained above if b = m and a2 = σ2) is denoted by N(m,σ2).
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Definition 1.1. The real random vector (ξ1, ..., ξn) is said to be multivariate
Gaussian if all linear combinations

n∑
k=1

akξk

have univariate Gaussian distributions.

Remark 1.2. (a) If ξ1, ..., ξn are independent Gaussians, then (ξ1, ..., ξn) is
multivariate Gaussian.

(b) Definition 1.1 is much stronger than the statement that each ξk is
Gaussian. For example, suppose ζ is standard Gaussian, and

ξ =

{
+ζ if |ζ| ≤ 1;
−ζ if |ζ| > 1.

Then ξ is also standard Gaussian. However, since |ζ + ξ| ≤ 2 and ζ + ξ is
not constant, ζ + ξ is not Gaussian.

Remark 1.3. Definition 1.1 has a number of advantages over the alterna-
tive, in which one specifies the joint density of (ξ1, ..., ξn):

(a) It does not require that (ξ1, ..., ξn) have a density. For example, (ξ, ξ)
is bivariate Gaussian if ξ is Gaussian.

(b) It makes the next result immediate.

Proposition 1.4. Suppose ξ = (ξ1, ..., ξn) is Gaussian and A is an m × n
matrix. Then the random vector ζ = Aξ is also Gaussian.

Proof. Any linear combination of ζ1, ..., ζm is some other linear combination
of ξ1, ..., ξn. �

An important property of a multivariate Gaussian vector ξ is that its
distribution is determined by the mean vector Eξ and the covariance matrix,
whose (i, j) entry is Cov(ξi, ξj). To check this statement, we use character-
istic functions. Recall that the characteristic function of a random variable
with the N(m,σ2) distribution is

exp
{
itm− 1

2
t2σ2

}
.

Therefore, if ξ = (ξ1, ..., ξn) is multivariate Gaussian, its joint characteristic
function is given by

φ(t1, ..., tn) = E exp
{
i

n∑
j=1

tjξj

}
= exp

{
im− 1

2
σ2

}
,
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where m and σ2 are the mean and variance of
∑n

j=1 tjξj :

m =
n∑
j=1

tjEξj and σ2 =
n∑

j,k=1

tjtkCov(ξj , ξk).

Since φ(t1, ..., tn) depends on ξ only through its mean vector and covari-
ance matrix, these determine the characteristic function of ξ, and hence its
distribution by Proposition A.22. This observation has the following conse-
quences:

Proposition 1.5. If ξ = (ξ1, ..., ξn) is multivariate Gaussian, then ξ1, ..., ξn
are independent if and only if they are uncorrelated.

Proof. That independence implies uncorrelatedness is always true for ran-
dom variables with finite second moments. For the converse, suppose that
ξ1, ..., ξn are uncorrelated, i.e., that Cov(ξj , ξk) = 0 for j 6= k. Take ζ1, ..., ζn
to be independent, with ζi having the same distribution as ξi. Then ξ and
ζ = (ζ1, ..., ζn) have the same characteristic function, and hence the same
distribution, by Proposition A.22. It follows that ξ1, ..., ξn are indepen-
dent. �

Exercise 1.6. Show that if ξ = (ξ1, ..., ξn), where ξ1, ..., ξn are i.i.d. stan-
dard Gaussian random variables, and O is an n×n orthogonal matrix, then
Oξ has the same distribution as ξ.

Exercise 1.7. (a) Suppose that ξk ⇒ ξ and that ξk has the N(mk, σ
2
k)

distribution for each k. Prove that ξ is N(m,σ2) for some m and σ2, and
that mk → m and σ2

k → σ2.
(b) State and prove an analogue of (a) for Gaussian random vectors.

The main topic of this book is a class of stochastic processes; in this
chapter, they are Gaussian. We conclude this section with formal definitions
of these concepts.

Definition 1.8. A stochastic process is a collection of random variables
indexed by time. It is a discrete time process if the index set is a subset of
{0, 1, 2, ...}, and a continuous time process if the index set is [0,∞).

Definition 1.9. A stochastic process X(t) is Gaussian if for any n ≥ 1
and any choice of times t1, ..., tn, the random vector (X(t1), ..., X(tn)) has
a multivariate Gaussian distribution. Its mean and covariance functions are
EX(t) and Cov(X(s), X(t)) respectively.
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1.3. Processes with stationary independent increments

As we will see shortly, Brownian motion is not only a Gaussian process,
but is a process with two other important properties – stationarity and
independence of its increments. Here is the relevant definition.

Definition 1.10. A stochastic process (X(t), t ≥ 0), has stationary in-
crements if the distribution of X(t) − X(s) depends only on t − s for
any 0 ≤ s ≤ t. It has independent increments if the random variables
{X(tj+1)−X(tj), 1 ≤ j < n} are independent whenever 0 ≤ t1 < t2 < · · · <
tn and n ≥ 1.

The simplest process with stationary independent increments is the Pois-
son process N(t) with parameter λ > 0. It has the properties that N(t, ω)
is an increasing right continuous step function in t with jumps of size 1, and
N(t)−N(s) is Poisson distributed with parameter λ(t− s) for 0 ≤ s < t. It
can be constructed in the following way: Let τ1, τ2, ... be independent and
identically distributed random variables that are exponentially distributed
with parameter λ. Then let

N(t) = #{k ≥ 1 : τ1 + · · ·+ τk ≤ t}.

1.4. Definition of Brownian motion

To see that the properties introduced in the previous two sections may have
a bearing on our definition of Brownian motion, note that the process Xn(t)
defined in (1.2) has independent increments, and except for the effect of
time discretization, has stationary increments. Therefore, any limit X(t) of
Xn(t) as n → ∞, if it exists in any reasonable sense, will have stationary
independent increments. Also, by the central limit theorem, X(t) will have
the N(0, t) distribution. Thus, we would expect Brownian motion to be
Gaussian and have stationary independent increments. The following result
relates these properties.

Proposition 1.11. The following two statements are equivalent for a sto-
chastic process (X(t), t ≥ 0):

(a) X(t) has stationary independent increments, and X(t) is N(0, t) for
each t ≥ 0.

(b) X(t) is a Gaussian process with EX(t) = 0 and

Cov(X(s), X(t)) = s ∧ t.

Proof. Suppose (a) holds. To show that the process is Gaussian, take ak’s
and tk’s as required in Definitions 1.1 and 1.9. Without loss of generality,
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we may assume that 0 = t0 < t1 < · · · < tn. Summing by parts, and using
X(0) = 0, we see that there are bk’s so that

n∑
k=1

akX(tk) =
n∑
k=1

bk
[
X(tk)−X(tk−1)

]
.

The right side is a sum of independent Gaussians, and is hence Gaussian.
To check the covariance statement, take s < t and write

Cov(X(s), X(t)) = EX(s)X(t)

= EX(s)
[
X(t)−X(s)

]
+ EX2(s) = s = s ∧ t.

For the converse, assume (b). Then for s < t, X(t) −X(s) is Gaussian
with mean zero and

V ar(X(t)−X(s)) = t− 2(s ∧ t) + s = t− s,

so the process has stationary increments and has the right marginal distri-
butions.

If 0 ≤ t1 < t2 < · · · < tn, the vector of increments can be written in the
form

(X(t2)−X(t1), ..., X(tn)−X(tn−1)) = A(X(t1), ..., X(tn))

for an appropriately chosen matrix A. Therefore, by Proposition 1.4, the
vector of increments is Gaussian. So, in order to check the independence of
the increments, it is enough by Proposition 1.5 to show that the increments
are uncorrelated. To do so, take u < v ≤ s < t. Then

Cov(X(v)−X(u), X(t)−X(s)) =v ∧ t− v ∧ s− u ∧ t+ u ∧ s
=v − v − u+ u = 0.

�

Exercise 1.12. Suppose X(t) is a stochastic process with stationary inde-
pendent increments that satisfies EX(1) = 0, EX2(1) = 1, and X(t) has the
same distribution as

√
tX(1) for t ≥ 0. Show that X(t)−X(s) is N(0, |t−s|)

for s, t ≥ 0.

Definition 1.13. A stochastic process (X(t), t ≥ 0), is said to have contin-
uous paths if

(1.3) P ({ω : X(t, ω) is continuous in t}) = 1.

Definition 1.14. Standard Brownian motion B(t) is a stochastic process
with continuous paths that satisfies the equivalent properties (a) and (b) in
Proposition 1.11.
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Of course, it is not at all obvious that there exists a probability space
on which one can construct a standard Brownian motion. Showing that this
is the case is the objective of the next section. Taking this for granted for
the time being, here are two exercises that provide some practice with the
definition. In both cases, B(t) is standard Brownian motion.

Exercise 1.15. Let

X(t) =
∫ t

0
B(s)ds.

(a) Explain why X(t) is a Gaussian process.
(b) Compute the mean and covariance functions of X.
(c) Compute E(X(t) − X(s))2, and compare its rate of decay as t ↓ s

with that of E(B(t)−B(s))2.

Exercise 1.16. Compute

P (B(s) > 0, B(t) > 0), 0 < s < t.

(Recall Exercise 1.6.)

If it were not for the path continuity requirement in Definition 1.14, the
existence of standard Brownian motion on some probability space would
follow from Kolmogorov’s extension theorem – see Theorem A.1. Since
every event in this probability space is determined by the process at only
countably many times, and continuity of a path is not determined by its
values at countably many times, this approach would lead to the awkward
situation in which the set in question, C = {ω : B(t, ω) is continuous in t},
is not an event. Therefore, we would not even be able to discuss the issue
of whether its probability is 1.

The situation is even more serious than this. Even if C were measurable,
it would not be possible to prove that P (C) = 1 follows from properties (a)
and (b). To see this, take a process B on some probability space satisfying
properties (a) and (b), and let τ be a continuous random variable that is
independent of B. Define a new process by

X(t, ω) =

{
B(t, ω) if t 6= τ(ω);
B(t, ω) + 1 if t = τ(ω).

Then not both B and X can have continuous paths. However, since

P (X(t) = B(t)) = P (τ 6= t) = 1

for every t, it follows that X also satisfies properties (a) and (b) in Propo-
sition 1.11. Therefore, there exist processes that satisfy properties (a) and
(b) but do not have continuous paths. Note that

P (X(t) = B(t) for all t) = 0.
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The fact that this can happen even though P (X(t) = B(t)) = 1 for every t is
an early indication of how different things can be in discrete and continuous
time. In the next section, we will see how to get around these difficulties.

These comments suggest the importance of the following definition.

Definition 1.17. Two stochastic processes X(t) and Y (t) are versions of
one another it P (X(t) = Y (t)) = 1 for all t.

The following exercise introduces an important variant of Brownian mo-
tion, which is known as the Brownian bridge, or tied down Brownian motion.
It arises in the study of empirical distribution functions.

Exercise 1.18. Define X(t) = B(t) − tB(1) for 0 ≤ t ≤ 1, where B is
standard Brownian motion.

(a) Show that X is a Gaussian process, and compute its covariance
function Cov(X(s), X(t)).

(b) Show that for 0 < t1 < · · · < tn < 1, the (joint) distribution of(
(B(t1), ..., B(tn)) | |B(1)| ≤ ε

)
converges to the (joint) distribution of

(X(t1), ..., X(tn)) as ε ↓ 0.

The next exercise gives a limit law for the occupation time of A by
Brownian motion up to time t – take the f below to be 1A. This approach
is computationally intensive, but provides good practice in working with
Gaussian integrals and basic properties of Brownian motion. The proof
becomes much easier and neater once we have developed some theory – see
Exercise 5.54.

Exercise 1.19. Let B be standard Brownian motion, and put

X(t) =
1√
t

∫ t

0
f(B(s))ds,

where f ∈ L1(R1) and
∫
f(x)dx = 1.

(a) Show that

lim
t→∞

EX(t) =
√

2/π and lim
t→∞

EX2(t) = 1.

(b) Use the method of moments – see Theorem A.27 – to prove that
X(t)⇒ |Z|, where Z is standard normal, following the outline below.

(i) For α1, ..., αk > 0, let I(α1, ..., αk) =∫
· · ·
∫

0<r1<···<rk<1
rα1−1

1 (r2 − r1)α2−1 · · · (rk − rk−1)αk−1dr1 · · · drk.

Show that

lim
t→∞

EXk(t) =
k!

(2π)k/2
I

(
1
2
, ...,

1
2

)
.
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(ii) Using the Beta integral∫ 1

0
uα−1(1− u)β−1du =

Γ(α)Γ(β)
Γ(α+ β)

,

check that

I(α1, ..., αk) =
Γ(α1)Γ(α2)
Γ(α1 + α2)

I(α1 + α2, α3, ..., αk),

so that

I

(
1
2
, ...,

1
2

)
=

[Γ(1/2)]k

Γ(k/2)(k/2)
.

(iii) Check the recursion

E|Z|k = (k − 1)E|Z|k−2, k ≥ 2,

and use it to compute E|Z|k.

1.5. The construction

In this section, we will give one construction of Brownian motion. Another
construction is outlined in the exercises.

Theorem 1.20. There exists a probability space (Ω,F , P ) on which stan-
dard Brownian motion B exists.

Proof. Properties (a) and (b) in Proposition 1.11 specify the finite dimen-
sional distributions of B. By Kolmogorov’s extension theorem, Theorem
A.1, there exists a probability space on which the random variables B(t)
are defined for t ∈ Q+, the set of positive rationals. We will prove that for
every N ≥ 1,

(1.4) B(t, ω) is uniformly continuous in t for t ∈ Q ∩ [0, N ] a.s.

Once this is done, B(t) can be extended to all t ≥ 0 by continuity. Note
that the uniformity is important here. If b /∈ Q, the function

f(t) =

{
1 if t ≥ b;
0 if t < b

is continuous on Q, but not uniformly continuous on Q. It cannot be ex-
tended from Q to R1 by continuity.

Let
∆n = sup

s,t∈Q∩[0,N ]

|s−t|≤ 1
n

|B(t)−B(s)|.

We need to prove that ∆n → 0 a.s. Since ∆n is decreasing in n, it is enough
to prove convergence in probability. To see this, recall that convergence in
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probability implies that a subsequence converges a.s. By the monotonicity,
convergence along a subsequence implies convergence along the full sequence.

The next step is to reduce the number of arguments of B that need to
be considered in the supremum. To do so, let

Yk,n = sup
t∈Q

k−1
n
≤t≤ k

n

∣∣∣∣B(t)−B
(
k − 1
n

)∣∣∣∣.
Then

(1.5) ∆n ≤ 3 max
1≤k≤nN

Yk,n.

The factor of 3 above arises in the following way. For a given t, choose k
so that k−1

n ≤ t ≤ k
n . If |s − t| ≤ 1

n , then k−2
n ≤ s ≤ k+1

n . If, for example,
k
n ≤ s ≤

k+1
n , bound |B(t)−B(s)| by∣∣∣∣B(t)−B

(
k − 1
n

)∣∣∣∣+
∣∣∣∣B(kn

)
−B

(
k − 1
n

)∣∣∣∣+
∣∣∣∣B(s)−B

(
k

n

)∣∣∣∣,
which is at most the right side of (1.5).

Noting that the distribution of Yk,n does not depend on k, write for ε > 0

(1.6) P ( max
1≤k≤nN

Yk,n > ε) ≤
nN∑
k=1

P (Yk,n > ε) = nNP (Y1,n > ε).

To check that the right side above tends to 0 as n→∞, we will apply Doob’s
inequality for discrete time submartingales – see Theorem A.33. If 0 < t1 <
· · · < tm are rational, (B(t1), ..., B(tm)) is a martingale, since the successive
differences are independent and have mean 0. Therefore, (B4(t1), ..., B4(tm))
is a (nonnegative) submartingale. Doob’s inequality gives

P ( max
1≤k≤m

|B(tk)| > ε) ≤ 1
ε4
EB4(tm).

Note that the bound on the right side depends on tm, but not on m – this
is very important in the next step. Applying this to a sequence of subsets
that exhausts Q ∩ [0, 1

n ], and using the fact that EB4(t) is increasing in t,
we see that

P (Y1,n > ε) ≤ 1
ε4
EB4

(
1
n

)
.

Since B(t) has the same distribution as
√
tB(1) (the N(0, t) distribution),

we conclude that

P (Y1,n > ε) ≤ EB4(1)
n2ε4

,

so that the right side of (1.6) tends to 0 as n → ∞. Therefore, ∆n → 0 in
probability by (1.5) as required. �
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Exercise 1.21. Use Doob’s inequality, Theorem A.33, applied to even pow-
ers larger than the fourth in the proof of Theorem 1.20 to obtain the follow-
ing improvement: for every N > 0 and every 0 < α < 1

2 there is a random
variable C so that

|B(t)−B(s)| ≤ C|t− s|α, 0 ≤ s, t ≤ N.

(We will see in Exercise 1.28 that this is not true if α = 1
2).

The following exercises develop another approach to the construction
problem.

Exercise 1.22. Let {φn} be a complete orthonormal family in L2[0, 1], and
define

ψn(t) =
∫ t

0
φn(s)ds = 〈φn, 1[0,t]〉,

where 〈·〉 is the usual inner product in L2[0, 1]. Let {ξn} be i.i.d. standard
normal random variables. Use Corollary A.14 to show that for each t ∈ [0, 1],
the series

(1.7) B(t) =
∑
n

ξnψn(t)

converges a.s. and in L2, and that the resulting process B satisfies properties
(a) and (b) in Proposition 1.11.

Exercise 1.23. Show that if {ξn} are i.i.d. standard normal random vari-
ables, then for every ε > 0,

lim
n→∞

ξnn
−ε = 0 a.s.

Exercise 1.24. In Exercise 1.22, take the orthonormal family to be the
Haar functions that are defined as follows: φ0 ≡ 1,

φ0,1(t) =

{
+1 if 0 ≤ t ≤ 1

2 ;
−1 if 1

2 < t ≤ 1,

φ1,1(t) =


+
√

2 if 0 ≤ t ≤ 1
4 ;

−
√

2 if 1
4 < t ≤ 1

2 ;
0 if 1

2 < t ≤ 1,

φ1,2(t) =


0 if 0 ≤ t ≤ 1

2 ;
+
√

2 if 1
2 < t ≤ 3

4 ;
−
√

2 if 3
4 < t ≤ 1,

and in general, for 1 ≤ k ≤ 2n,

φn,k =


+2n/2 if k−1

2n ≤ t ≤
k−(1/2)

2n ;
−2n/2 if k−(1/2)

2n < t ≤ k
2n ;

0 otherwise.

Use Exercise 1.23 to show that the series in (1.7) converges uniformly on
[0, 1], and hence defines a standard Brownian motion.
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The Brownian motion property is preserved by several transformations,
as we now check.

Theorem 1.25. Suppose that B is a standard Brownian motion. Then the
following processes are also:

X1(t) = B(t+ s)−B(s), s > 0 fixed.

X2(t) =
B(ct)√

c
, c > 0 fixed.

X3(t) =

{
tB(1/t) if t > 0;
0 if t = 0.

Proof. The first two cases are left as an exercise. For the third, note that
X3 is a mean zero Gaussian process that is continuous except possibly at 0.
To check the covariance, write

EX3(s)X3(t) = stmin(1/s, 1/t) = s ∧ t.
To check continuity at 0, write

{ω : lim
t↓0

B(t) = 0} = ∩m≥1 ∪n≥1 {ω : |B(t)| ≤ 1/m for all t ∈ Q ∩ (0, 1/n)}

and

{ω : lim
t↓0

X3(t) = 0} = ∩m≥1∪n≥1{ω : |X3(t)| ≤ 1/m for all t ∈ Q∩(0, 1/n)}.

The right sides of these two identities have the same probability, since the
two processes have the same finite dimensional distributions, and the events
depend on the processes at only countably many times. The left side of the
first has probability 1, since B has continuous paths. Therefore the left side
of the second also has probability 1. �

Exercise 1.26. Check that X1(t) and X2(t) in Theorem 1.25 are Brownian
motions.

Note that B(n) is a sum of the i.i.d. increments B(k) − B(k − 1), so
that B(n)/n→ 0 a.s. as n→∞ by Theorem A.15. The next two exercises
show that Theorem 1.25 can be quite useful, in spite of its simplicity.

Exercise 1.27. Use the fact that X3(t) from Theorem 1.25 is a Brownian
motion to show that B(t)/t→ 0 a.s. as t→∞.

Exercise 1.28. Use the fact that X3(t) from Theorem 1.25 is a Brownian
motion and Corollary A.24 to show that

lim sup
t↓0

B(t)√
t

= +∞ and lim inf
t↓0

B(t)√
t

= −∞ a.s.
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In particular,

P
(
∀ε > 0, B(t) takes both signs in [0, ε)

)
= 1.

The next three exercises are designed to show that the property of path
continuity is rather rare among continuous time processes. They also serve
to introduce the symmetric stable processes (see Definition A.25 for the
definition of a stable law) and compound Poisson processes. Note that
Brownian motion is a symmetric stable process with α = 2. The acronym
“cadlag” (continue à droite, limites à gauche) refers to paths that are right
continuous and have left limits. The cadlag property helps to resolve many
measurability issues. For example, if X(t) has cadlag paths, then the set

C = {ω : X(t, ω) is continuous for t ∈ [0, N ]}

is measurable, since it can be written as

C =
{
ω : lim

n→∞
sup

s,t∈Q∩[0,N ]

|s−t|≤ 1
n

|X(s)−X(t)| = 0
}
.

Exercise 1.29. Suppose that (X(t), t ≥ 0) is a stochastic process with the
following three properties:

(i) It has stationary independent increments.
(ii) X(t) has a symmetric stable law of index α ∈ (0, 2]. Specifically,

take its characteristic function to be EeiuX(t) = e−t|u|
α
. A consequence if

α < 2 is that P (|X(1)| ≥ x) ∼ cx−α for some constant c > 0 as x → ∞.
(Note that this is false if α = 2.)

(iii) Its sample paths are a.s. cadlag. (That there is a version of the
process with this property will be proved in Chapter 3.)

(a) Prove that for each t, X(·) is a.s. continuous at t.
(b) Express

P

(
max

1≤k≤n

∣∣∣∣X(kn
)
−X

(
k − 1
n

)∣∣∣∣ ≥ ε)
in terms of the distribution of X(1).

(c) Prove that if α < 2, then

P (X(·) is continuous on [0, 1]) = 0.

Exercise 1.30. Let N(t) be a rate λ Poisson process, and Yj be i.i.d.
random variables independent of N . Define a continuous time process
(Z(t), 0 ≤ t ≤ 1) by

Z(t) =
N(t)∑
j=1

Yj .
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Z(t) is known as a compound Poisson process.
(a) Compute the characteristic function of Z(t) in terms of the charac-

teristic function of Yj .
(b) Show that Z has stationary independent increments.
(c) Prove that for each t, Z(·) is a.s. continuous at t.
(d) Compute

P (Z(·) is continuous on [0, t]).

Exercise 1.31. Let Zn(t) be as in the previous exercise with λ = n and Yj
with characteristic function φn(u), where

lim
n→∞

n[1− φn(u)] = |u|α,

with 0 < α ≤ 2. Show that the finite dimensional distributions of Zn
converge to those of the stable process from Exercise 1.29.

The following measurability fact will often be useful. For its statement,
we assume that Ω has been modified so that B(·, ω) is continuous for all ω.

Proposition 1.32. B(t, ω) is jointly measurable in (t, ω).

Proof. Let

Xn(t) = B

(
[nt]
n

)
,

where [·] is the greatest integer function. This is jointly measurable for each
n since for any Borel set A,

{(t, ω) : Xn(t, ω) ∈ A} =
∞⋃
k=0

[
k

n
,
k + 1
n

)
×
{
ω : B

(
k

n
, ω

)
∈ A

}
,

and each set on the right is a measurable rectangle. By path continuity,

Xn(t, ω)→ B(t, ω)

uniformly on compact t sets. Therefore B is jointly measurable. �

1.6. Path properties

We noted one path property in Exercise 1.21 – Brownian paths are not only
continuous, but are in fact locally Hölder continuous for any index < 1

2 . In
Exercise 1.28, we saw that this is not the case if the index is 1

2 . We begin
with a simple non-differentiability statement. Later, we will improve it. We
use m below to denote Lebesgue measure.

Proposition 1.33. (a) For every t ≥ 0,

P (B(·, ω) is not differentiable at t) = 1.

(b) m{t ≥ 0 : B(·, ω) is differentiable at t} = 0 a.s.




