
STATISTICAL MECHANICAL SYSTEMS ON COMPLETEGRAPHS, INFINITE EXCHANGEABILITY, FINITE EXTENSIONSAND A DISCRETE FINITE MOMENT PROBLEMTHOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHAbstrat. We show that a large olletion of statistial mehanial systems withquadratially represented Hamiltonians on the omplete graph an be extended toin�nite exhangeable proesses. This extends a known result for the ferromagnetiCurie-Weiss Ising model and inludes as well all ferromagneti Curie-Weiss Pottsand Curie-Weiss Heisenberg models. By de Finetti's theorem, this is equivalent toshowing that these probability measures an be expressed as averages of produtmeasures. We provide examples showing that \ferromagnetism" is not howeverin itself suÆient and also study in some detail the Curie-Weiss Ising model withan additional 3-body interation. Finally, we study the question of how muh theantiferromagneti Curie-Weiss Ising model an be extended. In this diretion, weobtain sharp asymptoti results via a solution to a new moment problem. We alsoobtain a \formula" for the extension whih is valid in many ases.Keywords : statistial mehanis, in�nite exhangeability, disrete moment problemsSubjet lassi�ation : 44A60,60G09, 60K35,82B20.1. IntrodutionLet X = (X1; : : : ; Xn) be a �nite exhangeable olletion of random variablestaking values in a spae S whih is assumed to be a losed subset of Rs, often a�nite set or the s� 1 dimensional unit sphere. (Finite exhangeable means that thedistribution is invariant under all permutations of f1; : : : ; ng.) In suh a situation,one an ask whether X is extendible to an in�nite exhangeable proess. In otherwords, does there exist a proess Y = (Yi)i�1, taking values in S, whose distributionis invariant under �nite permutations and suh that X and (Y1; : : : ; Yn) have thesame distribution? (In this ase, the proess Y will often not be unique.) If thedistribution of X is \an average of produt measures", meaning that the distributionof X an be expressed as ZP (S) �
nd�(�)Date: Otober 17, 2006. 1



2 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHwhere P (S) is the set of probability measures on S, �
n is the n-fold produt of �and � is a probability measure on P (S) (endowed with an appropriate �{algebra),then it is immediate that X is extendible to an in�nite exhangeable proess. Onesuh in�nite exhangeable proess of ourse has distributionZP (S) �
1d�(�): (1.1)The important de Finetti theorem says that any in�nite exhangeable proess (whenS is a omplete separable metri spae) an be expressed as in (1.1) for a unique�. Hene X is extendible to an in�nite exhangeable proess if and only if it is \anaverage of produt measures". When a �nite exhangeable proess is extendible toan in�nite exhangeable proess, we will write it is IE (for \in�nitely extendible").When S = f0; 1g, P (S) an be identi�ed with [0; 1℄ and a probability measure onP (S) an be indenti�ed with a random variable W taking values in [0; 1℄. The kthmoment, E[W k℄, is then the probability that the �rst k random variables are 1. Ifone an extend a �nite exhangeable sequene X = (X1; : : : ; Xn) to an in�nite one,there may be more than one extension and so the distribution of W is not unique.See Karlin and Shapley (1953) for some disussion onerning this point. Any Wwhih an be used will be alled a representing W for X.Surveys of exhangeability an be found in Aldous (1985) and Diaonis (1988).The problem of determining when �nite exhangeable sequenes an be extended toin�nite exhangeable ones has attrated some attention in the past; see the two abovereferenes as well as Sarsini (1985) and Spizzihino (1982). In the present paper,we will study this question in the mean �eld statistial mehanis ontext and alsostudy how muh one an extend if IE fails.We start by stating a known result where jSj = 2. Consider the Curie-WeissIsing model with parameters J and h representing the oupling onstant and theexternal �eld. This is simply the Ising model on the omplete graph with symmetri1 and 2 body interations. See Ellis (1985) or Olivieri and Vares (2005) for anindepth disussion of this model. This is the probability measure on f�1gn wherethe probability of the on�guration � is proportional to eH(�) whereH(�) = h nXi=1 �i + J2  nXi=1 �i!2 : (1.2)The model is said to be ferromagneti if J � 0. The following result is proved inPapangelou (1989) where the tehnique is redited to Ka (1966).Theorem 1.1. For n � 1, J � 0 and any h, the Curie-Weiss Ising model withparameters n, J and h is IE.



EXCHANGEABILITY AND MEAN FIELD MODELS 3Remarks. When jSj = 2, a neessary ondition for being IE is that the proessbe assoiated (i.e., inreasing events are positively orrelated, see De�nition 2.11 onpage 77 of Liggett (1985)); this follows from an obvious generalization of Proposition2.22 on page 83 of Liggett (1985). In fat, it is not hard to hek that IE even impliesthe stronger FKG lattie ondition (see (2.13) on page 78 of Liggett (1985) for thisde�nition). Using this, it is easy to hek that for n � 2 and J < 0, the model is notIE. We point out however that an elementary example in Liggett and Steif (2005)shows that this FKG lattie ondition plus �nite exhangeability is not suÆient forbeing IE. An alternative way to see that IE implies J � 0 is as follows. We have IEif and only if there is a random variable 0 � W � 1 so thatEW k(1�W )n�k = eh(2k�n)+J2 (2k�n)2P�2f�1gn eH(�) 0 � k � n: (1.3)H�older's inequality then givesEW k(1�W )n�k � (EW n)k=n(E(1�W )n)1�(k=n)from whih it is easy to dedue that J � 0.The following result extends Theorem 1.1 to a large number of models whihhave a quadrati representation for their Hamiltonian. It is proved using a similarmethod to that in Papangelou (1989). Let � be an arbitrary probability measure onRs satisfying ZRs ev�yd�(y) <1 (1.4)for all v 2 Rs. Next assume that � and n are suh thatZ�;n := Z(Rs)n e 12Pni;j=1 xi�xjd�
n(x1; : : : ; xn) <1: (1.5)Then we an onsider the probability measure ��;n on (Rs)n whih is absolutelyontinuous with respet to �
n with Radon-Nikodym derivative at (x1; : : : ; xn) givenby e 12Pni;j=1 xi�xjZ�;n :Theorem 1.2. For any � and n satisfying (1.4) and (1.5), ��;n, viewed as the distri-bution of a �nite exhangeable olletion of n random variables taking values in Rs,is IE.Although the above formulation is very simple, many models (inluding the Curie-Weiss Ising model) fall into this ategory as we now briey disuss.� Curie-Weiss Potts model:Let q be an integer larger than 1, S = f1; : : : ; qg, J 2 R and h : S ! R. The



4 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHCurie-Weiss Potts model with parameters n, J and h is the probability measure onSn where the probability of the on�guration � is proportional to eH(�) whereH(�) = nXi=1 h(�i) + J2  nXi;j=1 If�i=�jg! :The model is said to be ferromagneti if J � 0. (Note q=2 is equivalent to theCurie-Weiss Ising model.)� Heisenberg model:Let r be a nonnegative integer, S the r{dimensional sphere, J 2 R and h : S !R. Letting dx denote \surfae area" on S, the (lassial) Heisenberg model withparameters n, J and h is the probability measure on Sn whose Radon-Nikodymderivative with respet to dx
n at � = (�1; : : : ; �n) is proportional to eH(�) whereH(�) = nXi=1 h(�i) + J2  nXi;j=1�i � �j! :The model is said to be ferromagneti if J � 0. (Note r = 0 is equivalent to theCurie-Weiss Ising model.)� Curie-Weiss lok model (see Fr�ohlih and Spener, 1981):Let q be an integer larger than 1, S be q points on the unit irle with onstantspaing, J 2 R and h : S ! R. The Curie-Weiss lok model with parameters n, Jand h is the probability measure on Sn where the probability of the on�guration �is proportional to eH(�) whereH(�) = nXi=1 h(�i) + J2  nXi;j=1�i � �j! :The model is said to be ferromagneti if J � 0. (Note again q=2 is equivalent to theCurie-Weiss Ising model.)Corollary 1.3. For any n, J � 0 and h : S ! R, the Curie-Weiss Potts model, theCurie-Weiss Heisenberg model and the Curie-Weiss lok model are IE.Remarks. The fuzzy Potts model is obtained from the Potts model de�ned aboveby partitioning the possible spins into two sets. H�aggstr�om (1999) proved that theferromagneti fuzzy Potts model (with no external �eld) on any graph has positiveorrelations and in fat satis�es the FKG lattie ondition. We point out that forthe speial ase of the Curie-Weiss Potts model (i.e. on the omplete graph), thisfollows from Corollary 1.3 by using (i) the trivial fat that suh a \projetion" of anIE system is IE and (ii) IE systems with jSj = 2 satisfy the FKG lattie ondition.This same argument shows that if we take the ferromagneti Heisenberg model on the



EXCHANGEABILITY AND MEAN FIELD MODELS 5omplete graph on n verties and partition the sphere into two arbitrary measurablesets, then the indued measure on f0; 1gn satis�es the FKG lattie ondition; thisdoes not appear to be obvious diretly.It seems reasonable to ask whether all \ferromagneti" systems on ompletegraphs are IE. One problem with this is that it is not lear exatly whih systemsshould be onsidered ferromagneti. We �rst onsider the ase when jSj = 2 butwhere we add 3-body interations. Consider the probability measure �h;J2;J3;n onf�1gn where the probability of the on�guration � is proportional to eH(�) whereH(�) = h nXi=1 �i + J22  nXi=1 �i!2 + J36  nXi=1 �i!3 : (1.6)This is the Curie-Weiss Ising model with an additional 3-body interation term. Thesystem is ferromagneti (as de�ned in Chapter 4 of Liggett (1985)) if and only ifJ2; J3 � 0. However, if n = 3 for example and h and J2 are �xed, then for J3suÆiently large, we haveP (X1 = 1 j X2 = �1; X3 = �1) > P (X1 = 1 j X2 = �1; X3 = 1):This implies that the FKG lattie ondition fails and so (X1; X2; X3) is not IE. Asimilar argument works for any �xed n � 3 or for J3 suÆiently negative and alsoshows that for any n � 3, if J2 = 0 and J3 6= 0, then IE fails.We now restrit to only 2-body interations but general S. For 2-body intera-tions, one might de�ne ferromagneti to mean that the 2-body interations are of theform f(x � y) where f is an inreasing funtion. However, it turns out that a systemwhih has only 2-body interations of this form need not be IE.Proposition 1.4. For every n, there is an inreasing funtion f so that if S =f(1; 0); (0; 1); (�1; 0); (0;�1)g or S = f�1; 0; 1g, then the �nite exhangeable proba-bility measure on Sn given by the HamiltonianH(�) = X1�i<j�n f(�i � �j) (1.7)is not IE.Remarks. (i). The �rst S shows that we an take the spin values to have length 1while the seond S shows that we an take the spin values to be a subset of R.(ii). It would be of interest to investigate whether IE would follow if one assumedthat f had some higher order monotoniity.For the rest of the results, we ontinue to restrit to jSj = 2. Unfortunately, weneed to break the lass of �nite sequenes (X1; : : : ; Xn) whih are IE into two lasses.



6 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHDe�nition 1.5. If (X1; : : : ; Xn) is IE, we all it type 1 if there exists a randomvariable W whih represents (X1; : : : ; Xn) and is in (0; 1) a.s. It is alled type 2otherwise (i.e., if every representing W satis�es P (W 2 f0; 1g) > 0).Remarks. A trivial example of type 2 is where P (X1 6= X2) = 0. In this ase,a representing W is trivially unique and has P (W 2 f0; 1g) = 1. One an hekthat for n = 2 this is the only type 2 situation. However, for n = 3, we havea less trivial example of type 2 where (X1; X2; X3) is represented by a W satisfyingP (W = 0) = P (W = 1=2) = 1=2. In this ase, if V were another representing randomvariable (meaning that the �rst 3 moments are the same as those for W ), then onean hek that E[(V 3=2 � (1=2)V 1=2)2℄ = 0. This implies that V 1=2(V � (1=2)) = 0a.s. whih fores V to have the same distribution as W . It is also trivial to �nd type1 X's whih have a representing W satisfying P (W 2 f0; 1g) > 0.Conerning the problem of determining whether a given �nite exhangeable pro-ess is type 1 IE, we mention the following haraterization whih will be used in theproofs of Propositions 1.7, 1.10 and 1.12.Proposition 1.6. Let Ek = fX1 = : : : = Xk = 1; Xk+1 = 0; : : : ; Xn = 0g. Then(X1; : : : ; Xn) is IE of type 1 if and only if there exists a random variable � and  > 0,so that P (Ek) = E[e(2k�n)�℄for k = 0; : : : ; n.Remark. We observe that the latter is also a type of moment problem, sine thisondition is the statement that P (Ek) is the kth moment of e2� , where �'s distributionhas Radon-Nikodym derivative e�nx with respet to the distribution of �.Using Proposition 1.6, we will obtain the following result whih provides somefurther information onerning the Curie-Weiss Ising model with an additional 3-bodyinteration term.Proposition 1.7. Consider the probability measure �h;J2;J3;n orresponding to theHamiltonian given in (1.6). For all h; J2; J3 with J3 6= 0, there exists N suh that forall n � N , �h;J2;J3;n is not IE.This should be ontrasted with the fat that for all h; J2 > 0 and n, there exists� > 0 so that for jJ3j < �, �h;J2;J3;n is IE; this follows readily from the alternativeproof of Theorem 1.1 together with ontinuity.Proposition 1.7 might be viewed as unnatural for the following reason. As ninreases, it is not so physially natural to keep the oeÆients J2=2 and J3=6 �xed



EXCHANGEABILITY AND MEAN FIELD MODELS 7but rather they perhaps should derease with n and the appropriate Hamiltonianwould be H(�) = h nXi=1 �i + J22n  nXi=1 �i!2 + J36n2  nXi=1 �i!3 : (1.8)We do not know the answer to the following question.Question 1.8. Is it the ase that for any h, J2 and J3 6= 0, for all large n, the modelusing the Hamiltonian (1.8) is not IE?We have however the following two results related to this question where wetake h = 0 for simpliity. (Proposition 1.12 below tells us that taking h = 0 is norestrition.)Proposition 1.9. Consider the probability measure �J2;J3;n orresponding to theHamiltonian given in (1.8) with h = 0. If jJ3j > J2, then there exists N suhthat for all n � N , �J2;J3;n is not IE.Proposition 1.10. Given J2 and J3 6= 0, for only �nitely many even values of n anthe system on the omplete graph on n verties with HamiltonianH(�) = J22n2  nXi=1 �i!2 + J36n3  nXi=1 �i!3 (1.9)be IE.To see in another way the degree to whih the 3-body interation term hindersbeing IE, we look at n = 4. In this ase, one an hek that when the Hamiltonianis taken to be h 4Xi=1 �i + J2 X1�i<j�4�i�j + J3 X1�i<j<k�4�i�j�kthe system is IE if and only if J2 � 0 andosh(8J3) � osh(4J2)� 2e�8J2(sinh(2J2))2:This latter ondition involving the hyperboli funtions omes from onsiderationof the moment haraterization (2:2) of IE. From this one an onlude after someomputation that if J2 and J3 both approah 0 with J32=J23 approahing , then if > 1=2, the system is eventually IE while if  < 1=2, the system is eventually notIE. Note the di�erene in the exponents (3 versus 2).The earlier Proposition 1.6 has other appliations as well.



8 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHDe�nition 1.11. If � is a �nite exhangeable probability measure on f�1gn, we letTJ;h(�) be the probability measure on f�1gn whih gives a on�guration � probabilityproportional to eH(�)�(�) whereH(�) = h nXi=1 �i + J2  nXi=1 �i!2 :Of ourse, if � is uniform distribution, then TJ;h(�) is just the Curie-Weiss Isingmodel. One might all TJ;h(�) a \(J; h)-Isingization" of �.Proposition 1.12. If the probability measure � on f�1gn is IE then for all J � 0and h 2 R, TJ;h(�) is also IE.Remark. This tells us that when studying the question of whih models are IE, wean assume that there is no external �eld.Given a �nite exhangeable sequene X = (X1; : : : ; Xn) whih is not IE, it isinteresting to ask if it an be extended to a �nite but longer exhangeable sequene.De�nition 1.13. For l > n, a �nite exhangeable sequene X = (X1; : : : ; Xn) isl-extendible if there exists a �nite exhangeable proess Y = (Yi)1�i�l suh that Xand (Y1; : : : ; Yn) have the same distribution. We let E(n; l) denote the olletion of�nite exhangeable proesses X = (X1; : : : ; Xn) whih are l-extendible.Remarks. It is not hard to show that X = (X1; : : : ; Xn) is IE if and only if it isl-extendible for every l > n. When S is ompat, this follows from an elementaryompatness argument. If S is not ompat, a similar \tightness" argument anbe easily arried out. In view of this fat, to prove the Curie-Weiss Ising model isextendible to an in�nite exhangeable proess, it would suÆe (assuming for thisdisussion that h = 0) to show that for any n and J and any l > n, there existsJ 0 = J 0(n; J; l) so that the projetion of the Curie-Weiss Ising model on the ompletegraph of size l with parameter J 0 to n verties is the Curie-Weiss Ising model on theomplete graph of size n with parameter J . However, this is typially not true (it ishowever true for small n) and hene this approah to proving Theorem 1.1 does notwork.Proposition 1.12 says that for J � 0 and any h, TJ;h leaves E(n;1) invariant; thefollowing is an interesting omplement to this whih says that this is false for �nitel > n even when J = 0.Proposition 1.14. Given 2 � n < l < 1, there is a � 2 E(n; l) with full supportand h 2 R suh that T0;h(�) 62 E(n; l).



EXCHANGEABILITY AND MEAN FIELD MODELS 9Remark. In ontrast to the remark after Proposition 1.12, when we are asking about�nite extensions, we annot assume that there is no external �eld.We �nally onsider the Curie-Weiss Ising model with J < 0; this is the anti-ferromagneti ase. With the exeption of Proposition 1.20, the rest of the resultsonern only the antiferromagneti Curie-Weiss Ising model with parameters J < 0,h and n as de�ned in (1.2). As observed following the statement of Theorem 1.1, theCurie-Weiss Ising model in not IE in this ase. The following result gives us somevery preise information onerning how far one an extend the model when J is verylose to 0. It will be onvenient for our purposes to use a di�erent parameterizationfor the Curie-Weiss Ising model. Given parameters a > 0; b > 0, we let the Gibbsstate � on f0; 1gn have probabilities of the form �f�g = akbk(n�k)=sn, where k is thenumber of 1's in the on�guration � and the normalizing onstant is given bysn = nXk=0 �nk�akbk(n�k):An easy omputation shows that our two parameterizations are related by a = e2h; b =e�2J and so b � 1 orresponds to J � 0. The following gives onditions under whihit is l-extendible for large l. Sine we will be letting b! 1 and the Curie-Weiss Isingmodel with b = 1 is the produt measure with density a=(1 + a), it is natural todenote � := a=(1 + a).Theorem 1.15. Let n � 2. Let � be as above and onsider the Curie-Weiss Isingmodel on f0; 1gn with n and a �xed, and let b = 1 + (=l).(a) If  < 1=(2�(1� �)), then the Curie-Weiss Ising model with parameters a and bon f0; 1gn is l-extendible for all suÆiently large l.(b) If  > 1=(2�(1� �)), then the Curie-Weiss Ising model with parameters a and bon f0; 1gn is not l-extendible for all suÆiently large l.Remarks. Regarding the remark after Proposition 1.14, we see here that the external�eld is indeed relevant to the �nite extension problem and is even relevant for thel ! 1 asymptotis. Note also the montoniity in a in the above result. Thismonotoniity however only holds in the asymptotis. Looking at the ases n = 2; 3and l = 4 disussed at the beginning of Setion 4, one sees that suh monotoniitydoes not hold for �nite n and l. In fat, for n = 4; l = 5 and ertain values of a, theset of b's for whih one an extend is not even an interval. We mention here that theargument involving (b) is onsiderably simpler than that for (a) sine this part omesdown to showing the nonexistene of a partiular random variable by demonstratingthat its �rst and seond moments would not satisfy the Cauhy-Shwarz inequality.



10 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHFurther remarks. One might reasonably ask how big l needs to be in part (a) ofTheorem 1.15. The answer undoubtedly depends in a ompliated way on n;  and�. For small n, one an say something about this using the riteria given in Setion4. If n = 2 and 2�(1� �) � 1 then the model is l-extendible for all l � 2. If n = 3,the answer is the same if 2�(1� �) � 1 and � is lose to 1=2. However, if one takes� " 1 and  " 1 with 2�(1� �) = d 2 (0; 1), then the ondition for l-extendibility isasymptotially l � 12(1� �) max �1; d21� d�:One of the key steps in the analysis of the above is a solution to a new disrete�nite moment problem. We �rst reall that determining whether an in�nite sequeneof numbers in [0; 1℄ is the sequene of moments of some random variable taking valuesin [0; 1℄ is alled the Hausdor� moment problem for whih a well-known suÆient andneessary ondition is known. Conditions are also known whih insure that a �nitesequene of numbers in [0; 1℄ an be extended to a moment sequene. This will beused to obtain an alternative proof of Theorem 1.1. The following theorem is asolution to a disrete moment problem. It is the key to proving Theorem 1.15 andwe believe it to be of independent interest.Theorem 1.16. Given v1; :::; vn, there exists a f0; 1; :::; lg-valued random variable Nsatisfying vk = ENk for k = 1; :::; n (1.10)if and only if 0+Pni=1 ivi � 0 for all polynomials P (x) =Pni=0 ixi of degree n thathave n simple roots in f0; :::; lg and are nonnegative on f0; :::; lg.Remarks. For the ase l = 1, suh problems have been studied; see ChapterVII in Karlin and Studden (1966). In this sense, the above result is not suh alarge departure from known results. However, the tehnial result we use to verifythe ondition of Theorem 1.16 (whih is ontained in Theorem 4.3) is signi�antlydi�erent from that whih appears in the treatment of earlier moment problems.The proof of Theorem 1.15 is an existene proof and does not give a \formula" forthe distribution of the extension. In Setion 5, we will, for eah n, l, J < 0 and hgive a formula for the distribution of the number of 1's in the extension. However,this distribution might be a signed measure in whih ase the formula is of oursenot valid. Nonetheless, if it is a distribution, then the formula will be orret. Themotivation for this approah omes from trying to extend the �rst proof of Theorem1.1 (either the one from Papangelou (1989) or the one that omes out of the proof ofTheorem 1.2) to the antiferromagneti situation.



EXCHANGEABILITY AND MEAN FIELD MODELS 11Note that an exhangeable measure on f0; 1gn an be identi�ed with a prob-ability measure on f0; : : : ; ng whih gives the distribution of the number of 1's. If(Y1; : : : ; YM 0) is an extension of (X1; : : : ; XM), both exhangeable, with orrespondingdistributions �M 0 on f0; : : : ;M 0g and �M on f0; : : : ;Mg, it is trivial to hek that�M(m) =Xm0 �Mm��M 0�Mm0�m��M 0m0� �M 0(m0):In this ase, we say that �M is the hypergeometri projetion of �M 0.If J > 0 and fJ is the density funtion for a normal random variable with mean0 and variane J , it is easy to hek thatZn := Z 1�1 �e(ix+h) + e�(ix+h)�nfJ(x)dxis the normalization for the Curie-Weiss Ising model on n verties with parameters�J and h. In the next result, for M > 0, ��Mm � := (�1)m�M+m�1m �.Proposition 1.17. Fix n, J > 0, h � 0 and l > n. LetQ(j) := eh22JZn �lj� 1Xm=0��(l � n)m �e�J2 (2m+2l�n�2j+ hJ )2 (1.11)for j 2 f0; : : : ; lg. Then �Xj �nk��l�nj�k��lj� Q(j)�0�k�n (1.12)is the probability measure on f0; : : : ; ng orresponding to the Curie-Weiss Ising modelwith parameters n, �J and h. (This implies that Pj Q(j) = 1.) Hene if Q(j) � 0for eah j, then the �nite extension exists and Q provides a formula for the extension.Remarks. We point out here that we know that there are ases, inluding whenh = 0, where the extension exists but where Q(j) < 0 for some j and hene theformula is invalid. On the other hand, if Q(j) > 0 for all j, then it is easy to see,using the fat that the hypergeometri projetion is a linear mapping of full rank,that there are many other l-extensions besides that given by Q. (Proposition 1.20 isproved along these lines.)The above theorem will help lead to the following two results and also gives usour �rst ases with n < l where Q � 0.Proposition 1.18. Fix n, l and h. Then the Curie-Weiss Ising model with param-eters J and h on f�1; 1gn is l-extendible for all J if and only if n is odd, l = n + 1and h = 0. Moreover, in this latter ase, we always have Q � 0 and so provides aformula for the extension.



12 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHRemark. The following suggests why one might have expeted part of the resultstated in Proposition 1.18. If we take h = 0 and J = �1, then the Curie-WeissIsing model orresponds to uniform distribution on subsets of \half" the verties.It is lear that the projetion of this distribution on even n to n � 1 is simply thisdistribution on n � 1 while it is easy to see that this distribution on even n annotome from any distribution on n+ 1.Proposition 1.19. For all n, there exists � > 0 suh that for all J with jJ j < �, theCurie-Weiss Ising model with parameters h = 0 and J on f�1; 1gn is n+1-extendibleand Q � 0 and so provides a formula for the extension.Remark. The key part of the above result is that this is another ase in whih (1.11)yields a formula for the extension. The weaker fat that the system is n+1-extendiblefor small J follows from a muh more general result. This is stated in the followingeasy proposition.Proposition 1.20. Fix n < l < 1 and let X = (X1; : : : ; Xn) be i.i.d. 0,1 valuedwith P (X1 = 1) = p 2 (0; 1). Then any small perturbation of X whih is in E(n; n)also lies in E(n; l). This is false if p = 0 or 1.Our �nal theorem gives us a very large number of ases where our formula isvalid. These ases are qualitatively similar to those overed in Theorem 1.15 butquantitatively di�erent.Theorem 1.21. Let n � 1 and  > 0. De�ne�() :=  + osh�1 1(1� e� 1 ) 12 !�  tanh"osh�1 1(1� e� 1 ) 12 !# ;�() := ln �p+p� 1�+ �p2 �  (de�ned only for  > 1)and h�() := 8><>: maxf; �()g if  2 (0; 1℄;maxf�(); �()g if  2 (1; 3=2);�() if  � 3=2:Then, for all  > 0 and h > h�(), if J = =l, l is suÆiently large and Q isde�ned as in (1.11), we have that Q � 0 and so provides a formula for the relevantextension. (Reall the hypergeometri projetion of Q is the Curie-Weiss Ising modelwith parameters n;�J and h as de�ned in (1.2).)Remarks. The parameterizations here and in Theorem 1.15 are di�erent and it iseasy to hek that a value of  in Theorem 1.15 orresponds to 2 in the above result.In Theorem 1.15, it is easily heked that  < 1=(2�(1� �)) provided that (i)  < 2



EXCHANGEABILITY AND MEAN FIELD MODELS 13(no matter what h is) or (ii)  � 2 and jhj > ln �p=2 + p=2� 1�. Hene, inview of the above relationship between the 's in the two results and the fat thatlim!1 j�()� ln �p+p� 1�j = 1=2, we have that for large  (equivalently largeh), the two onditions are not too far apart. We are not sure whether to believethat in the asymptoti regime where Theorem 1.15 guarantees an extension we alsohave that Q � 0. At the same time, we are quite sure that the bounds given in thistheorem are not sharp. In this theorem, it is also possible to take n growing to1 aslong as n = o(pl) but we do not bother to elaborate on this.The rest of the paper is organized as follows. In Setion 2, we �rst give proofs ofTheorem 1.2 as well as Corollary 1.3. We then give an alternative proof of Theorem1.1. For this alternative proof, we will use a known suÆient ondition for when agiven �nite sequene extends to an in�nite moment sequene. Often suh onditions,while being of theoreti interest, are diÆult to apply; we �nd it interesting thatsuh a ondition an be heked in this onrete situation. We point out that thealternative proof of Theorem 1.1 is not as unrelated to the proof of Theorem 1.2 (inthe ase of the Ising model) as may at �rst seem. In the �rst proof, one expliitlyuses the fat that ex22 is a moment generating funtion. Had we not known this, wewould have to hek it by verifying ertain onditions, whih would probably involvepositivity of ertain determinants whih is the approah of the alternative proof. Inaddition, this alternative proof is the basis of the proof of Theorem 1.15. Finally, wegive the proof of Proposition 1.4 in this setion. In Setion 3, we will give the proofsof Propositions 1.6, 1.7, 1.9, 1.10, 1.12 and 1.14. In Setion 4, the proofs of Theorems1.15 and 1.16 will be given. Finally, in Setion 5, we prove Propositions 1.17, 1.18,1.19 and 1.20 as well as Theorem 1.21.2. Hamiltonians with quadrati representation are IEWe �rst prove Theorem 1.2.Proof of Theorem 1.2: Let V be a random variable in Rs whose density (with respetto s{dimensional Lebesgue measure) is given by�(w) = (RRs ew�xd�(x))nZ�;n e�kwk22(2�) s2where Z�;n is given in (1.5). (It is easy to hek that Z�;n is the orret normalizationto yield a probability density.) For w 2 Rs, let Pw be the probability measure on Rswhih is absolutely ontinuous with respet to � with Radon-Nikodym derivativedPw(x)d�(x) := ew�xRRs ew�yd�(y) :



14 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTH(Note the denominator is �nite by (1.4).) Letting FV be the distribution of V , welaim that ��;n = ZRs P
nw dFV (w)whih proves the result. To see this, note that the right hand side learly is absolutelyontinuous with respet to �
n with Radon-Nikodym derivative at (x1; : : : ; xn) givenby ZRs Qni=1 ew�xi(RRs ew�yd�(y))ndFV (w) = 1Z�;n(2�) s2 ZRs ew�Pni=1 xie�kwk22 dwwhih, using the formula for the moment generating funtion for a multidimensionalstandard normal random variable, is1Z�;ne 12 kPni=1 xik2 = 1Z�;ne 12Pni;j=1 xi�xjas desired. �Proof of Corollary 1.3: We assume throughout J > 0 as otherwise the results aretrivial.Curie-Weiss Potts model: Let the parameters q, J > 0 and h be given. Let s = q,hoose q orthogonal vetors Q = fa1; : : : ; aqg on the sphere fx : kxk = pJg inRq and let � be the probability measure on Rq onentrated on Q giving ai weightproportional to eh(i). It is easy to hek that the orresponding measure ��;n is exatlythe Curie-Weiss Potts model where ai is identi�ed with i.Heisenberg model: Let the parameters r, J > 0 and h be given. Let s = r + 1,onsider the sphere fx : kxk = pJg in Rs and let � be the probability measure on Rsonentrated on this sphere whose density with respet to surfae area is proportionalto eh(x=pJ). It is easy to hek that the orresponding measure ��;n is exatly theHeisenberg model with the sphere fx : kxk = pJg trivially identi�ed with the unitsphere.Curie-Weiss lok model: Let the parameters q, J > 0 and h be given. Let s = 2 andhoose q equally spaed points Q = fa1; : : : ; aqg on the irle fx : kxk = pJg. Let� be the probability measure on R2 onentrated on Q giving ai weight proportionalto eh(i). It is easy to hek that the orresponding measure ��;n is exatly the Curie-Weiss lok model where ai is identi�ed with i. �We now give an alternative proof of Theorem 1.1. For this proof, we prefer touse the seond parameterization given right after Proposition 1.14.Alternative Proof of Theorem 1.1: De�ne sequenes uk and vk for 0 � k � n byuk = akbk(n�k)=sn



EXCHANGEABILITY AND MEAN FIELD MODELS 15and vk = n�kXj=0 �n� kj �uk+j:Then (1.3) is equivalent to EW k = vk; 0 � k � n: (2.1)Thus our problem is redued to determining whether v0; :::; vn an be extended to thesequene of moments of a random variable 0 � W � 1. There is a lassial solutionto this problem. See Shohat and Tamarkin (1943), or Tagliani (1999) for a morereent disussion. The ondition for extendibility is a bit di�erent depending on theparity of n, so we assume from now on that n is even, and write n = 2m. The oddase is similar.A suÆient ondition for the existene of 0 � W � 1 satisfying (2.1) is that thefollowing two matries be (stritly) positive de�nite:0BBB� v0 v1 � � � vmv1 v2 � � � vm+1� � � � � � � � � � � �vm vm+1 � � � vn
1CCCA and 0BBB� w1 w2 � � � wmw2 w3 � � � wm+1� � � � � � � � � � � �wm wm+1 � � � wn�1

1CCCA ; (2.2)where wk = vk � vk+1: We will onsider only the �rst of these, sine the treatment ofthe seond is similar.A matrix is positive de�nite if and only if its prinipal minors are all stritlypositive. This is a standard result in linear algebra. It is usually proved by indution.However, in Proposition 4.2, we will have a result that yields an immediate proof ofthis fat. Usually, one thinks of the prinipal minors as being the determinants ofthe submatries that are situated in the upper left orner of the matrix. However,it is muh more onvenient for our purpose to onsider the ones that are situated inthe lower right orner of the matrix. We will use the following notation:f(k; l) = kXj=0 �kj�ul�j 0 � k � l � n:Thus vn�k = f(k; n). With this notation, we must prove the strit positivity of������� vn�2k � � � vn�k� � � � � � � � �vn�k � � � vn ������� = ������� f(2k; n) � � � f(k; n)� � � � � � � � �f(k; n) � � � f(0; n) ������� ; k = 0; : : : ; m: (2.3)We begin by performing some row operations. We will use repeatedly the easilyveri�ed relation f(k; l)� f(k � 1; l) = f(k � 1; l � 1). Now, subtrat the seond row



16 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHfrom the �rst, then the third from the seond,..., and �nally the last row from thekth row. The result is that (2.3) equals��������� f(2k � 1; n� 1) f(2k � 2; n� 1) � � � f(k � 1; n� 1)� � � � � � � � �f(k; n� 1) f(k � 1; n� 1) � � � f(0; n� 1)f(k; n) f(k � 1; n) � � � f(0; n)
��������� :Repeat this proess a number of times, eah time using one less row than the previoustime. The result is that (2.3) equals������� f(k; n� k) � � � f(0; n� k)� � � � � � � � �f(k; n) � � � f(0; n) ������� :Finally, repeat this whole proedure using olumns instead of rows. The result is that(2.3) equals ������� f(0; n� 2k) � � � f(0; n� k)� � � � � � � � �f(0; n� k) � � � f(0; n) ������� = ������� un�2k � � � un�k� � � � � � � � �un�k � � � un ������� : (2.4)Note that up to this point, we have not used the partiular form of the uk's. Thestatement that the left side of (2.3) equals the right side of (2.4) holds for any �niteexhangeable measure.Now we do use the partiular form for the uk's, and assume that b < 1, sinewhen b = 1, �1; :::; �n are i.i.d., so its extendibility is immediate. Noting that one anfator out powers of sn, a and b, write the right side of (2.4) as1sk+1n ������� an�2kb2k(n�2k) � � � an�kbk(n�k)� � � � � � � � �an�kbk(n�k) � � � anb0 �������= a(k+1)(n�k)sk+1n ������� b2k(n�2k) � � � bk(n�k)� � � � � � � � �bk(n�k) � � � b0 �������

= a(k+1)(n�k)bk(k+1)(3n�2k�1)=3sk+1n �����������
b�2k2 � � � b�4k b�2k 1� � � � � � � � � � � � � � �b�4k � � � b�8 b�4 1b�2k � � � b�4 b�2 11 � � � 1 1 1

����������� :



EXCHANGEABILITY AND MEAN FIELD MODELS 17This last determinant is of Vandermonde form, so an be omputed expliitly asY0�j<l�k(b�2l � b�2j);whih is stritly positive if b < 1. �We lastly give the proof of Proposition 1.4.Proof of Proposition 1.4:Fix n � 2. Let f satisfy f(1) = an, f(0) = 0 and f(�1) = �bn where an is positiveand small and where bn is positive and large.Case 1: S = f(1; 0); (0; 1); (�1; 0); (0;�1)gIf the model were IE, then so would be the proess on f0; 1gn, alled (Y1; : : : ; Yn),obtained by partitioning S into f(1; 0); (�1; 0)g and f(0; 1); (0;�1)g and letting the�rst set orrespond to 1 and the seond set to 0. This latter measure would thensatisfy the FKG lattie ondition whih we now show it doesn't. It is easy to hekthat if an is suÆiently small and bn is suÆiently large, then for any (u2; : : : ; un) 2f(1; 0); (�1; 0)gn�1, P (Y1 = 1 j X2 = u2; : : : ; Xn = un) < 1=2whih implies P (Y1 = 1 j Y2 = 1; : : : ; Yn = 1) < 1=2:By symmetry we have P (Y1 = 1 j Y2 = 0; : : : ; Yn = 0) > 1=2;whih then violates the FKG lattie ondition.Case 2: S = f�1; 0; 1gConsider the proess on f0; 1gn, alled (Y1; : : : ; Yn), obtained by partitioning S intof1;�1g and f0g and letting the �rst set orrespond to 1 and the seond set to 0. Itis lear that P (Y1 = 1 j Y2 = 0; : : : ; Yn = 0) = 2=3for any hoie of an and bn. On the other hand, it is easy to hek that if an issuÆiently small and bn is suÆiently large, thenP (Y1 = 1 j Y2 = 1; : : : ; Yn = 1) < :51leading to a similar ontradition as in Case 1. �



18 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTH3. Moment generating funtions, 3-body interations and Isingization3.1. Moment generating funtions and type 1 IE. In this subsetion, we proveProposition 1.6.Proof of Proposition 1.6: For the 'if' diretion, let � be as given and let Y be therandom variable whose distribution is absolutely ontinuous with respet to the dis-tribution of � with Radon-Nikodym derivative given by(2 oshx)nbwhere b is E[(2 osh �)n℄. Note b < 1 sine E[e(2k�n)�℄ < 1 for k = 0; : : : ; n and soY is well-de�ned. Let W = eY =(2 oshY ) (whih is in (0; 1)). Then for k = 0; : : : ; n,E[W k(1�W )n�k℄ = E �ekY e�(n�k)Y(2 oshY )n � = E[ek�e�(n�k)�℄b = P (Ek)b :(Clearly the last term is then just P (Ek), onluding that  = b.) This shows � isextendible to an in�nite exhangeable proess with a mixing variableW a.s. ontainedin (0; 1).The 'only if' diretion is more or less obtained by going bakwards. Choose arandom variable W ontained in (0; 1) a.s. suh thatE[W k(1�W )n�k℄ = P (Ek)for k = 0; : : : ; n. Let Y be the random variable de�ned by W = eY2 oshY (here W 2(0; 1) is being used). Let � be the random variable whose distribution is absolutelyontinuous with respet to the distribution of Y with Radon-Nikodym derivativegiven by 1b(2 osh x)nwhere b is E[ 1(2 oshY )n ℄. Sine osh is bounded away from 0, � is well de�ned. Wethen have for k = 0; : : : ; nE[e(2k�n)�℄ = E � e(2k�n)Yb(2 oshY )n� = E[W k(1�W )n�k℄b = P (Ek)b :(In this ase, b = 1=.) �Remark. It an be shown that in Theorem 1.1, the � in the above result is simplya normal random variable with mean h and variane J .



EXCHANGEABILITY AND MEAN FIELD MODELS 193.2. Curie-Weiss Ising model with 3-body interations. In this subsetion, weprove Propositions 1.7, 1.9 and 1.10.Proof of Proposition 1.7: Fix h, J2 and J3 6= 0. Choose N so that for all n � N , thefuntion f := hx+ J22 x2 + J36 x3de�ned at the points x = �n;�n+2; : : : ; n�2; n does not extend to a onvex funtionon [�n; n℄. Suh an N learly exists by looking at �n;�n+2;�n+4 if J3 > 0 and atn� 4; n� 2; n if J3 < 0. Fix n � N . We laim that �h;J2;J3;n is not IE. Choose � > 0so that any funtion g de�ned at the points x = �n;�n + 2; : : : ; n� 2; n satisfyingjf(x) � g(x)j < � for eah suh x does not have a onvex extension to [�n; n℄. If�h;J2;J3;n is IE, let W be a representing random variable. By perturbing W a littlebit, we an obtain a random variable W 0 taking values in (0; 1) withj log[�(Ek)℄� log[�h;J2;J3;n(Ek)℄j < � for k = 0; : : : ; n (3.1)where � is the probability measure on f�1gn oming from the mixing variable W 0and Ek is as in Proposition 1.6. (This uses the fat that �h;J2;J3;n has full support.)Sine W 0 takes values in (0; 1), Proposition 1.6 tells us that there is a randomvariable � and  > 0 satisfying E[e(2k�n)�℄ = �(Ek)for k = 0; : : : ; n. Sine a moment generating funtion exists on an interval and itslogarithm is onvex, we onlude that the funtion h(t) := log �E[et�℄� exists and isonvex on [�n; n℄. Note that its restrition to x 2 f�n;�n + 2; : : : ; n� 2; ng di�ersfrom the funtion log[�(Ex+n2 )℄ by a onstant. In view of (3.1) and the de�nitionof �h;J2;J3;n, we onlude that jh(x) � f(x)j < � (after a translation of f or h) forx 2 f�n;�n + 2; : : : ; n� 2; ng. This is a ontradition. �Proof of Proposition 1.9: Sine J3 > J2, it is easy to hek that for large n thefuntion f := J22nx2 + J36n2x3de�ned at the points x = �n;�n+2; : : : ; n�2; n does not extend to a onvex funtionon [�n; n℄. From here, one an simply arry out the proof of Proposition 1.7. �Proof of Proposition 1.10: Fix J2 and J3 6= 0 and denote the relevant measureon f�1gn by �n (ignoring expliit notation of the dependene on J2 and J3). Forsimpliity, we an assume that for all even n, �n is IE. Fix n. If �n were of type 1,there would exist, by Proposition 1.6, a random variable Xn suh thatE[ekXn ℄ = e J22n2 k2+ J36n3 k3 for k = �n;�n + 2; : : : ; n� 2; n: (3.2)



20 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHNote Proposition 1.6 only says that the left and right sides are proportional but bytaking k = 0, we see that equality holds (this is why we take n even). Sine �nneed not be of type 1, we need to make a preliminary detour to (almost) obtain(3.2). We �rst �nd a type 1 IE measure �n;m on f�1gn with k�n;m � �nk < 1=mwhere k k is total variation norm. (This an be easily done by taking a representingrandom variable W for �n and perturbing it a small bit obtaining a random variableW 0 taking values in (0; 1).) By Proposition 1.6, there is a random variable Xn;m andn;m > 0 suh thatE[ekXn;m ℄ = n;m�n;m(E k+n2 ) for k = �n;�n + 2; : : : ; n� 2; n (3.3)where Ek is as in Proposition 1.6. Setting k = 0, we see that limm!1 n;m =[�n(En2 )℄�1. It follows thatlimm!1E[ekXn;m ℄ = �n(E k+n2 )�n(En2 ) = e J22n2 k2+ J36n3 k3 for k = �n;�n + 2; : : : ; n� 2; n: (3.4)Sine limm!1E[enXn;m ℄ = eJ22 +J36 ; limm!1E[e�nXn;m ℄ = eJ22 �J36 ; (3.5)it follows that fXn;mgm�1 is tight. We onlude that for some m` !1, Xn;m` ! Xnin distribution and (3.5) allows us to onlude (by uniform integrability) thatlimm!1E[ekXn;m` ℄ = E[ekXn ℄ for k = �n + 2; : : : ; n� 2: (3.6)Now, (3.4) �nally allows us to onlude thatE[ekXn ℄ = e J22n2 k2+ J36n3 k3 for k = �n + 2; : : : ; n� 2 (3.7)whih is only slightly weaker than (3.2).(3.7) now tells us that the sequene fnXngn�1 is tight and hene onverges alonga subsequene toX1. For z 2 (�1; 1), one an let kn=n approah z (with jknj � n�2)and onlude (using jzj < 1 implies uniform integrability) thatE[ezX1℄ = eJ22 z2+J36 z3 z 2 (�1; 1):The two sides are omplex analyti funtions in fz : jRe(z)j < 1g and hene agree onthe imaginary axis. It follows thatE[eitX1 ℄ = e�J22 t2+�iJ36 t3for all t 2 R. We laim that there is no random variable with this harateristifuntion when J3 6= 0. If there were, let X1 and X2 be independent opies withthis distribution and we onlude that X1 � X2 is normal. Theorem 19 of Cram�er(1961) however says that if a sum of two independent random variables is normallydistributed, then so is eah summand. This yields a ontradition. �



EXCHANGEABILITY AND MEAN FIELD MODELS 213.3. Results for Isingization. In this �nal subsetion, we prove Propositions 1.12and 1.14.Proof of Proposition 1.12: We break the proof up into two steps. We �rst prove theresult under the further assumption that � is of type 1 using Proposition 1.6 andthen extend the result in general.Fix a probability measure � on f�1gn whih is type 1 IE and let J � 0 andh 2 R. Let Ek be the event that exatly the �rst k variables are 1. By Proposition1.6, there exists a random variable � and  so thatE[e(2k�n)�℄ = �(Ek)for k = 0; : : : ; n. Sine TJ;h(�)(Ek) is proportional to eh(2k�n)+J2 (2k�n)2�(Ek), it followsthat [TJ;h(�)℄(Ek) is proportional to eh(2k�n)+J2 (2k�n)2E[e(2k�n)�℄. However, the latteris learly equal to E[e(2k�n)(�+h+pJU)℄ where U is a standard normal random variableindependent of �. By Proposition 1.6, we onlude that TJ;h(�) is IE (and of type 1although we don't need that).For the seond step, onsider a probability measure � on f�1gn whih is IE(perhaps of type 2). Let W be a representing mixing random variable. If P (W 2f0; 1g) = 1, the result is trivial. Otherwise let m be the onditional distribution ofWgiven W 62 f0; 1g and let � be the probability measure on f�1gn given by a mixingrandom variable having distributionm. After some reetion, one sees that TJ;h(�) isa onvex ombination of TJ;h(�), Æ1 and Æ�1 where Æi is the measure onentrating onhaving only i's. By the �rst part, we know that TJ;h(�) is IE and so we an onludethat TJ;h(�) is IE as well. �Proof of Proposition 1.14: Fix 2 � n < l. E(l; l) an be identi�ed with probabilityvetors (g0; : : : ; gl) of length l+1 where gi is the probability of having i 1's. De�ne suha probability vetor by letting g0 = Æ, gi = 0 for i = 1; : : : ; l�n and gi = (1�Æ)=n fori = l�n+1; : : : ; l where Æ > 0 will be determined later. Let now � be the distributionof the �rst n variables of the l �nite exhangeable random variables orresponding tothis g. It is easy to hek that � has full support. We now laim that for h suÆientlylose to �1 and Æ suÆiently small, T0;h(�) 62 E(n; l).Let O := fjfi : Xi = 1gj = 1g. Let �i be the probability measure in E(n; l) whihomes from the probability measure in E(l; l) orresponding to the g with gi = 1.Sine 2 � n < l, it is lear that �i(O) < 1 for eah i and so we an hoose � > 0 sothat �i(O) � 1� � for eah i = 0; : : : ; l. Sine the natural map from E(l; l) to E(n; l)is aÆne, we onlude that �(O) � 1� � for any � 2 E(n; l). However, it is lear wean hoose h suÆiently negative and Æ suÆiently small so that T0;h(�)(O) > 1� �implying T0;h(�) 62 E(n; l). �



22 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHRemarks. Æ is only used to yield full support of �. In the above proof, the � in E(l; l)whose projetion was the desired � did not have full support; by a small perturbation,one an also take this � to have full support. There is another explanation of why theabove result is true. E(n; n) is foliated by di�erentible urves of the form (T0;h(�))h2Ras � varies over E(n; n) and at the same time, E(n; n) is an n{dimensional simplex.This however is not a ontradition sine the orner points of this simplex are �xed byT0;h and so these points redue to urves having only 1 point. However, the polytopeE(n; l) has many orner points whih are not �xed by T0;h and the same is true nearbythese points. If T0;h left E(n; l) invariant, then E(n; l) would be foliated by regulardi�erentiable urves near these orner points whih of ourse an't happen.4. A disrete moment problem and finite extendibilityIn this setion, we prove Theorems 1.15 and 1.16.Finding neessary and suÆient onditions for l-extendibility for general n and lseems to be out of the question, sine they would neessarily be very omplex. Weillustrate this by stating the neessary and suÆient onditions for small n and l.Cheking these involves routine but somewhat tedious omputations. One simplywrites down the distribution of a general exhangeable measure on f0; 1gl, and solvesthe equations that guarantee that the n dimensional marginals are the ones thatorrespond to the Curie-Weiss Ising model. Then one determines onditions guar-anteeing the feasibility of the resulting linear programming problem. Of ourse bysymmetry, one an go between the ases a < 1 and a > 1 by replaing a by 1=a andso we just take a � 1 throughout. Here are the results:n = 2; l = 3: b � a + a�1 if a � 1n = 2; l = 4: b � 32a + 12a�1 if a � 1n = 2; l = 5: b � ( 2a+ 13a�1 if a � 1=p3;34a + 34a�1 if 1=p3 � a � 1n = 3; l = 4: b � 1=pa(1� a) if a < 1n = 3; l = 5: b � ( 1=pa(2� 3a) if a � 1=2;p3=pa(2� a) if 1=2 � a � 1



EXCHANGEABILITY AND MEAN FIELD MODELS 23n = 4; l = 5: b 2 ( (0; b1(a)℄ [ [b2(a); a + a�1℄ if a � a0;(0; a+ a�1℄ if a0 � a � 1where a0 = :477::: is a root of 27a8�148a6+162a4�148a2+27 = 0 and b1(a) � b2(a)are the two real roots of a4�a3b3+a2b4�ab3+1 = 0. Note that in the last ase, theset of b's for whih one an extend is not even an interval. Note also the di�erenebetween n = 3; l = 4 and n = 4; l = 5 when a = 1; in the �rst ase b an bearbitrarily large, while in the seond, it annot be. These are of ourse just speialases of Proposition 1.18.For a more systemati approah, one an try to imitate the alternative proof ofTheorem 1.1. That proof involved two elements: (a) De Finetti's theorem, whihredues the extendibility problem to a moment problem, and (b) the solution to themoment problem given by (2.2).The analogue of de Finetti's theorem for �nite extendibility is elementary andwell known. (See page 536 of Fristedt and Gray (1997), for example.) Suppose thatY1; :::; Yl are exhangeable f0; 1g-valued random variables and set N =Pli=1 Yi. Thenfor k � lP (Y1 = 1; :::; Yk = 1) = lXi=k �l � ki� k�P (N = i)�li� = EN(N � 1) � � � (N � k + 1)l(l � 1) � � � (l � k + 1) :Thus the f0; 1g-valued exhangeable sequene X1; :::; Xn is l-extendible if and only ifthere exists a f0; 1; :::; lg-valued random variable N suh thatP (X1 = 1; :::; Xk = 1) = EN(N � 1) � � � (N � k + 1)l(l � 1) � � � (l � k + 1) (4.1)for all 1 � k � n.To ontinue this program, we would need an analogue of (2.2) for f0; 1; :::; lg-valued random variables N . We are not aware of suh a result. However, one anmodify the approah that led to (2.2) to solve this problem. We will now do so,following the development in Karlin and Shapley (1953).Fix integers 1 � n � l. After a linear hange of variables, our problem redues to�nding neessary and suÆient onditions on numbers v1; :::; vn so that there existsa f0; 1; :::; lg-valued random variable N satisfyingvk = ENk for k = 1; :::; n: (4.2)The �rst step involves some onvex analysis. Let M be the set of all nonnegativemultiples of vetors (1; v1; :::; vn), where v1; :::; vn satisfy (4.2) for some f0; 1; :::; lg-valued random variable N , and let P be the set of polynomials P (x) of degree at



24 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHmost n that satisfy P (i) � 0 for i = 0; :::; l. Both M and P are losed onvex ones.Clearly P 2 P if and only if it has degree at most n and EP (N) � 0 for all f0; :::; lg-valued N . Writing P (x) =Pni=0 ixi, we see that P 2 P if and only ifPni=0 ivi � 0for all (v0; :::; vn) 2 M. In other words, P = M�, where M� denotes the dual ofM. A basi result in onvex analysis (see, for example, Theorem 4.1 in Karlin andShapley (1953)) then implies that M = P�. This means that (v1; :::; vn) an arise asin (4.2) if and only if 0 +Pni=1 ivi � 0 for all P (x) =Pni=0 ixi 2 P.It is suÆient in the last statement to onsider only P 2 Pe, the extreme pointsof P. To help understand the struture of Pe, we state the following result.Proposition 4.1. Suppose P 2 P. Then P 2 Pe if and only if(a) P has degree exatly n,and(b) all n roots of P are simple and are ontained in f0; :::; lg.Proof: Suppose P 2 Pe. Write P (x) = P1(x)P2(x), where P1 has only real roots, andP2 has no real roots. Then P2 is never zero, and we may assume that P2(x) > 0 on[0; l℄. If P2 is not onstant, we may writeP2(x) = (P2(x) + �x)=2 + (P2(x)� �x)=2where the two polynomials on the right have degree at most that of P2(x) and arestritly positive on [0; l℄ if � is suÆiently small. ThenP (x) = P1(x)(P2(x) + �x)=2 + P1(x)(P2(x)� �x)=2;whih violates the extremality of P (x). Thus all roots of P (x) are real.Next, write P (x) = (x � x0)Q(x), where x0 is one of the roots of P (x). Ifx0 =2 f0; :::; lg, then (x� x0� �)Q(x) are both in P for small �, so that extremality isviolated again. Therefore, all roots are in f0; :::; lg.If P (x) has degree less than n, then the representationlP (x) = xP (x) + (l � x)P (x)shows that P is not extremal. Therefore, any extremal P has degree n. One an ruleout multiple roots at i for i = 0; 1; :::; l in a similar way, by writing(x� i)2 = 8><>: x(x� 1) + x if i = 0;(x� i)(x� i� 1)=2 + (x� i)(x� i+ 1)=2 if 1 � i � l � 1;(x� l)(x� l + 1) + (l � x) if i = l:For the onverse, suppose P 2 P satis�es properties (a) and (b) in the statementof the proposition. Write P = P1+P2 for P1; P2 2 P. Then P1 and P2 have the same



EXCHANGEABILITY AND MEAN FIELD MODELS 25roots as P , and therefore must be positive multiples of P . This ompletes the proofof the proposition. �Note that we have now established Theorem 1.16.Remarks. With the above proof of Theorem 1.16, we an remove some of themystery surrounding onditions (2.2) for the solution to the �nite moment problemfor a random variable W taking values in [0; 1℄. The proof in the ontinuous ase isidential to that in the disrete ase up to the statement of Proposition 4.1. However,in that ase, the polynomials P (x) in Pe have n roots in [0; 1℄, but all interior rootsmust have even multipliity sine P (x) � 0 on [0; 1℄. If n is even, for example, itfollows that the roots at 0 or 1 (if any) must have multipliities that are either botheven or both odd. If they are both even, then P (x) = [Q(x)℄2 for some polynomialQ(x), while if they are both odd, P (x) = x(1 � x)[Q(x)℄2. Writing Q(x) = Pi 0ixi,replaing x by W , squaring out these expressions and taking expeted values, onesees that ertain quadrati forms in the 0is with oeÆients that are vk's must benonnegative de�nite. This (more or less) translates into the positivity of ertaindeterminants, whih turn out to be the ones in (2.2).If n = 2, the polynomials appearing in Theorem 1.16 are just positive multiplesof x(l � x) and (x � i)(x � i � 1) for i = 0; :::; l � 1. Therefore, the possibilities for(v1; v2) are f(v1; v2) : v2 � lv1 and v2 � �(v1)g;where �(x) = max0�i<l �(2i+ 1)x� i(i + 1)�:To see the analogy with (2.2), note that if n = 2, it beomesv2 > v21 and v2 < v1;and that liml!1�(yl)=l2 = y2:By (4.1), we see that a neessary and suÆient for l-extendibility of the Curie-Weiss Ising model with n = 2 is that there be a f0; 1; :::; lg-valued random variablesN so that ENl = a2 + aba2 + 2ab+ 1 and EN(N � 1)l(l � 1) = a2a2 + 2ab+ 1 :By the previous development, this is equivalent tola(b + la)a2 + 2ab+ 1 � �� la(a + b)a2 + 2ab+ 1�;



26 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHwhih is in turn equivalent tola(b + la) � max1�i<l�1 �(2i+ 1)la(a+ b)� i(i+ 1)(a2 + 2ab+ 1)�;and hene to b � min1�i<l�1�(l � i)2i a + i + 12(l � i� 1)a�1�: (4.3)(The inequalities orresponding to i = 0 and i = l � 1 are satis�ed automatially.)Minimizing over ontinuous i rather than disrete i gives the following suÆient (andasymptotially neessary) ondition for l-extendibility of the Curie-Weiss Ising modelwhen n = 2: b � 1 + (1 + a)22a(l � 1) :For n = 3, the polynomials appearing in Theorem 1.16 are x(x� i)(x� i� 1) fori = 1; :::; l � 1 and (l � x)(x � i)(x � i� 1) for i = 0; :::; l � 2. Therefore, the set ofpossible values of (v1; v2; v3) is given byf(v1; v2; v3) : v3 � �1(v1; v2); and 0 � v3 � �2(v1; v2)g;where �1(x; y) = max1�i<l �(2i+ 1)y � i(i+ 1)x�and �2(x; y) = min0�i<l�1 �i(i+ 1)l � (2il + i2 + i + l)x+ (l + 2i+ 1)y�:A neessary and suÆient ondition for the l-extendibility of the Curie-WeissIsing model with n = 3 is that there exist a f0; :::; lg-valued random variable N sothat ENl = a3 + 2a2b2 + ab2a3 + 3a2b2 + 3ab2 + 1 ; EN(N � 1)l(l � 1) = a3 + a2b2a3 + 3a2b2 + 3ab2 + 1 ;EN(N � 1)(N � 2)l(l � 1)(l � 2) = a3a3 + 3a2b2 + 3ab2 + 1 :It then follows that this is equivalent to(a2 + b2 + 2ab2)i2 � (2a2l + 2ab2l + b2 � a2)i+ a(l � 1)(2b2 + al) � 0for 1 � i � l � 1 and(1 + 2ab2 + a2b2)i2 � (2ab2l + 2a2b2l � 1� 4ab2 � 3a3b2)i+ a2b2(l � 1)(l � 2) � 0for 0 � i � l � 2: The values of the �rst quadrati at i = 1; l � 1 are a2(l � 1)(l � 2)and b2(l� 1)(l� 2) respetively, and the values of the seond quadrati at i = 0; l� 2are a2b2(l � 1)(l� 2) and (l � 1)(l � 2) respetively. Minimizing the quadratis over



EXCHANGEABILITY AND MEAN FIELD MODELS 27ontinuous values of i as before, we see that a suÆient ondition for l-extendibilityof the Curie-Weiss Ising model for n = 3 isb � 1 + min[(a+ b)2; (1 + ab)2℄2ab(l � 2)provided that l � 2 � max[a2 + b2; 1 + a2b2℄2ab2 :To hek the assumption of Theorem 1.16 for larger values of n, we will need toappeal to part of the theory of quadrati forms. Reall from the remark followingthe statement of Theorem 1.16, that in the treatment of the ontinuous momentproblem, one writes P (x) as a perfet square, and uses the equivalene between thepositive de�niteness of a symmetri matrix and positivity of the prinipal minorsof that matrix. In the disrete moment problem, the roots of P are simple, so Pannot be written as a perfet square. Nevertheless, the \interior" roots must appearas nearest neighbor pairs, so that they almost have even multipliity. To quantifythe di�erene that this makes, we need a quantitative version of the equivalene ofpositive de�niteness and positivity of the prinipal minors. We turn to that next.If C = (i;j)i;j�0 is a matrix, we will use the following notation: �1�1;�1 = 1, andfor 0 � k � i; j, ki;j = ��������� 0;0 � � � 0;k�1 0;j� � � � � � � � � � � �k�1;0 � � � k�1;k�1 k�1;ji;0 � � � i;k�1 i;j
��������� :Note that this is the determinant of a (k + 1)� (k + 1) matrix beause the indexesof the matrix C begin at 0.Proposition 4.2. If all of the prinipal minors kk;k of the symmetri matrix C arenonzero, then nXi;j=0 i;jzizj = nXk=0 �Pni=k ki;kzi�2kk;kk�1k�1;k�1 : (4.4)Remarks. (i) Note that this identity provides a simple proof of the standard fatreferred to earlier that a quadrati form is positive de�nite if and only if the prinipalminors of the matrix of oeÆients are all positive. The 'only if' diretion an be seenby perturbing the quadrati form a small amount suh that all the prinipal minorsare nonzero.(ii) Equation (4.4) above is known as Jaobi's formula. Jaobi's original approah toit an be found in Chapter X, Setion 3 of Gantmaher (1959) { see equation (28)



28 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHthere. Nonetheless, we deided to inlude the proof here whih seems to be di�erentthan the one in Gantmaher (1959).Proof of Proposition 4.2: We begin with a speial ase of Sylvester's identity:kk;kki;j � ki;kkk;j = k�1k�1;k�1k+1i;j ; 0 � k � i; j; (4.5)where we have set k+1i;j = 0 if k = minfi; jg. This speial ase an be found atthe bottom of page 586 of Akritas, Akritas and Malashonok (1996). Proofs of thegeneral identity an be found in that paper, as well as in Karlin (1968).Using (4.5), and the observation that the �rst sum below telesopes, we an writei;j = minfi;jgXk=0 � ki;jk�1k�1;k�1 � k+1i;jkk;k � = minfi;jgXk=0 ki;kkk;jkk;kk�1k�1;k�1 :Multiplying this identity by zizj, summing, and then hanging the order of summationgives nXi;j=0 i;jzizj = nXk=0 nXi;j=k ki;kkk;jkk;kk�1k�1;k�1zizj:Finally, use the symmetry of C to get (4.4). �Now suppose P is a polynomial of degree n with n simple roots in f0; :::; lg, andP � 0 on f0; :::; lg. Then the set of roots must be of the form fx1; x1 + 1g [ � � � [fxp; xp + 1g [ A, where A = ; or f0; lg if n is even and A = f0g or flg if n is odd.To see this, suppose P has onseutive simple roots at fx; x + 1; :::; x + k � 1g andP (x � 1) > 0; P (x + k) > 0. The sign of P must hange at x; :::; x + k � 1, andtherefore k must be even. Now group these roots in pairs. For simpliity, for themoment we will take n to be even. Similar results hold for odd n, but many of theformulas are a bit di�erent. Unlike the \ontinuous" ase desribed in the remarkfollowing the statement of Theorem 1.16, (x� xi)(x� xi� 1) is not a perfet square,so in what follows, we will initially replae this produt by (x� xi � 12)2.Given fx1; :::; xpg, de�ne y0 = 1 andyq = (�1)q X1�i1<���<iq�p�xi1 + 12� � � ��xiq + 12�for 1 � q � p. Then we may writepYi=1 �x�xi� 12�2 = � pYi=1 �x�xi� 12��2 = � pXi=0 xp�iyi�2 = pXi;j=0x2p�i�jyiyj: (4.6)Therefore, if we write pYi=1 �x� xi � 12�2 = 2pXi=0 ixi; (4.7)



EXCHANGEABILITY AND MEAN FIELD MODELS 29it follows that for all (v0; : : : ; vn) 2 M2pXi=0 ivi = pXi;j=0 v2p�i�jyiyj = pXi;j=0 vi+jyp�iyp�j;whih is a quadrati form in the yp�i's. To apply Proposition 4.2, let V be the matrixwhose (i; j) entry is vi+j for i; j � 0. If the neessary prinipal minors are nonzero,we then have 2pXi=0 ivi = pXk=0 �Ppi=k vki;kyp�i�2vkk;kvk�1k�1;k�1 : (4.8)This expression is used when A = ;, in whih ase n = 2p. Similarly, if A = f0; lg,we have p = (n� 2)=2 and we onsider polynomials of the formx(l � x) pYi=1 �x� xi � 12�2 = 2p+2Xi=0 dixi; (4.9)whih yield, provided the neessary prinipal minors are nonzero,2p+2Xi=0 divi = pXk=0 �Ppi=k wki;kyp�i�2wkk;kwk�1k�1;k�1 : (4.10)where W is the matrix whose (i; j) entry is wi+j+1 for i; j � 0, and wi = lvi � vi+1for i � 1.But, of ourse, (4.7) and (4.9) are not the polynomials we must onsider. So, wewill use the identity (x� u)(x� u� 1) = �x� u� 12�2 � 14to write the orret analogue of (4.7) aspYi=1(x� xi)(x� xi � 1) = pXq=0 �� 14�q X1�i1<���<iq�p Yj 6=i1;:::;iq�x� xj � 12�2: (4.11)For the orret analogue of (4.9), multiply both sides of (4.11) by x(l � x).Next we will illustrate the use of these expressions to hek the assumptions ofTheorem 1.16 for large l. It is this result that we will use in analyzing the Curie-WeissIsing model. We will state it for even n; the ase of odd n is similar.Theorem 4.3. Suppose n = 2m is even and �xed, and v0(l) = 1; v1(l); :::; vn(l) > 0for l � n are suh that the orresponding quantities vki;k(l) and wki;k(l) are all positive



30 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHand satisfy vkk;k(l)vk�1k�1;k�1(l) = klk + o(lk); k = 0; :::; m;wkk;k(l)wk�1k�1;k�1(l) = 0klk+2 + o(lk+2); k = 0; :::; m� 1;vki;k(l)vkk;k(l) = �ik�(�l)i�k + o(li�k); 0 � k � i � n� k;wki;k(l)wkk;k(l) = �ik�(�l)i�k + o(li�k); 0 � k � i � n� k � 2;as l!1, where 0 < � < 1 and k; 0k > 0. Then for suÆiently large l, v1(l); :::; vn(l)are the �rst n moments of some f0; 1; :::; lg-valued random variable.Remarks. (i). In view of the positivity of vkk;k(l) and wkk;k(l), it follows from riteria(2.2) that for suh l there is a random variable N with values in [0; l℄ with momentsv0; :::; vn. The point of the above assumptions is to be guaranteed that N an betaken to have values in f0; :::; lg.(ii). If a family of �nite moment sequenes is l-extendible (in the sense of the on-lusion of this theorem) for all large l, then (by passing to subsequenes) there is atleast one limiting distribution of an in�nite exhangeable sequene. Theorem 4.3 isformulated for the situation in whih this limiting distribution is the produt measureof density �, beause that is the ase that arises in our analysis of the Curie-WeissIsing model. One ould presumably also use our tehnique to formulate analogousresults for situations in whih the limiting distribution is more general.(iii). By the third display above with k = 0, we see that vi(l) = (�l)i + o(li). There-fore the typial summand in the determinant vki;k is of order (�l)k2+i, and hene theexpression in the �rst display above is potentially of order (�l)2k. For it to be of orderlk as is assumed here, there must be a lot of anellation in the determinant. This isanalogous to the fat that the variane of the sum of m i.i.d. random variables is oforder m even though, without the anellation that ours, it would be of order m2.(iv). One an see from the proof that one atually only needs the third display tohold for i � m and the fourth display to hold for i � m� 1.Proof of Theorem 4.3: We will apply Theorem 1.16. Consider a sequene Pl(x) ofpolynomials of the form (4.7) in whih xi = xi(l) = �il + o(l) for i = 1; :::; p, where0 � �i � 1 for eah i. Then the orresponding yq's satisfyyq = (�l)q X1�i1<���<iq�p�i1 � � ��iq + o(lq):



EXCHANGEABILITY AND MEAN FIELD MODELS 31Using the hypotheses of the theorem, it follows that the right side of (4.8) equalspXk=0 k�l2p�k + o(l2p�k)�� X1�i1<���<ip�k�p ��i1 � �� � � � ��ip�k � ���2:Next we must aount for the fat that the polynomial that arises in Theorem 1.16is of form (4.11) rather than (4.7). If i(l) is de�ned bymYI=1(x� xi(l))(x� xi(l)� 1) = nXi=0 i(l)xi;thennXi=0 i(l)vi(l) = (1+o(1)) XB�f1;:::;mg��14�m�jBj jBjXk=0 kl2jBj�k� XD�B;jDj=jBj�kYi2D(�i��)�2:We need to hek that this quantity is stritly positive for large l for any hoieof �1; :::; �m 2 [0; 1℄. The argument depends on how many of the �i's are equal to�. For example, if �i 6= � for all 1 � i � m, then the term above orresponding toB = f1; :::; mg and k = 0 is a positive multiple of of l2m, and all other terms are ofsmaller order. Suppose now that �1 = � and �i 6= � for all 2 � i � m. Then thedominant term is of order l2m�1, and orresponds to B = f1; :::; mg and k = 1. Moregenerally, suppose �1 = � � � = �j = � and �i 6= � for all i = j+1; :::; m: Then the onlyD's that an ontribute to the expression satisfy jDj � m� j, sine if jDj > m� j,one of the fators �i � � must be zero. Therefore, for all nonzero summands above,jBj � k � m� j, and hene2jBj � k = (jBj � k) + jBj � (m� j) +m � 2m� j: (4.12)So, the largest power of l that ours in the above expression is 2m� j. It an onlyour if equality ours in (4.12), i.e., if jBj = m and k = j. But in this ase, theoeÆient of l2m�j is jQmi=j+1(�i � �)2, whih is stritly positive.To omplete the onsideration of polynomials P of the form (4.11) without as-suming that xi(l)=l have limits, one passes to subsequenes using ompatness. Theargument for polynomials of the formx(l � x)m�1Yi=1 (x� xi)(x� xi � 1);is similar, using the assumptions on the w's rather than the v's. We have now veri�edthat if Pl(x) =Pni=0 i(l)xi is a polynomial for eah l � n that has n simple roots inf0; :::; lg and is nonnegative on f0; :::; lg, then for suÆiently large l,Pni=0 i(l)vi(l) �0. It follows from Theorem 1.16 that for suh l, v1(l); ; :::; vn(l) are the �rst nmomentsof some f0; :::; lg-valued random variable. �



32 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHWe are now ready for theProof of Theorem 1.15: For the Curie-Weiss Ising model, we haveP (X1 = 1; :::; Xk = 1) = nXj=k �n� kj � k�uj; 1 � k � n:where uj = ajbj(n�j)=sn and sn = nXj=0 �nj�ajbj(n�j):With this notation, (4.1) beomesEN(N�1) � � � (N�k+1) = l(l�1) � � � (l�k+1) nXj=k �n� kj � k�uj; 1 � k � n: (4.13)Expanding the produt on the left side of (4.13) and writing vk(l) = ENk, we ansolve the resulting equations for these quantities. The issue is whether v1(l); :::; vn(l)are the �rst n moments of a f0; :::; lg-valued random variable.De�ning wk(l) = lvk(l)�vk+1(l), we will apply Theorem 4.3 to prove part (a), andtherefore assume at this point that n is even. To verify the assumptions of Theorem4.3, and also for the easy proof of part (b), we will need the following asymptotistatements: As l!1, vkk;k(l) � � kYj=0 j!�[Æ�(1� �)l℄k(k+1)=2; (4.14)wkk;k(l) � � kYj=0 j!�Æk(k+1)=2[�(1� �)℄(k+1)(k+2)=2l(k+1)(k+4)=2; (4.15)vki;k(l) � � ik�(�l)i�kvkk;k(l); and wki;k(l) � � ik�(�l)i�kwkk;k(l); (4.16)where Æ = 1� 2�(1� �).The hypothesis of part (a) of the theorem gives Æ > 0, whih is what we need toapply Theorem 4.3. Part (b) of the theorem follows immediately from (4.14) withk = 1, sine v11;1 = ����� v0 v1v1 v2 ����� = v2 � v21 ;whih is nonnegative if v1; v2 are the �rst two moments of any random variable.



EXCHANGEABILITY AND MEAN FIELD MODELS 33To hek (4.14), (4.15) and (4.16), we need to solve (4.13) expliitly. In order todo so, let G = (gi;j)0�i;j�n and its inverse H = (hi;j)0�i;j�n be de�ned by
G0BBBBBB� 1ll2...ln

1CCCCCCA = 0BBBBBB� 1ll(l � 1)...l(l � 1) � � � (l � n + 1)
1CCCCCCA and H0BBBBBB� 1ll(l � 1)...l(l � 1) � � � (l � n+ 1)

1CCCCCCA = 0BBBBBB� 1ll2...ln
1CCCCCCAfor every l. These are the lower triangular matries

G = 0BBBBBBBB�
1 0 � � � 00 1 � � � 00 �1 � � � 00 2 � � � 0... ... . . . ...0 (�1)n�1(n� 1)! � � � 1

1CCCCCCCCA and H = 0BBBBBBBB�
1 0 0 � � � 00 1 0 � � � 00 1 1 � � � 00 1 3 � � � 0... ... ... . . . ...0 1 2n�1 � 1 � � � 1

1CCCCCCCCA :
Entries in these matries other than those given above are rather ompliated. How-ever, they are ompletely determined by equating oeÆients of powers of l in thede�ning relations above; we will later give reursive expressions for them. To sim-plify the following expressions, we will often suppress the dependene on l, and writevk = vk(l). We will also suppress the limits of the following sums, relying on theusual onvention that �mk � = 0 exept when 0 � k � m. Then the solution of (4.13)is given by vm =Xi;j;k hm;kgk;jlj�n� ki� k�ui: (4.17)To motivate the next step, reall that we are trying to prove that for large l, thevm's are the moments of a random variable N that has a distribution lose to B(l; �).If this were the ase, then E(N � l�)p should be of order lp=2 rather than lp. We willnow hek this without assuming that the vm's are moments at all. Realling that� = a=(1 + a), it is natural to onsider the following, whih we rewrite using (4.17):Xm � pm�(1 + a)m(�la)p�mvm = Xi;j;k;m� pm�(1 + a)m(�la)p�mhm;kgk;jlj�n� ki� k�ui:Next write b = 1 + (=l) and use the binomial expansion for powers of 1 + (=l) towrite snXm � pm�(1 + a)m(�la)p�mvm =



34 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHXi;j;k;m;q� pm�(1 + a)m(�la)p�mhm;kgk;jlj�n� ki� k�ai�i(n� i)q �(=l)q = (4.18)Xr;s;t:r;s�0;r+s+t�p ltap�s(1 + a)sp�r�s�t(�1)p�sCr;s;t(a);whereCr;s;t(a) = pXk=0 nXi=k ai�k(1 + a)k� pk + s�(�1)k� i(n� i)p� r � s� t��n� ki� k�hs+k;kgk;k�r:In the �nal step, we have let r = k � j; s = m � k, and t = j � q + p�m. Shortly,we will show thatCr;s;t(a) = ( 0 if t > p=2(1 � 3 � � � (p� 1))(�1)t� tr+s��r+sr �2t�r�s(1 + a)n�p+2r+2s if t = p=2:(4.19)But �rst, we will use this to omplete the veri�ation of (4.14).Sine sn ! (1 + a)n as l!1, it follows from (4.19) thatXm � pm�(��l)p�mvm( = O(l(p�1)=2) if p is odd,� [1 � 3 � � � (p� 1)℄[Æ�(1� �)l℄p=2 if p is even. (4.20)Applying row and olumn operations similar to what was done in the alternativeproof of Theorem 1.1, we see that vkk;k(l) an be written as������������
v0 v1 � �lv0 � � � Pm � km�(��l)k�mvmv1 � �lv0 v2 � 2�lv1 + �2l2v0 � � � Pm �k+1m �(��l)k+1�mvm... ... . . . ...Pm � km�(��l)k�mvm Pm �k+1m �(��l)k+1�mvm � � � Pm �2km�(��l)2k�mvm

������������Using (4.20), we see thatvkk;k(l) � [Æ�(1� �)l℄1+2+���+k ���������� 1 EZ EZ2 � � � EZkEZ EZ2 EZ3 � � � EZk+1... ... ... . . . ...EZk EZk+1 EZk+2 � � � EZ2k
����������where Z is a standard normal random variable. By Corollary 4C in Lindsay (1989),this last determinant is 1!2! � � �k!. It an also be dedued from results on the � = 2Gaussian ensemble{ see Chapters 4 and 17 of Mehta (2004).



EXCHANGEABILITY AND MEAN FIELD MODELS 35It remains to to prove (4.19). First, we need some information about the matriesG and H. By the de�nition of G, for example,iXj=0 gi;jlj = l(l � 1) � � � (l � i + 1):Therefore, i+1Xj=0 gi+1;jlj = (l � i) iXj=0 gi;jlj = i+1Xj=1 gi;j�1lj � i iXj=0 gi;jlj:Equating oeÆients of powers of l gives gi+1;j = gi;j�1 � igi;j and then solving theresulting reursion leads togi+1;j = � jXk=1 gi�j+k;k(i� j + k):Similarly, hi+1;j = hi;j�1 + jhi;j andhi+1;j = jXk=1 khi�j+k;k:It follows by indution thatgk;k�r =(�1)r2rr! � a moni polynomial in k of degree 2r;hs+k;k = 12ss! � a moni polynomial in k of degree 2s: (4.21)The next step is to prove by indution on j that if P is any moni polynomial ini of degree j, then Xi P (i)ai�k�n� ki� k� = Q(k)(1 + a)n�k�j (4.22)for some moni polynomial Q in k of degree j. This is learly true for j = 0. For theindution step, writeXi ijai�k�n� ki� k� =Xi ij�1[(i� k) + k℄ai�k�n� ki� k�= (n� k)aXi ij�1ai�k�1�n� k � 1i� k � 1�+ kXi ij�1ai�k�n� ki� k�= (n� k)aQ1(k + 1)(1 + a)n�(k+1)�(j�1) + kQ2(k)(1 + a)n�k�(j�1)= Q(k)(1 + a)n�k�j;



36 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHwhere Q1(x) and Q2(x) are moni polynomials of degree j � 1 (by the indutivehypothesis) and Q(k) = (n� k)aQ1(k + 1) + k(1 + a)Q2(k)is a moni polynomial of degree j.Now start with Xk �pk�(�1)kxk = (1� x)p;di�erentiate j times with respet to x and set x = 1. The result is thatXk �pk�(�1)kk(k � 1) � � � (k � j + 1) = ( 0 if j < p;(�1)jp! if j = p:It follows that Xk �pk�(�1)kkj = ( 0 if j < p;(�1)jp! if j = p: (4.23)Sine � i(n�i)p�r�s�t� is a polynomial in i of degree 2(p�r�s�t) and leading oeÆient(�1)p�r�s�t=(p� r � s� t)!, (4.22) implies thatXi ai�k� i(n� i)p� r � s� t��n� ki� k� = (�1)p�r�s�t(1 + a)n�k�2(p�r�s�t)(p� r � s� t)! Q(k);where Q(k) is a moni polynomial of degree 2(p� r � s� t). Therefore,Cr;s;t(a) = (�1)p�r�s�t(1 + a)n�2(p�r�s�t)(p� r � s� t)! Xk � pk + s�(�1)kQ(k)hs+k;kgk;k�r= (�1)p�s�t(1 + a)n�2(p�r�s�t)2r+sr!s!(p� r � s� t)! Xk � pk + s�(�1)k �Q�(k)= (�1)p�t(1 + a)n�2(p�r�s�t)2r+sr!s!(p� r � s� t)! ( 0 if 2(p� t) < p;(2(p� t))! if 2(p� t) = pHere Q�(k) is a moni polynomial of degree 2(p � t). We have used (4.21) in themiddle equality and (4.23) in the �nal one.This ompletes the proof of (4.14). The proof of (4.15) is similar. In partiular,we now know that for large l, vkk;k(l) and wkk;k(l) are stritly positive. It follows fromriteria (2.2) that for suh l there is a random variable N with values in [0; l℄ withmoments v0; :::; vn. We still don't know it an be taken to have values in f0; :::; lg,



EXCHANGEABILITY AND MEAN FIELD MODELS 37and for that we still need to hek (4.16). Note that the expression for vkk;k(l) thatfollows (4.20) an then be written as���������� 1 E(N � �l) � � � E(N � �l)kE(N � �l) E(N � �l)2 � � � E(N � �l)k+1... ... . . . ...E(N � �l)k E(N � �l)k+1 � � � E(N � �l)2k
����������Similarly, row and olumn operations an be used to write vki;k(l) as������������

1 E(N � �l) � � � E(N � �l)kE(N � �l) E(N � �l)2 � � � E(N � �l)k+1... ... . . . ...E(N � �l)k�1 E(N � �l)k � � � E(N � �l)2k�1E(N � �l)kfk(�l; N) E(N � �l)k+1fk(�l; N) � � � E(N � �l)2kfk(�l; N)
������������(4.24)where fk(x; y) = i�1Xj=0 j(j � 1) � � � (j � k + 2)xj�k+1yi�j�1:Note that while it might appear that E(N � �l)kfk(�l; N), for example, is a linearombination of all the moments of N up to order i, and therefore would not beobtainable as a linear ombination of the moments of order 0; 1; :::; k � 1 and i thatoriginally appeared in the �rst olumn of the matrix, it really is a linear ombinationof these latter moments. This an be seen by writingfk(x; y) = dk�1dxk�1 yi � xiy � x :To omplete the proof of the �rst part of (4.16), note that by (4.20), N=l! � inprobability, and therefore,fk(�l; N)(�l)i�k ! i�1Xj=0 j(j � 1) � � � (j � k + 2) = � ik�in probability. It follows that asymptotially, one an fator out a term� ik�(�l)i�kfrom the last row of the above matrix. This gives the �rst part of (4.16). The proofof the last part is similar. �



38 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHRemarks. (i) In ase (a) of Theorem 1.15, we an onsider for large l a randomvariable Nl that orresponds to the extension of length l of the Curie-Weiss Isingmodel. (This is presumably not unique.) By (4.20), any weak limit ofNl � �lpÆ�(1� �)las l!1 has the same �rst n moments as a standard normal random variable.(ii) Diaonis and Freedman (1980) proved that if the exhangeble measure � onf0; 1gn is l-extendible, then the total variation distane between � and the losestmixture of homogeneous produt measures is at most 4n=l. Combining this statementwith Theorem 1.15 yields the following onlusion: If �l is the distribution of theCurie-Weiss Ising model on f0; 1gn with a = �=(1 � �) and b = 1 + (=l), where < 1=(2�(1� �)), thenlim supl!1 l inf ���������l � Z 10 ��(d�)��������TV � 4n;where �� is the homogeneous produt measure with density � , and the in�mum isover probability measures  on [0; 1℄.One ould try to take our analysis further at the ritial point  = 1=(2�(1� �))(with � 6= 0; 1). To see what an happen, letb = 1 + 12�(1� �)l + dl2 : (4.25)Theorem 4.3 no longer applies, but for small n, one an apply Theorem 1.16 diretly,as we did earlier in this setion. Here are some results for n = 2, where (4.3) is beingused, that illustrate the omplexity of the answer: Suppose � is rational, and write� = jk : Take integers m 2 [0; k=2℄ and q 2 [0; k) so that jq � m (mod k) or jq � k�m(mod k). Then the ritial value for l-extendibility for all large l � q (mod k) isd = �(1� �) + (m=k)22�2(1� �)2 :Perhaps surprisingly, if n � 4 and � 6= 12 , there is no value of d for whih l-extendibility holds for all large l. To see this, one an solve (4.13) for k � 4 andhek that Nl, if it exists, must satisfy the following, as l!1:E(Nl � �l)! n� 12 (1� 2�);E(Nl � �l)2 ! (n2 � 4n+ 6)� 4(n2 � 5n+ 6)�(1� �)4 � 2d�2(1� �)2;E(Nl � �l)3 � �(1� �)(1� 2�)l;E(Nl � �l)4 � 2�(1� �)�n(1� 2�)2 + 13�(1� �)� 3�l:



EXCHANGEABILITY AND MEAN FIELD MODELS 39If � 6= 12 , this violates the Shwarz inequality: (E(N��l)3)2 � E(N��l)2E(N��l)4.If � = 12 , one must ompute higher moments to draw the same onlusion (for n � 6):E(Nl � �l)2 ! 2n� d8E(Nl � �l)4 � 18 lE(Nl � �l)6 � 30n� 15d� 5664 l:Presumably, this means that power of l that is used in the orretion in (4.25) is notneessarily 2, and may depend on � and/or n. We have not investigated this further.5. A formula for finite extensionsIn this setion, we prove Propositions 1.17, 1.18, 1.19 and 1.20 as well as Theorem1.21.Proof of Proposition 1.17: Fix n, J > 0, h � 0 and l > n. It is easy to hek thatfor k = 0; 1; : : : ; n, the probability that there are k 1's in the the Curie-Weiss Isingmodel with parameters n, �J and h is given by1Zn�nk� expf�J(2k � n)2=2 + h(2k � n)g = 1Zn�nk�Z 1�1 e(ix+h)(2k�n)fJ(x)dx:Now, de�ne for eah j 2 f0; : : : ; lg~Q(j) := 1Zn�lj�Z 1�1 e(ix+h)(2j�l)�e(ix+h) + e�(ix+h)�n�lfJ(x)dx:For h 6= 0, there is no singularity and so the integral is well-de�ned. It is nothard to see that ~Q(j) is real but our later omputation will verify this. It is alsostraightforward to verify the laim onerning (1.12) for h > 0 with Q replaed by~Q. (It is also true that the ~Q orresponding to l0 > l has the ~Q orresponding to las hypergeometri projetion in the obvious sense. Although not so interesting, theabove makes sense and is also orret when l � n.) The proof will be omplete ifwe show that ~Q = Q when h > 0. The h = 0 ase of (1.12) will then follow fromontinuity.To see that ~Q = Q when h > 0, we now let M := l � k > 0 and u := 2j � l 2f�l;�l + 2; : : : ; l � 2; lg. If h > 0, we have



40 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHZ 1�1 e(ix+h)u�e(ix+h) + e�(ix+h)��MfJ(x)dx =Z 1�1 e(ix+h)(u�M)�1 + e�2(ix+h)��MfJ(x)dx =Z 1�1 e(ix+h)(u�M) 1Xm=0��Mm �e�2m(ix+h)fJ(x)dx =1Xm=0��Mm �e�h(2m+M�u) Z 1�1 e�ix(2m+M�u)fJ(x)dx =1Xm=0��Mm �e�h(2m+M�u)e�J2 (2m+M�u)2 =eh22J 1Xm=0��Mm �e�J2 (2m+M�u+ hJ )2 ;as desired. �Proof of Proposition 1.18: First, assume that n is odd and h = 0. In this ase,we will apply Proposition 1.17 by simply verifying that the expression given there isnonnegative. The series we need to onsider is1Xm=0(�1)me�J2 (2m+1+u)2 :When u � 0, this is nonnegative sine it is an alternating series with terms whoseabsolute values are dereasing. If u = �2j, where j = 1; 2; : : :, write this series as2j�1Xm=0(�1)me�J2 (2m+1+u)2 + 1Xm=2j(�1)me�J2 (2m+1+u)2 :The seond sum is nonnegative again beause it is an alternating series with termswhose absolute values are dereasing. The �rst sum is zero, sine the summands form and 2j �m� 1 anel.For the onverse, we use our a; b parameterization. Fix n, a, b and l. If the Curie-Weiss Ising model with parameters a and b on f0; 1gn is l-extendible, then there mustexist a random variable N taking values in f0; : : : ; lg satisfying (4.13). Using thisequation, we an ompute the variane of N whih then turns out to be�`=s2n�Xi;j �`�n� 2j � 2��ni� + �n� 2j � 1��ni�� `�n� 1i� 1��n� 1j � 1�� ai+jbi(n�i)+j(n�j):It is lear that all ases fall into one of the following three ases.



EXCHANGEABILITY AND MEAN FIELD MODELS 41Case(1): n is even, ` = n+ 1 and a is arbitrary. In this ase, the dominant term(as b gets large) is i = j = n=2 whih an be seen to have a negative oeÆient.Hene for large b the above is negative and the extension does not exist.Case(2): n is odd, ` = n + 2 and a is arbitrary. In this ase, there are fourdominant terms (as b gets large) orresponding to i; j 2 f(n� 1)=2; (n + 1)=2g. Aneasy omputation shows that in this ase the sum of the oeÆients of these fourterms is negative and hene for large b the above is negative and the extension doesnot exist.Case(3): n is odd, ` = n+1 and a 6= 1. In this ase, there are again the same fourdominant terms (as b gets large) as in the previous ase and an easy omputationagain shows that in this ase the sum of the oeÆients of these four terms is negativeand so, as before, the extension does not exist. �Proof of Proposition 1.19: Again, the series we need to onsider is1Xm=0(�1)me�J2 (2m+1+u)2 :If u � �1, then this is an alternating series with terms whose absolute values aredereasing and hene is nonnegative. Otherwise, write u = �2j�1 with j = 1; 2; 3; :::where there are only �nitely many j's here. Then the above sum beomes1Xm=0(�1)me�2J(m�j)2 :Break the sum into m � 2j+1 and m � 2j+2. The seond sum is �ne as before. Forthe �rst sum, expand the exponential in powers of J . The onstant term is 0 beausethere are an even number of summands. The oeÆient of J in the expansion is2 2j+1Xm=0(�1)m+1(m� j)2 = 2(j + 1) > 0:This term dominates for small J and hene the sum is positive. We now applyProposition 1.17. �Proof of Proposition 1.20: Fix n, l and p 2 (0; 1). The measures in E(l; l) are l{dimensional and orrespond to a simplex A in Rl. Similarly, the measures in E(n; n)are n{dimensional and orrespond to a simplex B in Rn. The hypergeometri pro-jetion orresponds to a linear mapping f from A to B whose image is a set C inRn orresponding exatly to E(n; l). Clearly as a map from A to C, f has full rank.Consider the point a in A orresponding to the proess Y = (Y1; : : : ; Yl) whih isi.i.d. 0,1 valued with P (Y1 = 1) = p. Clearly a is an interior point of A. Sine f



42 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHhas full rank, f(a) is an interior point of C. However, f(a) orresponds exatly toX = (X1; : : : ; Xn). This proves the laim.For the last statement, �x p = 1. We take n = 4 and l = 5. Consider the measureon f0; 1g4 whih is (1� �)m1 + �m2 where m1 is produt measure with p = 1 and m2is uniform distribution on on�gurations with exatly 2 1's. It is easy to see that forany � > 0, this measure, while in E(4; 4), is not 5-extendible. �Remark. There is an alternative way to prove the above result. When one extendsthe produt measure from n to l sites, the resulting random variable N satisfying(4.1) is binomially distributed. By Proposition 4.1, we therefore have that for everypolynomial P 2 Pe, EP (N) > 0. Sine jPej < 1, it follows by Theorem 1.16,that if the �nite sequene v0; : : : ; vn is lose to these binomial moments, then theyare also the moments of some N 0 of the desired form. This, together with (4.13),ompletes the alternate proof. In fat, this proof shows that whenever we havea proess fX1; :::; Xng in E(n; l) whih has some "representing" N satisfying (4.1)having at least n + 1 points in its support, then small perturbations of fX1; :::; Xngwhih are in E(n; n) are also in E(n; l).We �nally now move to the proof of Theorem 1.21.Proof of Theorem 1.21: Fix n; ; h and l. Letting J = =l, we have, using (1.11), Q(j)de�ned for eah j 2 f0; : : : ; lg. We want to show that for h > h�(), we have thatfor large l, Q(j) is nonnegative for all j 2 f0; : : : ; lg. Sine h�() > 0, in view of theproof of Proposition 1.17, we need to show that for j 2 f0; : : : ; lg,~Q(j) := Z 1�1 e(ix+h)(2j�l)�e(ix+h) + e�(ix+h)�n�lfJ(x)dx � 0where we reall that fJ is the density funtion for a normal random variable withmean 0 and variane J .Sine we don't are about positive multipliative fators, we will use the notationA �= B if the A and B only di�er by a positive multipliative fator. Letting 2j�l = vlwith v 2 [�1; 1℄, a simple hange of variables shows that~Q(j) �= Z 1�1 eixvpl�eh+i xpl + e�h�i xpl �n�l f(x)dx: (5.1)Thinking of x as omplex, the integrand on the right hand side of (5.1) has isolatedpoles of order l�n at the points x = �ih+(2r+1)�=2�pl for r 2 Z and is otherwiseanalyti. One an then readily dedue from Cauhy's theorem that if h; � > 0, thenthe integrand in (5.1) is unhanged if we integrate over R + i(h��)pl instead. Thisleads to



EXCHANGEABILITY AND MEAN FIELD MODELS 43~Q(j) �= Z 1�1 eix(v�h�� )pl�e�+i xpl + e���i xpl �n�l'(x)dx�= Z 1�1 �e�+i xpl + e���i xpl �n ��e�+i xpl (1�v+h�� ) + e���i xpl (1+v�h�� )��l'(x)dx: (5.2)Now, assume � = �(; h; v) is a solution of the equation� �  tanh � = h� v; � > 0: (5.3)Denote p = p(; h; v) := e�e� + e�� ; q = q(; h; v) := e��e� + e�� ;and observe thatp+ q = 1; p� q = tanh� and 4pq = 1(osh�)2 :We then readily obtain~Q(j) �= Z 1�1 �pei xpl + qe�i xpl �n�pei2q xpl + qe�i2p xpl ��l'(x)dx: (5.4)We want to apply the dominated onvergene theorem to the integral on the righthand side of (5.4), with h and  kept �xed, l!1 and uniformly in v 2 [�1; 1℄.Choie of �: At this point, we want to understand when (5.3) has a solution and wetreat the ases  � 1 and  > 1 separately. If  � 1, it is easy to hek that equation(5.3) has a solution for all v 2 [�1; 1℄ if and only if h >  and moreover the solutionis then unique for all suh v.The  > 1 ase is a bit longer. Let �� be�� = ��() := ln �p+p� 1�; (5.5)whih is equivalent to (osh��)2 =  and �� > 0; (5.6)or to the fat that �� is the unique loal minimum of � 7! � �  tanh �. Observe that�() := ln �p +p� 1�+ �p2 �  = �� �  tanh�� + : (5.7)This is, of ourse the same as�()�  = min��0 �� �  tanh ��: (5.8)



44 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHAgain, (5.3) has a solution for all v 2 [�1; 1℄ if and only ifh � �(): (5.9)For h > �(), we hoose the solution of (5.3) with� > ��:Given  and h > �(), we denote by �� = ��(; h) the solution of the equation (5.3)with v = +1. Clearly, �� < �� = min�1�v�+1�and hene, due to (5.6) we always havesup�1�v�+1 4pq = 4�p�q < 4p�q� = 1 (5.10)where �p; �q; p� and q� all have the obvious meaning. Furthermore, keeping  �xed,[�();1) 3 h 7! ��(; h) 2 [��();1) is stritly inreasing in h withlimh!1 ��(; h) =1: (5.11)Pointwise onvergene: For �xed  and h > �(), the integrand on the right handside of (5.4) onverges pointwise toexp��x2(1� 4pq)2 �p2� ; (5.12)as l!1 uniformly on ompat domains of x and in the parameter v 2 [�1; 1℄. Dueto (5.10), whih holds for all  and h > �(), the limit funtion is integrable uniformlyfor v 2 [�1; 1℄.Domination: For " 2 [0; 1℄ we de�ne~(") := supf : inf�1<y<1 ey2=�1� "(sin y)2� = 1g: (5.13)Note that " 7! ~(") is monotone dereasing, withlim"&0 ~(") =1 and ~(1) := lim"%1 ~(") = 0: (5.14)It follows that for all ; h and vinf�1<y<1 ���ey2=(2~(4pq))�pei2qy + qe�i2py���� = 1; (5.15)and this will be used in order to bound the integrand on the right hand side of (5.4).



EXCHANGEABILITY AND MEAN FIELD MODELS 45Lemma 5.1. (i) For any " 2 [0; 1℄� 1ln(1� ") � ~(") � min�� �24 ln(1� ") ; 1"� : (5.16)(ii) For " � 2=3 ~(") = 1": (5.17)Proof:(i) We obtain the �rst upper bound in (5.16) by looking at y = �=2 and we obtainthe seond upper bound by expanding near y = 0 in (5.13). In order to prove thelower bound of (5.16) note that for any "; � 2 [0; 1℄,1� "� � (1� ")�:Hene 1� "(sin y)2 � expf(sin y)2 ln(1� ")g � expfy2 ln(1� ")g:(ii) In view of the �rst part of this lemma, we need only hek that for � � 2=3,g(y) = e�y2(1� � sin2 y) � 1; y 2 R:To do so, note that g(0) = 1 and omputeg0(y) = 2�e�y2h(y);where h(y) = y(1� � sin2(y))� sin y os y:Then h0(y) = sin y((2� �) sin y � 2�y os y);whih is zero if (i) sin y = 0 or (ii)y = (2� �) sin y2� os y :In ase (i), h(y) = y, while in ase (ii),h(y) = sin y(2� 3�+ �2 sin2 y)2� os y = y(2� 3� + �2 sin2 y)2� � :If � � 2=3, we see that h(y) and y have the same sign at eah ritial point of h.Sine h(y)!1 as y !1 in this ase, it follows that h(y) � 0 for y � 0, and henethat g is inreasing on [0;1). Therefore, g(y) � 1 for all y. �



46 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHNow we return to the boundedness of the integrand on the right hand side of(5.4). Let� = �(; h) := min�1�v�+1 ~(4pq) = ~( max�1�v�+1 4pq) = ~�1=(osh ��(; h))2�: (5.18)Lemma 5.2. (i) If  < �(; h) (5.19)holds, then the integrand on the right hand side of (5.4) is bounded bye�x2(��)=(2�)=p2� for all x; l and v 2 [�1; 1℄.(ii) For any , if h > h�(), then (5.19) holds.Proof:(i) We learly have ����pei xpl + qe�i xpl �n��� � 1:Using � de�ned in (5.18) we write�pei2q xpl + qe�i2p xpl ��le�x2=(2) =�e� xpl�2=(2�)�pei2q xpl + qe�i2p xpl ���l e�x2(��)=(2�):From (5.15) and (5.18) it follows that the absolute value of this last expression isbounded by e�x2(��)=(2�).(ii) Due to (5.11) and (5.14), it is lear that for any , (5.19) holds for all large h.Carrying out a tedious alulation leads to the statement of for  < 3=2. For the ase � 3=2, we need only observe that one h > �(), we have that2=3 � 1 = 1(osh��())2 > 1(osh ��(; h))2 = 1~�1=(osh ��(; h))2� ;the last equality following from (5.17). �Conlusion of the proof of Theorem 1.21: Fix  > 0 and h > h�(). Lemma 5.2(ii)tells us that (5.19) holds. It then follows from the uniform onvergene in (5.12)and Lemma 5.2(i) that the integral on the right hand side of (5.4) onverges to1=p1� 4pq, as l ! 1, uniformly in v 2 [�1; 1℄. Sine 1=p1� 4pq is learlybounded away from 0 uniformly in v, it follows that this integral is positive for alllarge l. �Aknowledgements: Having been unaware of Papangelou (1989), in the �rst versionof this paper, we had two proofs of Theorem 1.1, the �rst one turning out to follow thelines of that in Papangelou (1989) and the other being the present alternative proof.
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