
STATISTICAL MECHANICAL SYSTEMS ON COMPLETEGRAPHS, INFINITE EXCHANGEABILITY, FINITE EXTENSIONSAND A DISCRETE FINITE MOMENT PROBLEMTHOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHAbstra
t. We show that a large 
olle
tion of statisti
al me
hani
al systems withquadrati
ally represented Hamiltonians on the 
omplete graph 
an be extended toin�nite ex
hangeable pro
esses. This extends a known result for the ferromagneti
Curie-Weiss Ising model and in
ludes as well all ferromagneti
 Curie-Weiss Pottsand Curie-Weiss Heisenberg models. By de Finetti's theorem, this is equivalent toshowing that these probability measures 
an be expressed as averages of produ
tmeasures. We provide examples showing that \ferromagnetism" is not howeverin itself suÆ
ient and also study in some detail the Curie-Weiss Ising model withan additional 3-body intera
tion. Finally, we study the question of how mu
h theantiferromagneti
 Curie-Weiss Ising model 
an be extended. In this dire
tion, weobtain sharp asymptoti
 results via a solution to a new moment problem. We alsoobtain a \formula" for the extension whi
h is valid in many 
ases.Keywords : statisti
al me
hani
s, in�nite ex
hangeability, dis
rete moment problemsSubje
t 
lassi�
ation : 44A60,60G09, 60K35,82B20.1. Introdu
tionLet X = (X1; : : : ; Xn) be a �nite ex
hangeable 
olle
tion of random variablestaking values in a spa
e S whi
h is assumed to be a 
losed subset of Rs, often a�nite set or the s� 1 dimensional unit sphere. (Finite ex
hangeable means that thedistribution is invariant under all permutations of f1; : : : ; ng.) In su
h a situation,one 
an ask whether X is extendible to an in�nite ex
hangeable pro
ess. In otherwords, does there exist a pro
ess Y = (Yi)i�1, taking values in S, whose distributionis invariant under �nite permutations and su
h that X and (Y1; : : : ; Yn) have thesame distribution? (In this 
ase, the pro
ess Y will often not be unique.) If thedistribution of X is \an average of produ
t measures", meaning that the distributionof X 
an be expressed as ZP (S) �
nd�(�)Date: O
tober 17, 2006. 1



2 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHwhere P (S) is the set of probability measures on S, �
n is the n-fold produ
t of �and � is a probability measure on P (S) (endowed with an appropriate �{algebra),then it is immediate that X is extendible to an in�nite ex
hangeable pro
ess. Onesu
h in�nite ex
hangeable pro
ess of 
ourse has distributionZP (S) �
1d�(�): (1.1)The important de Finetti theorem says that any in�nite ex
hangeable pro
ess (whenS is a 
omplete separable metri
 spa
e) 
an be expressed as in (1.1) for a unique�. Hen
e X is extendible to an in�nite ex
hangeable pro
ess if and only if it is \anaverage of produ
t measures". When a �nite ex
hangeable pro
ess is extendible toan in�nite ex
hangeable pro
ess, we will write it is IE (for \in�nitely extendible").When S = f0; 1g, P (S) 
an be identi�ed with [0; 1℄ and a probability measure onP (S) 
an be indenti�ed with a random variable W taking values in [0; 1℄. The kthmoment, E[W k℄, is then the probability that the �rst k random variables are 1. Ifone 
an extend a �nite ex
hangeable sequen
e X = (X1; : : : ; Xn) to an in�nite one,there may be more than one extension and so the distribution of W is not unique.See Karlin and Shapley (1953) for some dis
ussion 
on
erning this point. Any Wwhi
h 
an be used will be 
alled a representing W for X.Surveys of ex
hangeability 
an be found in Aldous (1985) and Dia
onis (1988).The problem of determining when �nite ex
hangeable sequen
es 
an be extended toin�nite ex
hangeable ones has attra
ted some attention in the past; see the two abovereferen
es as well as S
arsini (1985) and Spizzi
hino (1982). In the present paper,we will study this question in the mean �eld statisti
al me
hani
s 
ontext and alsostudy how mu
h one 
an extend if IE fails.We start by stating a known result where jSj = 2. Consider the Curie-WeissIsing model with parameters J and h representing the 
oupling 
onstant and theexternal �eld. This is simply the Ising model on the 
omplete graph with symmetri
1 and 2 body intera
tions. See Ellis (1985) or Olivieri and Vares (2005) for anindepth dis
ussion of this model. This is the probability measure on f�1gn wherethe probability of the 
on�guration � is proportional to eH(�) whereH(�) = h nXi=1 �i + J2  nXi=1 �i!2 : (1.2)The model is said to be ferromagneti
 if J � 0. The following result is proved inPapangelou (1989) where the te
hnique is 
redited to Ka
 (1966).Theorem 1.1. For n � 1, J � 0 and any h, the Curie-Weiss Ising model withparameters n, J and h is IE.



EXCHANGEABILITY AND MEAN FIELD MODELS 3Remarks. When jSj = 2, a ne
essary 
ondition for being IE is that the pro
essbe asso
iated (i.e., in
reasing events are positively 
orrelated, see De�nition 2.11 onpage 77 of Liggett (1985)); this follows from an obvious generalization of Proposition2.22 on page 83 of Liggett (1985). In fa
t, it is not hard to 
he
k that IE even impliesthe stronger FKG latti
e 
ondition (see (2.13) on page 78 of Liggett (1985) for thisde�nition). Using this, it is easy to 
he
k that for n � 2 and J < 0, the model is notIE. We point out however that an elementary example in Liggett and Steif (2005)shows that this FKG latti
e 
ondition plus �nite ex
hangeability is not suÆ
ient forbeing IE. An alternative way to see that IE implies J � 0 is as follows. We have IEif and only if there is a random variable 0 � W � 1 so thatEW k(1�W )n�k = eh(2k�n)+J2 (2k�n)2P�2f�1gn eH(�) 0 � k � n: (1.3)H�older's inequality then givesEW k(1�W )n�k � (EW n)k=n(E(1�W )n)1�(k=n)from whi
h it is easy to dedu
e that J � 0.The following result extends Theorem 1.1 to a large number of models whi
hhave a quadrati
 representation for their Hamiltonian. It is proved using a similarmethod to that in Papangelou (1989). Let � be an arbitrary probability measure onRs satisfying ZRs ev�yd�(y) <1 (1.4)for all v 2 Rs. Next assume that � and n are su
h thatZ�;n := Z(Rs)n e 12Pni;j=1 xi�xjd�
n(x1; : : : ; xn) <1: (1.5)Then we 
an 
onsider the probability measure ��;n on (Rs)n whi
h is absolutely
ontinuous with respe
t to �
n with Radon-Nikodym derivative at (x1; : : : ; xn) givenby e 12Pni;j=1 xi�xjZ�;n :Theorem 1.2. For any � and n satisfying (1.4) and (1.5), ��;n, viewed as the distri-bution of a �nite ex
hangeable 
olle
tion of n random variables taking values in Rs,is IE.Although the above formulation is very simple, many models (in
luding the Curie-Weiss Ising model) fall into this 
ategory as we now brie
y dis
uss.� Curie-Weiss Potts model:Let q be an integer larger than 1, S = f1; : : : ; qg, J 2 R and h : S ! R. The



4 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHCurie-Weiss Potts model with parameters n, J and h is the probability measure onSn where the probability of the 
on�guration � is proportional to eH(�) whereH(�) = nXi=1 h(�i) + J2  nXi;j=1 If�i=�jg! :The model is said to be ferromagneti
 if J � 0. (Note q=2 is equivalent to theCurie-Weiss Ising model.)� Heisenberg model:Let r be a nonnegative integer, S the r{dimensional sphere, J 2 R and h : S !R. Letting dx denote \surfa
e area" on S, the (
lassi
al) Heisenberg model withparameters n, J and h is the probability measure on Sn whose Radon-Nikodymderivative with respe
t to dx
n at � = (�1; : : : ; �n) is proportional to eH(�) whereH(�) = nXi=1 h(�i) + J2  nXi;j=1�i � �j! :The model is said to be ferromagneti
 if J � 0. (Note r = 0 is equivalent to theCurie-Weiss Ising model.)� Curie-Weiss 
lo
k model (see Fr�ohli
h and Spen
er, 1981):Let q be an integer larger than 1, S be q points on the unit 
ir
le with 
onstantspa
ing, J 2 R and h : S ! R. The Curie-Weiss 
lo
k model with parameters n, Jand h is the probability measure on Sn where the probability of the 
on�guration �is proportional to eH(�) whereH(�) = nXi=1 h(�i) + J2  nXi;j=1�i � �j! :The model is said to be ferromagneti
 if J � 0. (Note again q=2 is equivalent to theCurie-Weiss Ising model.)Corollary 1.3. For any n, J � 0 and h : S ! R, the Curie-Weiss Potts model, theCurie-Weiss Heisenberg model and the Curie-Weiss 
lo
k model are IE.Remarks. The fuzzy Potts model is obtained from the Potts model de�ned aboveby partitioning the possible spins into two sets. H�aggstr�om (1999) proved that theferromagneti
 fuzzy Potts model (with no external �eld) on any graph has positive
orrelations and in fa
t satis�es the FKG latti
e 
ondition. We point out that forthe spe
ial 
ase of the Curie-Weiss Potts model (i.e. on the 
omplete graph), thisfollows from Corollary 1.3 by using (i) the trivial fa
t that su
h a \proje
tion" of anIE system is IE and (ii) IE systems with jSj = 2 satisfy the FKG latti
e 
ondition.This same argument shows that if we take the ferromagneti
 Heisenberg model on the



EXCHANGEABILITY AND MEAN FIELD MODELS 5
omplete graph on n verti
es and partition the sphere into two arbitrary measurablesets, then the indu
ed measure on f0; 1gn satis�es the FKG latti
e 
ondition; thisdoes not appear to be obvious dire
tly.It seems reasonable to ask whether all \ferromagneti
" systems on 
ompletegraphs are IE. One problem with this is that it is not 
lear exa
tly whi
h systemsshould be 
onsidered ferromagneti
. We �rst 
onsider the 
ase when jSj = 2 butwhere we add 3-body intera
tions. Consider the probability measure �h;J2;J3;n onf�1gn where the probability of the 
on�guration � is proportional to eH(�) whereH(�) = h nXi=1 �i + J22  nXi=1 �i!2 + J36  nXi=1 �i!3 : (1.6)This is the Curie-Weiss Ising model with an additional 3-body intera
tion term. Thesystem is ferromagneti
 (as de�ned in Chapter 4 of Liggett (1985)) if and only ifJ2; J3 � 0. However, if n = 3 for example and h and J2 are �xed, then for J3suÆ
iently large, we haveP (X1 = 1 j X2 = �1; X3 = �1) > P (X1 = 1 j X2 = �1; X3 = 1):This implies that the FKG latti
e 
ondition fails and so (X1; X2; X3) is not IE. Asimilar argument works for any �xed n � 3 or for J3 suÆ
iently negative and alsoshows that for any n � 3, if J2 = 0 and J3 6= 0, then IE fails.We now restri
t to only 2-body intera
tions but general S. For 2-body intera
-tions, one might de�ne ferromagneti
 to mean that the 2-body intera
tions are of theform f(x � y) where f is an in
reasing fun
tion. However, it turns out that a systemwhi
h has only 2-body intera
tions of this form need not be IE.Proposition 1.4. For every n, there is an in
reasing fun
tion f so that if S =f(1; 0); (0; 1); (�1; 0); (0;�1)g or S = f�1; 0; 1g, then the �nite ex
hangeable proba-bility measure on Sn given by the HamiltonianH(�) = X1�i<j�n f(�i � �j) (1.7)is not IE.Remarks. (i). The �rst S shows that we 
an take the spin values to have length 1while the se
ond S shows that we 
an take the spin values to be a subset of R.(ii). It would be of interest to investigate whether IE would follow if one assumedthat f had some higher order monotoni
ity.For the rest of the results, we 
ontinue to restri
t to jSj = 2. Unfortunately, weneed to break the 
lass of �nite sequen
es (X1; : : : ; Xn) whi
h are IE into two 
lasses.



6 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHDe�nition 1.5. If (X1; : : : ; Xn) is IE, we 
all it type 1 if there exists a randomvariable W whi
h represents (X1; : : : ; Xn) and is in (0; 1) a.s. It is 
alled type 2otherwise (i.e., if every representing W satis�es P (W 2 f0; 1g) > 0).Remarks. A trivial example of type 2 is where P (X1 6= X2) = 0. In this 
ase,a representing W is trivially unique and has P (W 2 f0; 1g) = 1. One 
an 
he
kthat for n = 2 this is the only type 2 situation. However, for n = 3, we havea less trivial example of type 2 where (X1; X2; X3) is represented by a W satisfyingP (W = 0) = P (W = 1=2) = 1=2. In this 
ase, if V were another representing randomvariable (meaning that the �rst 3 moments are the same as those for W ), then one
an 
he
k that E[(V 3=2 � (1=2)V 1=2)2℄ = 0. This implies that V 1=2(V � (1=2)) = 0a.s. whi
h for
es V to have the same distribution as W . It is also trivial to �nd type1 X's whi
h have a representing W satisfying P (W 2 f0; 1g) > 0.Con
erning the problem of determining whether a given �nite ex
hangeable pro-
ess is type 1 IE, we mention the following 
hara
terization whi
h will be used in theproofs of Propositions 1.7, 1.10 and 1.12.Proposition 1.6. Let Ek = fX1 = : : : = Xk = 1; Xk+1 = 0; : : : ; Xn = 0g. Then(X1; : : : ; Xn) is IE of type 1 if and only if there exists a random variable � and 
 > 0,so that 
P (Ek) = E[e(2k�n)�℄for k = 0; : : : ; n.Remark. We observe that the latter is also a type of moment problem, sin
e this
ondition is the statement that P (Ek) is the kth moment of e2� , where �'s distributionhas Radon-Nikodym derivative e�nx with respe
t to the distribution of �.Using Proposition 1.6, we will obtain the following result whi
h provides somefurther information 
on
erning the Curie-Weiss Ising model with an additional 3-bodyintera
tion term.Proposition 1.7. Consider the probability measure �h;J2;J3;n 
orresponding to theHamiltonian given in (1.6). For all h; J2; J3 with J3 6= 0, there exists N su
h that forall n � N , �h;J2;J3;n is not IE.This should be 
ontrasted with the fa
t that for all h; J2 > 0 and n, there exists� > 0 so that for jJ3j < �, �h;J2;J3;n is IE; this follows readily from the alternativeproof of Theorem 1.1 together with 
ontinuity.Proposition 1.7 might be viewed as unnatural for the following reason. As nin
reases, it is not so physi
ally natural to keep the 
oeÆ
ients J2=2 and J3=6 �xed



EXCHANGEABILITY AND MEAN FIELD MODELS 7but rather they perhaps should de
rease with n and the appropriate Hamiltonianwould be H(�) = h nXi=1 �i + J22n  nXi=1 �i!2 + J36n2  nXi=1 �i!3 : (1.8)We do not know the answer to the following question.Question 1.8. Is it the 
ase that for any h, J2 and J3 6= 0, for all large n, the modelusing the Hamiltonian (1.8) is not IE?We have however the following two results related to this question where wetake h = 0 for simpli
ity. (Proposition 1.12 below tells us that taking h = 0 is norestri
tion.)Proposition 1.9. Consider the probability measure �J2;J3;n 
orresponding to theHamiltonian given in (1.8) with h = 0. If jJ3j > J2, then there exists N su
hthat for all n � N , �J2;J3;n is not IE.Proposition 1.10. Given J2 and J3 6= 0, for only �nitely many even values of n 
anthe system on the 
omplete graph on n verti
es with HamiltonianH(�) = J22n2  nXi=1 �i!2 + J36n3  nXi=1 �i!3 (1.9)be IE.To see in another way the degree to whi
h the 3-body intera
tion term hindersbeing IE, we look at n = 4. In this 
ase, one 
an 
he
k that when the Hamiltonianis taken to be h 4Xi=1 �i + J2 X1�i<j�4�i�j + J3 X1�i<j<k�4�i�j�kthe system is IE if and only if J2 � 0 and
osh(8J3) � 
osh(4J2)� 2e�8J2(sinh(2J2))2:This latter 
ondition involving the hyperboli
 fun
tions 
omes from 
onsiderationof the moment 
hara
terization (2:2) of IE. From this one 
an 
on
lude after some
omputation that if J2 and J3 both approa
h 0 with J32=J23 approa
hing 
, then if
 > 1=2, the system is eventually IE while if 
 < 1=2, the system is eventually notIE. Note the di�eren
e in the exponents (3 versus 2).The earlier Proposition 1.6 has other appli
ations as well.



8 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHDe�nition 1.11. If � is a �nite ex
hangeable probability measure on f�1gn, we letTJ;h(�) be the probability measure on f�1gn whi
h gives a 
on�guration � probabilityproportional to eH(�)�(�) whereH(�) = h nXi=1 �i + J2  nXi=1 �i!2 :Of 
ourse, if � is uniform distribution, then TJ;h(�) is just the Curie-Weiss Isingmodel. One might 
all TJ;h(�) a \(J; h)-Isingization" of �.Proposition 1.12. If the probability measure � on f�1gn is IE then for all J � 0and h 2 R, TJ;h(�) is also IE.Remark. This tells us that when studying the question of whi
h models are IE, we
an assume that there is no external �eld.Given a �nite ex
hangeable sequen
e X = (X1; : : : ; Xn) whi
h is not IE, it isinteresting to ask if it 
an be extended to a �nite but longer ex
hangeable sequen
e.De�nition 1.13. For l > n, a �nite ex
hangeable sequen
e X = (X1; : : : ; Xn) isl-extendible if there exists a �nite ex
hangeable pro
ess Y = (Yi)1�i�l su
h that Xand (Y1; : : : ; Yn) have the same distribution. We let E(n; l) denote the 
olle
tion of�nite ex
hangeable pro
esses X = (X1; : : : ; Xn) whi
h are l-extendible.Remarks. It is not hard to show that X = (X1; : : : ; Xn) is IE if and only if it isl-extendible for every l > n. When S is 
ompa
t, this follows from an elementary
ompa
tness argument. If S is not 
ompa
t, a similar \tightness" argument 
anbe easily 
arried out. In view of this fa
t, to prove the Curie-Weiss Ising model isextendible to an in�nite ex
hangeable pro
ess, it would suÆ
e (assuming for thisdis
ussion that h = 0) to show that for any n and J and any l > n, there existsJ 0 = J 0(n; J; l) so that the proje
tion of the Curie-Weiss Ising model on the 
ompletegraph of size l with parameter J 0 to n verti
es is the Curie-Weiss Ising model on the
omplete graph of size n with parameter J . However, this is typi
ally not true (it ishowever true for small n) and hen
e this approa
h to proving Theorem 1.1 does notwork.Proposition 1.12 says that for J � 0 and any h, TJ;h leaves E(n;1) invariant; thefollowing is an interesting 
omplement to this whi
h says that this is false for �nitel > n even when J = 0.Proposition 1.14. Given 2 � n < l < 1, there is a � 2 E(n; l) with full supportand h 2 R su
h that T0;h(�) 62 E(n; l).



EXCHANGEABILITY AND MEAN FIELD MODELS 9Remark. In 
ontrast to the remark after Proposition 1.12, when we are asking about�nite extensions, we 
annot assume that there is no external �eld.We �nally 
onsider the Curie-Weiss Ising model with J < 0; this is the anti-ferromagneti
 
ase. With the ex
eption of Proposition 1.20, the rest of the results
on
ern only the antiferromagneti
 Curie-Weiss Ising model with parameters J < 0,h and n as de�ned in (1.2). As observed following the statement of Theorem 1.1, theCurie-Weiss Ising model in not IE in this 
ase. The following result gives us somevery pre
ise information 
on
erning how far one 
an extend the model when J is very
lose to 0. It will be 
onvenient for our purposes to use a di�erent parameterizationfor the Curie-Weiss Ising model. Given parameters a > 0; b > 0, we let the Gibbsstate � on f0; 1gn have probabilities of the form �f�g = akbk(n�k)=sn, where k is thenumber of 1's in the 
on�guration � and the normalizing 
onstant is given bysn = nXk=0 �nk�akbk(n�k):An easy 
omputation shows that our two parameterizations are related by a = e2h; b =e�2J and so b � 1 
orresponds to J � 0. The following gives 
onditions under whi
hit is l-extendible for large l. Sin
e we will be letting b! 1 and the Curie-Weiss Isingmodel with b = 1 is the produ
t measure with density a=(1 + a), it is natural todenote � := a=(1 + a).Theorem 1.15. Let n � 2. Let � be as above and 
onsider the Curie-Weiss Isingmodel on f0; 1gn with n and a �xed, and let b = 1 + (
=l).(a) If 
 < 1=(2�(1� �)), then the Curie-Weiss Ising model with parameters a and bon f0; 1gn is l-extendible for all suÆ
iently large l.(b) If 
 > 1=(2�(1� �)), then the Curie-Weiss Ising model with parameters a and bon f0; 1gn is not l-extendible for all suÆ
iently large l.Remarks. Regarding the remark after Proposition 1.14, we see here that the external�eld is indeed relevant to the �nite extension problem and is even relevant for thel ! 1 asymptoti
s. Note also the montoni
ity in a in the above result. Thismonotoni
ity however only holds in the asymptoti
s. Looking at the 
ases n = 2; 3and l = 4 dis
ussed at the beginning of Se
tion 4, one sees that su
h monotoni
itydoes not hold for �nite n and l. In fa
t, for n = 4; l = 5 and 
ertain values of a, theset of b's for whi
h one 
an extend is not even an interval. We mention here that theargument involving (b) is 
onsiderably simpler than that for (a) sin
e this part 
omesdown to showing the nonexisten
e of a parti
ular random variable by demonstratingthat its �rst and se
ond moments would not satisfy the Cau
hy-S
hwarz inequality.



10 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHFurther remarks. One might reasonably ask how big l needs to be in part (a) ofTheorem 1.15. The answer undoubtedly depends in a 
ompli
ated way on n; 
 and�. For small n, one 
an say something about this using the 
riteria given in Se
tion4. If n = 2 and 2�(1� �)
 � 1 then the model is l-extendible for all l � 2. If n = 3,the answer is the same if 2�(1� �)
 � 1 and � is 
lose to 1=2. However, if one takes� " 1 and 
 " 1 with 2�(1� �)
 = d 2 (0; 1), then the 
ondition for l-extendibility isasymptoti
ally l � 12(1� �) max �1; d21� d�:One of the key steps in the analysis of the above is a solution to a new dis
rete�nite moment problem. We �rst re
all that determining whether an in�nite sequen
eof numbers in [0; 1℄ is the sequen
e of moments of some random variable taking valuesin [0; 1℄ is 
alled the Hausdor� moment problem for whi
h a well-known suÆ
ient andne
essary 
ondition is known. Conditions are also known whi
h insure that a �nitesequen
e of numbers in [0; 1℄ 
an be extended to a moment sequen
e. This will beused to obtain an alternative proof of Theorem 1.1. The following theorem is asolution to a dis
rete moment problem. It is the key to proving Theorem 1.15 andwe believe it to be of independent interest.Theorem 1.16. Given v1; :::; vn, there exists a f0; 1; :::; lg-valued random variable Nsatisfying vk = ENk for k = 1; :::; n (1.10)if and only if 
0+Pni=1 
ivi � 0 for all polynomials P (x) =Pni=0 
ixi of degree n thathave n simple roots in f0; :::; lg and are nonnegative on f0; :::; lg.Remarks. For the 
ase l = 1, su
h problems have been studied; see ChapterVII in Karlin and Studden (1966). In this sense, the above result is not su
h alarge departure from known results. However, the te
hni
al result we use to verifythe 
ondition of Theorem 1.16 (whi
h is 
ontained in Theorem 4.3) is signi�
antlydi�erent from that whi
h appears in the treatment of earlier moment problems.The proof of Theorem 1.15 is an existen
e proof and does not give a \formula" forthe distribution of the extension. In Se
tion 5, we will, for ea
h n, l, J < 0 and hgive a formula for the distribution of the number of 1's in the extension. However,this distribution might be a signed measure in whi
h 
ase the formula is of 
oursenot valid. Nonetheless, if it is a distribution, then the formula will be 
orre
t. Themotivation for this approa
h 
omes from trying to extend the �rst proof of Theorem1.1 (either the one from Papangelou (1989) or the one that 
omes out of the proof ofTheorem 1.2) to the antiferromagneti
 situation.



EXCHANGEABILITY AND MEAN FIELD MODELS 11Note that an ex
hangeable measure on f0; 1gn 
an be identi�ed with a prob-ability measure on f0; : : : ; ng whi
h gives the distribution of the number of 1's. If(Y1; : : : ; YM 0) is an extension of (X1; : : : ; XM), both ex
hangeable, with 
orrespondingdistributions �M 0 on f0; : : : ;M 0g and �M on f0; : : : ;Mg, it is trivial to 
he
k that�M(m) =Xm0 �Mm��M 0�Mm0�m��M 0m0� �M 0(m0):In this 
ase, we say that �M is the hypergeometri
 proje
tion of �M 0.If J > 0 and fJ is the density fun
tion for a normal random variable with mean0 and varian
e J , it is easy to 
he
k thatZn := Z 1�1 �e(ix+h) + e�(ix+h)�nfJ(x)dxis the normalization for the Curie-Weiss Ising model on n verti
es with parameters�J and h. In the next result, for M > 0, ��Mm � := (�1)m�M+m�1m �.Proposition 1.17. Fix n, J > 0, h � 0 and l > n. LetQ(j) := eh22JZn �lj� 1Xm=0��(l � n)m �e�J2 (2m+2l�n�2j+ hJ )2 (1.11)for j 2 f0; : : : ; lg. Then �Xj �nk��l�nj�k��lj� Q(j)�0�k�n (1.12)is the probability measure on f0; : : : ; ng 
orresponding to the Curie-Weiss Ising modelwith parameters n, �J and h. (This implies that Pj Q(j) = 1.) Hen
e if Q(j) � 0for ea
h j, then the �nite extension exists and Q provides a formula for the extension.Remarks. We point out here that we know that there are 
ases, in
luding whenh = 0, where the extension exists but where Q(j) < 0 for some j and hen
e theformula is invalid. On the other hand, if Q(j) > 0 for all j, then it is easy to see,using the fa
t that the hypergeometri
 proje
tion is a linear mapping of full rank,that there are many other l-extensions besides that given by Q. (Proposition 1.20 isproved along these lines.)The above theorem will help lead to the following two results and also gives usour �rst 
ases with n < l where Q � 0.Proposition 1.18. Fix n, l and h. Then the Curie-Weiss Ising model with param-eters J and h on f�1; 1gn is l-extendible for all J if and only if n is odd, l = n + 1and h = 0. Moreover, in this latter 
ase, we always have Q � 0 and so provides aformula for the extension.



12 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHRemark. The following suggests why one might have expe
ted part of the resultstated in Proposition 1.18. If we take h = 0 and J = �1, then the Curie-WeissIsing model 
orresponds to uniform distribution on subsets of \half" the verti
es.It is 
lear that the proje
tion of this distribution on even n to n � 1 is simply thisdistribution on n � 1 while it is easy to see that this distribution on even n 
annot
ome from any distribution on n+ 1.Proposition 1.19. For all n, there exists � > 0 su
h that for all J with jJ j < �, theCurie-Weiss Ising model with parameters h = 0 and J on f�1; 1gn is n+1-extendibleand Q � 0 and so provides a formula for the extension.Remark. The key part of the above result is that this is another 
ase in whi
h (1.11)yields a formula for the extension. The weaker fa
t that the system is n+1-extendiblefor small J follows from a mu
h more general result. This is stated in the followingeasy proposition.Proposition 1.20. Fix n < l < 1 and let X = (X1; : : : ; Xn) be i.i.d. 0,1 valuedwith P (X1 = 1) = p 2 (0; 1). Then any small perturbation of X whi
h is in E(n; n)also lies in E(n; l). This is false if p = 0 or 1.Our �nal theorem gives us a very large number of 
ases where our formula isvalid. These 
ases are qualitatively similar to those 
overed in Theorem 1.15 butquantitatively di�erent.Theorem 1.21. Let n � 1 and 
 > 0. De�ne�(
) := 
 + 
osh�1 1(1� e� 1
 ) 12 !� 
 tanh"
osh�1 1(1� e� 1
 ) 12 !# ;�(
) := ln �p
+p
� 1�+ 
�p
2 � 
 (de�ned only for 
 > 1)and h�(
) := 8><>: maxf
; �(
)g if 
 2 (0; 1℄;maxf�(
); �(
)g if 
 2 (1; 3=2);�(
) if 
 � 3=2:Then, for all 
 > 0 and h > h�(
), if J = 
=l, l is suÆ
iently large and Q isde�ned as in (1.11), we have that Q � 0 and so provides a formula for the relevantextension. (Re
all the hypergeometri
 proje
tion of Q is the Curie-Weiss Ising modelwith parameters n;�J and h as de�ned in (1.2).)Remarks. The parameterizations here and in Theorem 1.15 are di�erent and it iseasy to 
he
k that a value of 
 in Theorem 1.15 
orresponds to 2
 in the above result.In Theorem 1.15, it is easily 
he
ked that 
 < 1=(2�(1� �)) provided that (i) 
 < 2



EXCHANGEABILITY AND MEAN FIELD MODELS 13(no matter what h is) or (ii) 
 � 2 and jhj > ln �p
=2 + p
=2� 1�. Hen
e, inview of the above relationship between the 
's in the two results and the fa
t thatlim
!1 j�(
)� ln �p
+p
� 1�j = 1=2, we have that for large 
 (equivalently largeh), the two 
onditions are not too far apart. We are not sure whether to believethat in the asymptoti
 regime where Theorem 1.15 guarantees an extension we alsohave that Q � 0. At the same time, we are quite sure that the bounds given in thistheorem are not sharp. In this theorem, it is also possible to take n growing to1 aslong as n = o(pl) but we do not bother to elaborate on this.The rest of the paper is organized as follows. In Se
tion 2, we �rst give proofs ofTheorem 1.2 as well as Corollary 1.3. We then give an alternative proof of Theorem1.1. For this alternative proof, we will use a known suÆ
ient 
ondition for when agiven �nite sequen
e extends to an in�nite moment sequen
e. Often su
h 
onditions,while being of theoreti
 interest, are diÆ
ult to apply; we �nd it interesting thatsu
h a 
ondition 
an be 
he
ked in this 
on
rete situation. We point out that thealternative proof of Theorem 1.1 is not as unrelated to the proof of Theorem 1.2 (inthe 
ase of the Ising model) as may at �rst seem. In the �rst proof, one expli
itlyuses the fa
t that ex22 is a moment generating fun
tion. Had we not known this, wewould have to 
he
k it by verifying 
ertain 
onditions, whi
h would probably involvepositivity of 
ertain determinants whi
h is the approa
h of the alternative proof. Inaddition, this alternative proof is the basis of the proof of Theorem 1.15. Finally, wegive the proof of Proposition 1.4 in this se
tion. In Se
tion 3, we will give the proofsof Propositions 1.6, 1.7, 1.9, 1.10, 1.12 and 1.14. In Se
tion 4, the proofs of Theorems1.15 and 1.16 will be given. Finally, in Se
tion 5, we prove Propositions 1.17, 1.18,1.19 and 1.20 as well as Theorem 1.21.2. Hamiltonians with quadrati
 representation are IEWe �rst prove Theorem 1.2.Proof of Theorem 1.2: Let V be a random variable in Rs whose density (with respe
tto s{dimensional Lebesgue measure) is given by�(w) = (RRs ew�xd�(x))nZ�;n e�kwk22(2�) s2where Z�;n is given in (1.5). (It is easy to 
he
k that Z�;n is the 
orre
t normalizationto yield a probability density.) For w 2 Rs, let Pw be the probability measure on Rswhi
h is absolutely 
ontinuous with respe
t to � with Radon-Nikodym derivativedPw(x)d�(x) := ew�xRRs ew�yd�(y) :



14 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTH(Note the denominator is �nite by (1.4).) Letting FV be the distribution of V , we
laim that ��;n = ZRs P
nw dFV (w)whi
h proves the result. To see this, note that the right hand side 
learly is absolutely
ontinuous with respe
t to �
n with Radon-Nikodym derivative at (x1; : : : ; xn) givenby ZRs Qni=1 ew�xi(RRs ew�yd�(y))ndFV (w) = 1Z�;n(2�) s2 ZRs ew�Pni=1 xie�kwk22 dwwhi
h, using the formula for the moment generating fun
tion for a multidimensionalstandard normal random variable, is1Z�;ne 12 kPni=1 xik2 = 1Z�;ne 12Pni;j=1 xi�xjas desired. �Proof of Corollary 1.3: We assume throughout J > 0 as otherwise the results aretrivial.Curie-Weiss Potts model: Let the parameters q, J > 0 and h be given. Let s = q,
hoose q orthogonal ve
tors Q = fa1; : : : ; aqg on the sphere fx : kxk = pJg inRq and let � be the probability measure on Rq 
on
entrated on Q giving ai weightproportional to eh(i). It is easy to 
he
k that the 
orresponding measure ��;n is exa
tlythe Curie-Weiss Potts model where ai is identi�ed with i.Heisenberg model: Let the parameters r, J > 0 and h be given. Let s = r + 1,
onsider the sphere fx : kxk = pJg in Rs and let � be the probability measure on Rs
on
entrated on this sphere whose density with respe
t to surfa
e area is proportionalto eh(x=pJ). It is easy to 
he
k that the 
orresponding measure ��;n is exa
tly theHeisenberg model with the sphere fx : kxk = pJg trivially identi�ed with the unitsphere.Curie-Weiss 
lo
k model: Let the parameters q, J > 0 and h be given. Let s = 2 and
hoose q equally spa
ed points Q = fa1; : : : ; aqg on the 
ir
le fx : kxk = pJg. Let� be the probability measure on R2 
on
entrated on Q giving ai weight proportionalto eh(i). It is easy to 
he
k that the 
orresponding measure ��;n is exa
tly the Curie-Weiss 
lo
k model where ai is identi�ed with i. �We now give an alternative proof of Theorem 1.1. For this proof, we prefer touse the se
ond parameterization given right after Proposition 1.14.Alternative Proof of Theorem 1.1: De�ne sequen
es uk and vk for 0 � k � n byuk = akbk(n�k)=sn



EXCHANGEABILITY AND MEAN FIELD MODELS 15and vk = n�kXj=0 �n� kj �uk+j:Then (1.3) is equivalent to EW k = vk; 0 � k � n: (2.1)Thus our problem is redu
ed to determining whether v0; :::; vn 
an be extended to thesequen
e of moments of a random variable 0 � W � 1. There is a 
lassi
al solutionto this problem. See Shohat and Tamarkin (1943), or Tagliani (1999) for a morere
ent dis
ussion. The 
ondition for extendibility is a bit di�erent depending on theparity of n, so we assume from now on that n is even, and write n = 2m. The odd
ase is similar.A suÆ
ient 
ondition for the existen
e of 0 � W � 1 satisfying (2.1) is that thefollowing two matri
es be (stri
tly) positive de�nite:0BBB� v0 v1 � � � vmv1 v2 � � � vm+1� � � � � � � � � � � �vm vm+1 � � � vn
1CCCA and 0BBB� w1 w2 � � � wmw2 w3 � � � wm+1� � � � � � � � � � � �wm wm+1 � � � wn�1

1CCCA ; (2.2)where wk = vk � vk+1: We will 
onsider only the �rst of these, sin
e the treatment ofthe se
ond is similar.A matrix is positive de�nite if and only if its prin
ipal minors are all stri
tlypositive. This is a standard result in linear algebra. It is usually proved by indu
tion.However, in Proposition 4.2, we will have a result that yields an immediate proof ofthis fa
t. Usually, one thinks of the prin
ipal minors as being the determinants ofthe submatri
es that are situated in the upper left 
orner of the matrix. However,it is mu
h more 
onvenient for our purpose to 
onsider the ones that are situated inthe lower right 
orner of the matrix. We will use the following notation:f(k; l) = kXj=0 �kj�ul�j 0 � k � l � n:Thus vn�k = f(k; n). With this notation, we must prove the stri
t positivity of������� vn�2k � � � vn�k� � � � � � � � �vn�k � � � vn ������� = ������� f(2k; n) � � � f(k; n)� � � � � � � � �f(k; n) � � � f(0; n) ������� ; k = 0; : : : ; m: (2.3)We begin by performing some row operations. We will use repeatedly the easilyveri�ed relation f(k; l)� f(k � 1; l) = f(k � 1; l � 1). Now, subtra
t the se
ond row



16 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHfrom the �rst, then the third from the se
ond,..., and �nally the last row from thekth row. The result is that (2.3) equals��������� f(2k � 1; n� 1) f(2k � 2; n� 1) � � � f(k � 1; n� 1)� � � � � � � � �f(k; n� 1) f(k � 1; n� 1) � � � f(0; n� 1)f(k; n) f(k � 1; n) � � � f(0; n)
��������� :Repeat this pro
ess a number of times, ea
h time using one less row than the previoustime. The result is that (2.3) equals������� f(k; n� k) � � � f(0; n� k)� � � � � � � � �f(k; n) � � � f(0; n) ������� :Finally, repeat this whole pro
edure using 
olumns instead of rows. The result is that(2.3) equals ������� f(0; n� 2k) � � � f(0; n� k)� � � � � � � � �f(0; n� k) � � � f(0; n) ������� = ������� un�2k � � � un�k� � � � � � � � �un�k � � � un ������� : (2.4)Note that up to this point, we have not used the parti
ular form of the uk's. Thestatement that the left side of (2.3) equals the right side of (2.4) holds for any �niteex
hangeable measure.Now we do use the parti
ular form for the uk's, and assume that b < 1, sin
ewhen b = 1, �1; :::; �n are i.i.d., so its extendibility is immediate. Noting that one 
anfa
tor out powers of sn, a and b, write the right side of (2.4) as1sk+1n ������� an�2kb2k(n�2k) � � � an�kbk(n�k)� � � � � � � � �an�kbk(n�k) � � � anb0 �������= a(k+1)(n�k)sk+1n ������� b2k(n�2k) � � � bk(n�k)� � � � � � � � �bk(n�k) � � � b0 �������

= a(k+1)(n�k)bk(k+1)(3n�2k�1)=3sk+1n �����������
b�2k2 � � � b�4k b�2k 1� � � � � � � � � � � � � � �b�4k � � � b�8 b�4 1b�2k � � � b�4 b�2 11 � � � 1 1 1

����������� :



EXCHANGEABILITY AND MEAN FIELD MODELS 17This last determinant is of Vandermonde form, so 
an be 
omputed expli
itly asY0�j<l�k(b�2l � b�2j);whi
h is stri
tly positive if b < 1. �We lastly give the proof of Proposition 1.4.Proof of Proposition 1.4:Fix n � 2. Let f satisfy f(1) = an, f(0) = 0 and f(�1) = �bn where an is positiveand small and where bn is positive and large.Case 1: S = f(1; 0); (0; 1); (�1; 0); (0;�1)gIf the model were IE, then so would be the pro
ess on f0; 1gn, 
alled (Y1; : : : ; Yn),obtained by partitioning S into f(1; 0); (�1; 0)g and f(0; 1); (0;�1)g and letting the�rst set 
orrespond to 1 and the se
ond set to 0. This latter measure would thensatisfy the FKG latti
e 
ondition whi
h we now show it doesn't. It is easy to 
he
kthat if an is suÆ
iently small and bn is suÆ
iently large, then for any (u2; : : : ; un) 2f(1; 0); (�1; 0)gn�1, P (Y1 = 1 j X2 = u2; : : : ; Xn = un) < 1=2whi
h implies P (Y1 = 1 j Y2 = 1; : : : ; Yn = 1) < 1=2:By symmetry we have P (Y1 = 1 j Y2 = 0; : : : ; Yn = 0) > 1=2;whi
h then violates the FKG latti
e 
ondition.Case 2: S = f�1; 0; 1gConsider the pro
ess on f0; 1gn, 
alled (Y1; : : : ; Yn), obtained by partitioning S intof1;�1g and f0g and letting the �rst set 
orrespond to 1 and the se
ond set to 0. Itis 
lear that P (Y1 = 1 j Y2 = 0; : : : ; Yn = 0) = 2=3for any 
hoi
e of an and bn. On the other hand, it is easy to 
he
k that if an issuÆ
iently small and bn is suÆ
iently large, thenP (Y1 = 1 j Y2 = 1; : : : ; Yn = 1) < :51leading to a similar 
ontradi
tion as in Case 1. �



18 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTH3. Moment generating fun
tions, 3-body intera
tions and Isingization3.1. Moment generating fun
tions and type 1 IE. In this subse
tion, we proveProposition 1.6.Proof of Proposition 1.6: For the 'if' dire
tion, let � be as given and let Y be therandom variable whose distribution is absolutely 
ontinuous with respe
t to the dis-tribution of � with Radon-Nikodym derivative given by(2 
oshx)nbwhere b is E[(2 
osh �)n℄. Note b < 1 sin
e E[e(2k�n)�℄ < 1 for k = 0; : : : ; n and soY is well-de�ned. Let W = eY =(2 
oshY ) (whi
h is in (0; 1)). Then for k = 0; : : : ; n,E[W k(1�W )n�k℄ = E �ekY e�(n�k)Y(2 
oshY )n � = E[ek�e�(n�k)�℄b = 
P (Ek)b :(Clearly the last term is then just P (Ek), 
on
luding that 
 = b.) This shows � isextendible to an in�nite ex
hangeable pro
ess with a mixing variableW a.s. 
ontainedin (0; 1).The 'only if' dire
tion is more or less obtained by going ba
kwards. Choose arandom variable W 
ontained in (0; 1) a.s. su
h thatE[W k(1�W )n�k℄ = P (Ek)for k = 0; : : : ; n. Let Y be the random variable de�ned by W = eY2 
oshY (here W 2(0; 1) is being used). Let � be the random variable whose distribution is absolutely
ontinuous with respe
t to the distribution of Y with Radon-Nikodym derivativegiven by 1b(2 
osh x)nwhere b is E[ 1(2 
oshY )n ℄. Sin
e 
osh is bounded away from 0, � is well de�ned. Wethen have for k = 0; : : : ; nE[e(2k�n)�℄ = E � e(2k�n)Yb(2 
oshY )n� = E[W k(1�W )n�k℄b = P (Ek)b :(In this 
ase, b = 1=
.) �Remark. It 
an be shown that in Theorem 1.1, the � in the above result is simplya normal random variable with mean h and varian
e J .



EXCHANGEABILITY AND MEAN FIELD MODELS 193.2. Curie-Weiss Ising model with 3-body intera
tions. In this subse
tion, weprove Propositions 1.7, 1.9 and 1.10.Proof of Proposition 1.7: Fix h, J2 and J3 6= 0. Choose N so that for all n � N , thefun
tion f := hx+ J22 x2 + J36 x3de�ned at the points x = �n;�n+2; : : : ; n�2; n does not extend to a 
onvex fun
tionon [�n; n℄. Su
h an N 
learly exists by looking at �n;�n+2;�n+4 if J3 > 0 and atn� 4; n� 2; n if J3 < 0. Fix n � N . We 
laim that �h;J2;J3;n is not IE. Choose � > 0so that any fun
tion g de�ned at the points x = �n;�n + 2; : : : ; n� 2; n satisfyingjf(x) � g(x)j < � for ea
h su
h x does not have a 
onvex extension to [�n; n℄. If�h;J2;J3;n is IE, let W be a representing random variable. By perturbing W a littlebit, we 
an obtain a random variable W 0 taking values in (0; 1) withj log[�(Ek)℄� log[�h;J2;J3;n(Ek)℄j < � for k = 0; : : : ; n (3.1)where � is the probability measure on f�1gn 
oming from the mixing variable W 0and Ek is as in Proposition 1.6. (This uses the fa
t that �h;J2;J3;n has full support.)Sin
e W 0 takes values in (0; 1), Proposition 1.6 tells us that there is a randomvariable � and 
 > 0 satisfying E[e(2k�n)�℄ = 
�(Ek)for k = 0; : : : ; n. Sin
e a moment generating fun
tion exists on an interval and itslogarithm is 
onvex, we 
on
lude that the fun
tion h(t) := log �E[et�℄� exists and is
onvex on [�n; n℄. Note that its restri
tion to x 2 f�n;�n + 2; : : : ; n� 2; ng di�ersfrom the fun
tion log[�(Ex+n2 )℄ by a 
onstant. In view of (3.1) and the de�nitionof �h;J2;J3;n, we 
on
lude that jh(x) � f(x)j < � (after a translation of f or h) forx 2 f�n;�n + 2; : : : ; n� 2; ng. This is a 
ontradi
tion. �Proof of Proposition 1.9: Sin
e J3 > J2, it is easy to 
he
k that for large n thefun
tion f := J22nx2 + J36n2x3de�ned at the points x = �n;�n+2; : : : ; n�2; n does not extend to a 
onvex fun
tionon [�n; n℄. From here, one 
an simply 
arry out the proof of Proposition 1.7. �Proof of Proposition 1.10: Fix J2 and J3 6= 0 and denote the relevant measureon f�1gn by �n (ignoring expli
it notation of the dependen
e on J2 and J3). Forsimpli
ity, we 
an assume that for all even n, �n is IE. Fix n. If �n were of type 1,there would exist, by Proposition 1.6, a random variable Xn su
h thatE[ekXn ℄ = e J22n2 k2+ J36n3 k3 for k = �n;�n + 2; : : : ; n� 2; n: (3.2)



20 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHNote Proposition 1.6 only says that the left and right sides are proportional but bytaking k = 0, we see that equality holds (this is why we take n even). Sin
e �nneed not be of type 1, we need to make a preliminary detour to (almost) obtain(3.2). We �rst �nd a type 1 IE measure �n;m on f�1gn with k�n;m � �nk < 1=mwhere k k is total variation norm. (This 
an be easily done by taking a representingrandom variable W for �n and perturbing it a small bit obtaining a random variableW 0 taking values in (0; 1).) By Proposition 1.6, there is a random variable Xn;m and
n;m > 0 su
h thatE[ekXn;m ℄ = 
n;m�n;m(E k+n2 ) for k = �n;�n + 2; : : : ; n� 2; n (3.3)where Ek is as in Proposition 1.6. Setting k = 0, we see that limm!1 
n;m =[�n(En2 )℄�1. It follows thatlimm!1E[ekXn;m ℄ = �n(E k+n2 )�n(En2 ) = e J22n2 k2+ J36n3 k3 for k = �n;�n + 2; : : : ; n� 2; n: (3.4)Sin
e limm!1E[enXn;m ℄ = eJ22 +J36 ; limm!1E[e�nXn;m ℄ = eJ22 �J36 ; (3.5)it follows that fXn;mgm�1 is tight. We 
on
lude that for some m` !1, Xn;m` ! Xnin distribution and (3.5) allows us to 
on
lude (by uniform integrability) thatlimm!1E[ekXn;m` ℄ = E[ekXn ℄ for k = �n + 2; : : : ; n� 2: (3.6)Now, (3.4) �nally allows us to 
on
lude thatE[ekXn ℄ = e J22n2 k2+ J36n3 k3 for k = �n + 2; : : : ; n� 2 (3.7)whi
h is only slightly weaker than (3.2).(3.7) now tells us that the sequen
e fnXngn�1 is tight and hen
e 
onverges alonga subsequen
e toX1. For z 2 (�1; 1), one 
an let kn=n approa
h z (with jknj � n�2)and 
on
lude (using jzj < 1 implies uniform integrability) thatE[ezX1℄ = eJ22 z2+J36 z3 z 2 (�1; 1):The two sides are 
omplex analyti
 fun
tions in fz : jRe(z)j < 1g and hen
e agree onthe imaginary axis. It follows thatE[eitX1 ℄ = e�J22 t2+�iJ36 t3for all t 2 R. We 
laim that there is no random variable with this 
hara
teristi
fun
tion when J3 6= 0. If there were, let X1 and X2 be independent 
opies withthis distribution and we 
on
lude that X1 � X2 is normal. Theorem 19 of Cram�er(1961) however says that if a sum of two independent random variables is normallydistributed, then so is ea
h summand. This yields a 
ontradi
tion. �



EXCHANGEABILITY AND MEAN FIELD MODELS 213.3. Results for Isingization. In this �nal subse
tion, we prove Propositions 1.12and 1.14.Proof of Proposition 1.12: We break the proof up into two steps. We �rst prove theresult under the further assumption that � is of type 1 using Proposition 1.6 andthen extend the result in general.Fix a probability measure � on f�1gn whi
h is type 1 IE and let J � 0 andh 2 R. Let Ek be the event that exa
tly the �rst k variables are 1. By Proposition1.6, there exists a random variable � and 
 so thatE[e(2k�n)�℄ = 
�(Ek)for k = 0; : : : ; n. Sin
e TJ;h(�)(Ek) is proportional to eh(2k�n)+J2 (2k�n)2�(Ek), it followsthat [TJ;h(�)℄(Ek) is proportional to eh(2k�n)+J2 (2k�n)2E[e(2k�n)�℄. However, the latteris 
learly equal to E[e(2k�n)(�+h+pJU)℄ where U is a standard normal random variableindependent of �. By Proposition 1.6, we 
on
lude that TJ;h(�) is IE (and of type 1although we don't need that).For the se
ond step, 
onsider a probability measure � on f�1gn whi
h is IE(perhaps of type 2). Let W be a representing mixing random variable. If P (W 2f0; 1g) = 1, the result is trivial. Otherwise let m be the 
onditional distribution ofWgiven W 62 f0; 1g and let � be the probability measure on f�1gn given by a mixingrandom variable having distributionm. After some re
e
tion, one sees that TJ;h(�) isa 
onvex 
ombination of TJ;h(�), Æ1 and Æ�1 where Æi is the measure 
on
entrating onhaving only i's. By the �rst part, we know that TJ;h(�) is IE and so we 
an 
on
ludethat TJ;h(�) is IE as well. �Proof of Proposition 1.14: Fix 2 � n < l. E(l; l) 
an be identi�ed with probabilityve
tors (g0; : : : ; gl) of length l+1 where gi is the probability of having i 1's. De�ne su
ha probability ve
tor by letting g0 = Æ, gi = 0 for i = 1; : : : ; l�n and gi = (1�Æ)=n fori = l�n+1; : : : ; l where Æ > 0 will be determined later. Let now � be the distributionof the �rst n variables of the l �nite ex
hangeable random variables 
orresponding tothis g. It is easy to 
he
k that � has full support. We now 
laim that for h suÆ
iently
lose to �1 and Æ suÆ
iently small, T0;h(�) 62 E(n; l).Let O := fjfi : Xi = 1gj = 1g. Let �i be the probability measure in E(n; l) whi
h
omes from the probability measure in E(l; l) 
orresponding to the g with gi = 1.Sin
e 2 � n < l, it is 
lear that �i(O) < 1 for ea
h i and so we 
an 
hoose � > 0 sothat �i(O) � 1� � for ea
h i = 0; : : : ; l. Sin
e the natural map from E(l; l) to E(n; l)is aÆne, we 
on
lude that �(O) � 1� � for any � 2 E(n; l). However, it is 
lear we
an 
hoose h suÆ
iently negative and Æ suÆ
iently small so that T0;h(�)(O) > 1� �implying T0;h(�) 62 E(n; l). �



22 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHRemarks. Æ is only used to yield full support of �. In the above proof, the � in E(l; l)whose proje
tion was the desired � did not have full support; by a small perturbation,one 
an also take this � to have full support. There is another explanation of why theabove result is true. E(n; n) is foliated by di�erentible 
urves of the form (T0;h(�))h2Ras � varies over E(n; n) and at the same time, E(n; n) is an n{dimensional simplex.This however is not a 
ontradi
tion sin
e the 
orner points of this simplex are �xed byT0;h and so these points redu
e to 
urves having only 1 point. However, the polytopeE(n; l) has many 
orner points whi
h are not �xed by T0;h and the same is true nearbythese points. If T0;h left E(n; l) invariant, then E(n; l) would be foliated by regulardi�erentiable 
urves near these 
orner points whi
h of 
ourse 
an't happen.4. A dis
rete moment problem and finite extendibilityIn this se
tion, we prove Theorems 1.15 and 1.16.Finding ne
essary and suÆ
ient 
onditions for l-extendibility for general n and lseems to be out of the question, sin
e they would ne
essarily be very 
omplex. Weillustrate this by stating the ne
essary and suÆ
ient 
onditions for small n and l.Che
king these involves routine but somewhat tedious 
omputations. One simplywrites down the distribution of a general ex
hangeable measure on f0; 1gl, and solvesthe equations that guarantee that the n dimensional marginals are the ones that
orrespond to the Curie-Weiss Ising model. Then one determines 
onditions guar-anteeing the feasibility of the resulting linear programming problem. Of 
ourse bysymmetry, one 
an go between the 
ases a < 1 and a > 1 by repla
ing a by 1=a andso we just take a � 1 throughout. Here are the results:n = 2; l = 3: b � a + a�1 if a � 1n = 2; l = 4: b � 32a + 12a�1 if a � 1n = 2; l = 5: b � ( 2a+ 13a�1 if a � 1=p3;34a + 34a�1 if 1=p3 � a � 1n = 3; l = 4: b � 1=pa(1� a) if a < 1n = 3; l = 5: b � ( 1=pa(2� 3a) if a � 1=2;p3=pa(2� a) if 1=2 � a � 1



EXCHANGEABILITY AND MEAN FIELD MODELS 23n = 4; l = 5: b 2 ( (0; b1(a)℄ [ [b2(a); a + a�1℄ if a � a0;(0; a+ a�1℄ if a0 � a � 1where a0 = :477::: is a root of 27a8�148a6+162a4�148a2+27 = 0 and b1(a) � b2(a)are the two real roots of a4�a3b3+a2b4�ab3+1 = 0. Note that in the last 
ase, theset of b's for whi
h one 
an extend is not even an interval. Note also the di�eren
ebetween n = 3; l = 4 and n = 4; l = 5 when a = 1; in the �rst 
ase b 
an bearbitrarily large, while in the se
ond, it 
annot be. These are of 
ourse just spe
ial
ases of Proposition 1.18.For a more systemati
 approa
h, one 
an try to imitate the alternative proof ofTheorem 1.1. That proof involved two elements: (a) De Finetti's theorem, whi
hredu
es the extendibility problem to a moment problem, and (b) the solution to themoment problem given by (2.2).The analogue of de Finetti's theorem for �nite extendibility is elementary andwell known. (See page 536 of Fristedt and Gray (1997), for example.) Suppose thatY1; :::; Yl are ex
hangeable f0; 1g-valued random variables and set N =Pli=1 Yi. Thenfor k � lP (Y1 = 1; :::; Yk = 1) = lXi=k �l � ki� k�P (N = i)�li� = EN(N � 1) � � � (N � k + 1)l(l � 1) � � � (l � k + 1) :Thus the f0; 1g-valued ex
hangeable sequen
e X1; :::; Xn is l-extendible if and only ifthere exists a f0; 1; :::; lg-valued random variable N su
h thatP (X1 = 1; :::; Xk = 1) = EN(N � 1) � � � (N � k + 1)l(l � 1) � � � (l � k + 1) (4.1)for all 1 � k � n.To 
ontinue this program, we would need an analogue of (2.2) for f0; 1; :::; lg-valued random variables N . We are not aware of su
h a result. However, one 
anmodify the approa
h that led to (2.2) to solve this problem. We will now do so,following the development in Karlin and Shapley (1953).Fix integers 1 � n � l. After a linear 
hange of variables, our problem redu
es to�nding ne
essary and suÆ
ient 
onditions on numbers v1; :::; vn so that there existsa f0; 1; :::; lg-valued random variable N satisfyingvk = ENk for k = 1; :::; n: (4.2)The �rst step involves some 
onvex analysis. Let M be the set of all nonnegativemultiples of ve
tors (1; v1; :::; vn), where v1; :::; vn satisfy (4.2) for some f0; 1; :::; lg-valued random variable N , and let P be the set of polynomials P (x) of degree at



24 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHmost n that satisfy P (i) � 0 for i = 0; :::; l. Both M and P are 
losed 
onvex 
ones.Clearly P 2 P if and only if it has degree at most n and EP (N) � 0 for all f0; :::; lg-valued N . Writing P (x) =Pni=0 
ixi, we see that P 2 P if and only ifPni=0 
ivi � 0for all (v0; :::; vn) 2 M. In other words, P = M�, where M� denotes the dual ofM. A basi
 result in 
onvex analysis (see, for example, Theorem 4.1 in Karlin andShapley (1953)) then implies that M = P�. This means that (v1; :::; vn) 
an arise asin (4.2) if and only if 
0 +Pni=1 
ivi � 0 for all P (x) =Pni=0 
ixi 2 P.It is suÆ
ient in the last statement to 
onsider only P 2 Pe, the extreme pointsof P. To help understand the stru
ture of Pe, we state the following result.Proposition 4.1. Suppose P 2 P. Then P 2 Pe if and only if(a) P has degree exa
tly n,and(b) all n roots of P are simple and are 
ontained in f0; :::; lg.Proof: Suppose P 2 Pe. Write P (x) = P1(x)P2(x), where P1 has only real roots, andP2 has no real roots. Then P2 is never zero, and we may assume that P2(x) > 0 on[0; l℄. If P2 is not 
onstant, we may writeP2(x) = (P2(x) + �x)=2 + (P2(x)� �x)=2where the two polynomials on the right have degree at most that of P2(x) and arestri
tly positive on [0; l℄ if � is suÆ
iently small. ThenP (x) = P1(x)(P2(x) + �x)=2 + P1(x)(P2(x)� �x)=2;whi
h violates the extremality of P (x). Thus all roots of P (x) are real.Next, write P (x) = (x � x0)Q(x), where x0 is one of the roots of P (x). Ifx0 =2 f0; :::; lg, then (x� x0� �)Q(x) are both in P for small �, so that extremality isviolated again. Therefore, all roots are in f0; :::; lg.If P (x) has degree less than n, then the representationlP (x) = xP (x) + (l � x)P (x)shows that P is not extremal. Therefore, any extremal P has degree n. One 
an ruleout multiple roots at i for i = 0; 1; :::; l in a similar way, by writing(x� i)2 = 8><>: x(x� 1) + x if i = 0;(x� i)(x� i� 1)=2 + (x� i)(x� i+ 1)=2 if 1 � i � l � 1;(x� l)(x� l + 1) + (l � x) if i = l:For the 
onverse, suppose P 2 P satis�es properties (a) and (b) in the statementof the proposition. Write P = P1+P2 for P1; P2 2 P. Then P1 and P2 have the same



EXCHANGEABILITY AND MEAN FIELD MODELS 25roots as P , and therefore must be positive multiples of P . This 
ompletes the proofof the proposition. �Note that we have now established Theorem 1.16.Remarks. With the above proof of Theorem 1.16, we 
an remove some of themystery surrounding 
onditions (2.2) for the solution to the �nite moment problemfor a random variable W taking values in [0; 1℄. The proof in the 
ontinuous 
ase isidenti
al to that in the dis
rete 
ase up to the statement of Proposition 4.1. However,in that 
ase, the polynomials P (x) in Pe have n roots in [0; 1℄, but all interior rootsmust have even multipli
ity sin
e P (x) � 0 on [0; 1℄. If n is even, for example, itfollows that the roots at 0 or 1 (if any) must have multipli
ities that are either botheven or both odd. If they are both even, then P (x) = [Q(x)℄2 for some polynomialQ(x), while if they are both odd, P (x) = x(1 � x)[Q(x)℄2. Writing Q(x) = Pi 
0ixi,repla
ing x by W , squaring out these expressions and taking expe
ted values, onesees that 
ertain quadrati
 forms in the 
0is with 
oeÆ
ients that are vk's must benonnegative de�nite. This (more or less) translates into the positivity of 
ertaindeterminants, whi
h turn out to be the ones in (2.2).If n = 2, the polynomials appearing in Theorem 1.16 are just positive multiplesof x(l � x) and (x � i)(x � i � 1) for i = 0; :::; l � 1. Therefore, the possibilities for(v1; v2) are f(v1; v2) : v2 � lv1 and v2 � �(v1)g;where �(x) = max0�i<l �(2i+ 1)x� i(i + 1)�:To see the analogy with (2.2), note that if n = 2, it be
omesv2 > v21 and v2 < v1;and that liml!1�(yl)=l2 = y2:By (4.1), we see that a ne
essary and suÆ
ient for l-extendibility of the Curie-Weiss Ising model with n = 2 is that there be a f0; 1; :::; lg-valued random variablesN so that ENl = a2 + aba2 + 2ab+ 1 and EN(N � 1)l(l � 1) = a2a2 + 2ab+ 1 :By the previous development, this is equivalent tola(b + la)a2 + 2ab+ 1 � �� la(a + b)a2 + 2ab+ 1�;
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h is in turn equivalent tola(b + la) � max1�i<l�1 �(2i+ 1)la(a+ b)� i(i+ 1)(a2 + 2ab+ 1)�;and hen
e to b � min1�i<l�1�(l � i)2i a + i + 12(l � i� 1)a�1�: (4.3)(The inequalities 
orresponding to i = 0 and i = l � 1 are satis�ed automati
ally.)Minimizing over 
ontinuous i rather than dis
rete i gives the following suÆ
ient (andasymptoti
ally ne
essary) 
ondition for l-extendibility of the Curie-Weiss Ising modelwhen n = 2: b � 1 + (1 + a)22a(l � 1) :For n = 3, the polynomials appearing in Theorem 1.16 are x(x� i)(x� i� 1) fori = 1; :::; l � 1 and (l � x)(x � i)(x � i� 1) for i = 0; :::; l � 2. Therefore, the set ofpossible values of (v1; v2; v3) is given byf(v1; v2; v3) : v3 � �1(v1; v2); and 0 � v3 � �2(v1; v2)g;where �1(x; y) = max1�i<l �(2i+ 1)y � i(i+ 1)x�and �2(x; y) = min0�i<l�1 �i(i+ 1)l � (2il + i2 + i + l)x+ (l + 2i+ 1)y�:A ne
essary and suÆ
ient 
ondition for the l-extendibility of the Curie-WeissIsing model with n = 3 is that there exist a f0; :::; lg-valued random variable N sothat ENl = a3 + 2a2b2 + ab2a3 + 3a2b2 + 3ab2 + 1 ; EN(N � 1)l(l � 1) = a3 + a2b2a3 + 3a2b2 + 3ab2 + 1 ;EN(N � 1)(N � 2)l(l � 1)(l � 2) = a3a3 + 3a2b2 + 3ab2 + 1 :It then follows that this is equivalent to(a2 + b2 + 2ab2)i2 � (2a2l + 2ab2l + b2 � a2)i+ a(l � 1)(2b2 + al) � 0for 1 � i � l � 1 and(1 + 2ab2 + a2b2)i2 � (2ab2l + 2a2b2l � 1� 4ab2 � 3a3b2)i+ a2b2(l � 1)(l � 2) � 0for 0 � i � l � 2: The values of the �rst quadrati
 at i = 1; l � 1 are a2(l � 1)(l � 2)and b2(l� 1)(l� 2) respe
tively, and the values of the se
ond quadrati
 at i = 0; l� 2are a2b2(l � 1)(l� 2) and (l � 1)(l � 2) respe
tively. Minimizing the quadrati
s over
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ontinuous values of i as before, we see that a suÆ
ient 
ondition for l-extendibilityof the Curie-Weiss Ising model for n = 3 isb � 1 + min[(a+ b)2; (1 + ab)2℄2ab(l � 2)provided that l � 2 � max[a2 + b2; 1 + a2b2℄2ab2 :To 
he
k the assumption of Theorem 1.16 for larger values of n, we will need toappeal to part of the theory of quadrati
 forms. Re
all from the remark followingthe statement of Theorem 1.16, that in the treatment of the 
ontinuous momentproblem, one writes P (x) as a perfe
t square, and uses the equivalen
e between thepositive de�niteness of a symmetri
 matrix and positivity of the prin
ipal minorsof that matrix. In the dis
rete moment problem, the roots of P are simple, so P
annot be written as a perfe
t square. Nevertheless, the \interior" roots must appearas nearest neighbor pairs, so that they almost have even multipli
ity. To quantifythe di�eren
e that this makes, we need a quantitative version of the equivalen
e ofpositive de�niteness and positivity of the prin
ipal minors. We turn to that next.If C = (
i;j)i;j�0 is a matrix, we will use the following notation: 
�1�1;�1 = 1, andfor 0 � k � i; j, 
ki;j = ��������� 
0;0 � � � 
0;k�1 
0;j� � � � � � � � � � � �
k�1;0 � � � 
k�1;k�1 
k�1;j
i;0 � � � 
i;k�1 
i;j
��������� :Note that this is the determinant of a (k + 1)� (k + 1) matrix be
ause the indexesof the matrix C begin at 0.Proposition 4.2. If all of the prin
ipal minors 
kk;k of the symmetri
 matrix C arenonzero, then nXi;j=0 
i;jzizj = nXk=0 �Pni=k 
ki;kzi�2
kk;k
k�1k�1;k�1 : (4.4)Remarks. (i) Note that this identity provides a simple proof of the standard fa
treferred to earlier that a quadrati
 form is positive de�nite if and only if the prin
ipalminors of the matrix of 
oeÆ
ients are all positive. The 'only if' dire
tion 
an be seenby perturbing the quadrati
 form a small amount su
h that all the prin
ipal minorsare nonzero.(ii) Equation (4.4) above is known as Ja
obi's formula. Ja
obi's original approa
h toit 
an be found in Chapter X, Se
tion 3 of Gantma
her (1959) { see equation (28)



28 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHthere. Nonetheless, we de
ided to in
lude the proof here whi
h seems to be di�erentthan the one in Gantma
her (1959).Proof of Proposition 4.2: We begin with a spe
ial 
ase of Sylvester's identity:
kk;k
ki;j � 
ki;k
kk;j = 
k�1k�1;k�1
k+1i;j ; 0 � k � i; j; (4.5)where we have set 
k+1i;j = 0 if k = minfi; jg. This spe
ial 
ase 
an be found atthe bottom of page 586 of Akritas, Akritas and Malas
honok (1996). Proofs of thegeneral identity 
an be found in that paper, as well as in Karlin (1968).Using (4.5), and the observation that the �rst sum below teles
opes, we 
an write
i;j = minfi;jgXk=0 � 
ki;j
k�1k�1;k�1 � 
k+1i;j
kk;k � = minfi;jgXk=0 
ki;k
kk;j
kk;k
k�1k�1;k�1 :Multiplying this identity by zizj, summing, and then 
hanging the order of summationgives nXi;j=0 
i;jzizj = nXk=0 nXi;j=k 
ki;k
kk;j
kk;k
k�1k�1;k�1zizj:Finally, use the symmetry of C to get (4.4). �Now suppose P is a polynomial of degree n with n simple roots in f0; :::; lg, andP � 0 on f0; :::; lg. Then the set of roots must be of the form fx1; x1 + 1g [ � � � [fxp; xp + 1g [ A, where A = ; or f0; lg if n is even and A = f0g or flg if n is odd.To see this, suppose P has 
onse
utive simple roots at fx; x + 1; :::; x + k � 1g andP (x � 1) > 0; P (x + k) > 0. The sign of P must 
hange at x; :::; x + k � 1, andtherefore k must be even. Now group these roots in pairs. For simpli
ity, for themoment we will take n to be even. Similar results hold for odd n, but many of theformulas are a bit di�erent. Unlike the \
ontinuous" 
ase des
ribed in the remarkfollowing the statement of Theorem 1.16, (x� xi)(x� xi� 1) is not a perfe
t square,so in what follows, we will initially repla
e this produ
t by (x� xi � 12)2.Given fx1; :::; xpg, de�ne y0 = 1 andyq = (�1)q X1�i1<���<iq�p�xi1 + 12� � � ��xiq + 12�for 1 � q � p. Then we may writepYi=1 �x�xi� 12�2 = � pYi=1 �x�xi� 12��2 = � pXi=0 xp�iyi�2 = pXi;j=0x2p�i�jyiyj: (4.6)Therefore, if we write pYi=1 �x� xi � 12�2 = 2pXi=0 
ixi; (4.7)



EXCHANGEABILITY AND MEAN FIELD MODELS 29it follows that for all (v0; : : : ; vn) 2 M2pXi=0 
ivi = pXi;j=0 v2p�i�jyiyj = pXi;j=0 vi+jyp�iyp�j;whi
h is a quadrati
 form in the yp�i's. To apply Proposition 4.2, let V be the matrixwhose (i; j) entry is vi+j for i; j � 0. If the ne
essary prin
ipal minors are nonzero,we then have 2pXi=0 
ivi = pXk=0 �Ppi=k vki;kyp�i�2vkk;kvk�1k�1;k�1 : (4.8)This expression is used when A = ;, in whi
h 
ase n = 2p. Similarly, if A = f0; lg,we have p = (n� 2)=2 and we 
onsider polynomials of the formx(l � x) pYi=1 �x� xi � 12�2 = 2p+2Xi=0 dixi; (4.9)whi
h yield, provided the ne
essary prin
ipal minors are nonzero,2p+2Xi=0 divi = pXk=0 �Ppi=k wki;kyp�i�2wkk;kwk�1k�1;k�1 : (4.10)where W is the matrix whose (i; j) entry is wi+j+1 for i; j � 0, and wi = lvi � vi+1for i � 1.But, of 
ourse, (4.7) and (4.9) are not the polynomials we must 
onsider. So, wewill use the identity (x� u)(x� u� 1) = �x� u� 12�2 � 14to write the 
orre
t analogue of (4.7) aspYi=1(x� xi)(x� xi � 1) = pXq=0 �� 14�q X1�i1<���<iq�p Yj 6=i1;:::;iq�x� xj � 12�2: (4.11)For the 
orre
t analogue of (4.9), multiply both sides of (4.11) by x(l � x).Next we will illustrate the use of these expressions to 
he
k the assumptions ofTheorem 1.16 for large l. It is this result that we will use in analyzing the Curie-WeissIsing model. We will state it for even n; the 
ase of odd n is similar.Theorem 4.3. Suppose n = 2m is even and �xed, and v0(l) = 1; v1(l); :::; vn(l) > 0for l � n are su
h that the 
orresponding quantities vki;k(l) and wki;k(l) are all positive



30 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHand satisfy vkk;k(l)vk�1k�1;k�1(l) = 
klk + o(lk); k = 0; :::; m;wkk;k(l)wk�1k�1;k�1(l) = 
0klk+2 + o(lk+2); k = 0; :::; m� 1;vki;k(l)vkk;k(l) = �ik�(�l)i�k + o(li�k); 0 � k � i � n� k;wki;k(l)wkk;k(l) = �ik�(�l)i�k + o(li�k); 0 � k � i � n� k � 2;as l!1, where 0 < � < 1 and 
k; 
0k > 0. Then for suÆ
iently large l, v1(l); :::; vn(l)are the �rst n moments of some f0; 1; :::; lg-valued random variable.Remarks. (i). In view of the positivity of vkk;k(l) and wkk;k(l), it follows from 
riteria(2.2) that for su
h l there is a random variable N with values in [0; l℄ with momentsv0; :::; vn. The point of the above assumptions is to be guaranteed that N 
an betaken to have values in f0; :::; lg.(ii). If a family of �nite moment sequen
es is l-extendible (in the sense of the 
on-
lusion of this theorem) for all large l, then (by passing to subsequen
es) there is atleast one limiting distribution of an in�nite ex
hangeable sequen
e. Theorem 4.3 isformulated for the situation in whi
h this limiting distribution is the produ
t measureof density �, be
ause that is the 
ase that arises in our analysis of the Curie-WeissIsing model. One 
ould presumably also use our te
hnique to formulate analogousresults for situations in whi
h the limiting distribution is more general.(iii). By the third display above with k = 0, we see that vi(l) = (�l)i + o(li). There-fore the typi
al summand in the determinant vki;k is of order (�l)k2+i, and hen
e theexpression in the �rst display above is potentially of order (�l)2k. For it to be of orderlk as is assumed here, there must be a lot of 
an
ellation in the determinant. This isanalogous to the fa
t that the varian
e of the sum of m i.i.d. random variables is oforder m even though, without the 
an
ellation that o

urs, it would be of order m2.(iv). One 
an see from the proof that one a
tually only needs the third display tohold for i � m and the fourth display to hold for i � m� 1.Proof of Theorem 4.3: We will apply Theorem 1.16. Consider a sequen
e Pl(x) ofpolynomials of the form (4.7) in whi
h xi = xi(l) = �il + o(l) for i = 1; :::; p, where0 � �i � 1 for ea
h i. Then the 
orresponding yq's satisfyyq = (�l)q X1�i1<���<iq�p�i1 � � ��iq + o(lq):



EXCHANGEABILITY AND MEAN FIELD MODELS 31Using the hypotheses of the theorem, it follows that the right side of (4.8) equalspXk=0 
k�l2p�k + o(l2p�k)�� X1�i1<���<ip�k�p ��i1 � �� � � � ��ip�k � ���2:Next we must a

ount for the fa
t that the polynomial that arises in Theorem 1.16is of form (4.11) rather than (4.7). If 
i(l) is de�ned bymYI=1(x� xi(l))(x� xi(l)� 1) = nXi=0 
i(l)xi;thennXi=0 
i(l)vi(l) = (1+o(1)) XB�f1;:::;mg��14�m�jBj jBjXk=0 
kl2jBj�k� XD�B;jDj=jBj�kYi2D(�i��)�2:We need to 
he
k that this quantity is stri
tly positive for large l for any 
hoi
eof �1; :::; �m 2 [0; 1℄. The argument depends on how many of the �i's are equal to�. For example, if �i 6= � for all 1 � i � m, then the term above 
orresponding toB = f1; :::; mg and k = 0 is a positive multiple of of l2m, and all other terms are ofsmaller order. Suppose now that �1 = � and �i 6= � for all 2 � i � m. Then thedominant term is of order l2m�1, and 
orresponds to B = f1; :::; mg and k = 1. Moregenerally, suppose �1 = � � � = �j = � and �i 6= � for all i = j+1; :::; m: Then the onlyD's that 
an 
ontribute to the expression satisfy jDj � m� j, sin
e if jDj > m� j,one of the fa
tors �i � � must be zero. Therefore, for all nonzero summands above,jBj � k � m� j, and hen
e2jBj � k = (jBj � k) + jBj � (m� j) +m � 2m� j: (4.12)So, the largest power of l that o

urs in the above expression is 2m� j. It 
an onlyo

ur if equality o

urs in (4.12), i.e., if jBj = m and k = j. But in this 
ase, the
oeÆ
ient of l2m�j is 
jQmi=j+1(�i � �)2, whi
h is stri
tly positive.To 
omplete the 
onsideration of polynomials P of the form (4.11) without as-suming that xi(l)=l have limits, one passes to subsequen
es using 
ompa
tness. Theargument for polynomials of the formx(l � x)m�1Yi=1 (x� xi)(x� xi � 1);is similar, using the assumptions on the w's rather than the v's. We have now veri�edthat if Pl(x) =Pni=0 
i(l)xi is a polynomial for ea
h l � n that has n simple roots inf0; :::; lg and is nonnegative on f0; :::; lg, then for suÆ
iently large l,Pni=0 
i(l)vi(l) �0. It follows from Theorem 1.16 that for su
h l, v1(l); ; :::; vn(l) are the �rst nmomentsof some f0; :::; lg-valued random variable. �



32 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHWe are now ready for theProof of Theorem 1.15: For the Curie-Weiss Ising model, we haveP (X1 = 1; :::; Xk = 1) = nXj=k �n� kj � k�uj; 1 � k � n:where uj = ajbj(n�j)=sn and sn = nXj=0 �nj�ajbj(n�j):With this notation, (4.1) be
omesEN(N�1) � � � (N�k+1) = l(l�1) � � � (l�k+1) nXj=k �n� kj � k�uj; 1 � k � n: (4.13)Expanding the produ
t on the left side of (4.13) and writing vk(l) = ENk, we 
ansolve the resulting equations for these quantities. The issue is whether v1(l); :::; vn(l)are the �rst n moments of a f0; :::; lg-valued random variable.De�ning wk(l) = lvk(l)�vk+1(l), we will apply Theorem 4.3 to prove part (a), andtherefore assume at this point that n is even. To verify the assumptions of Theorem4.3, and also for the easy proof of part (b), we will need the following asymptoti
statements: As l!1, vkk;k(l) � � kYj=0 j!�[Æ�(1� �)l℄k(k+1)=2; (4.14)wkk;k(l) � � kYj=0 j!�Æk(k+1)=2[�(1� �)℄(k+1)(k+2)=2l(k+1)(k+4)=2; (4.15)vki;k(l) � � ik�(�l)i�kvkk;k(l); and wki;k(l) � � ik�(�l)i�kwkk;k(l); (4.16)where Æ = 1� 2
�(1� �).The hypothesis of part (a) of the theorem gives Æ > 0, whi
h is what we need toapply Theorem 4.3. Part (b) of the theorem follows immediately from (4.14) withk = 1, sin
e v11;1 = ����� v0 v1v1 v2 ����� = v2 � v21 ;whi
h is nonnegative if v1; v2 are the �rst two moments of any random variable.



EXCHANGEABILITY AND MEAN FIELD MODELS 33To 
he
k (4.14), (4.15) and (4.16), we need to solve (4.13) expli
itly. In order todo so, let G = (gi;j)0�i;j�n and its inverse H = (hi;j)0�i;j�n be de�ned by
G0BBBBBB� 1ll2...ln

1CCCCCCA = 0BBBBBB� 1ll(l � 1)...l(l � 1) � � � (l � n + 1)
1CCCCCCA and H0BBBBBB� 1ll(l � 1)...l(l � 1) � � � (l � n+ 1)

1CCCCCCA = 0BBBBBB� 1ll2...ln
1CCCCCCAfor every l. These are the lower triangular matri
es

G = 0BBBBBBBB�
1 0 � � � 00 1 � � � 00 �1 � � � 00 2 � � � 0... ... . . . ...0 (�1)n�1(n� 1)! � � � 1

1CCCCCCCCA and H = 0BBBBBBBB�
1 0 0 � � � 00 1 0 � � � 00 1 1 � � � 00 1 3 � � � 0... ... ... . . . ...0 1 2n�1 � 1 � � � 1

1CCCCCCCCA :
Entries in these matri
es other than those given above are rather 
ompli
ated. How-ever, they are 
ompletely determined by equating 
oeÆ
ients of powers of l in thede�ning relations above; we will later give re
ursive expressions for them. To sim-plify the following expressions, we will often suppress the dependen
e on l, and writevk = vk(l). We will also suppress the limits of the following sums, relying on theusual 
onvention that �mk � = 0 ex
ept when 0 � k � m. Then the solution of (4.13)is given by vm =Xi;j;k hm;kgk;jlj�n� ki� k�ui: (4.17)To motivate the next step, re
all that we are trying to prove that for large l, thevm's are the moments of a random variable N that has a distribution 
lose to B(l; �).If this were the 
ase, then E(N � l�)p should be of order lp=2 rather than lp. We willnow 
he
k this without assuming that the vm's are moments at all. Re
alling that� = a=(1 + a), it is natural to 
onsider the following, whi
h we rewrite using (4.17):Xm � pm�(1 + a)m(�la)p�mvm = Xi;j;k;m� pm�(1 + a)m(�la)p�mhm;kgk;jlj�n� ki� k�ui:Next write b = 1 + (
=l) and use the binomial expansion for powers of 1 + (
=l) towrite snXm � pm�(1 + a)m(�la)p�mvm =



34 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHXi;j;k;m;q� pm�(1 + a)m(�la)p�mhm;kgk;jlj�n� ki� k�ai�i(n� i)q �(
=l)q = (4.18)Xr;s;t:r;s�0;r+s+t�p ltap�s(1 + a)s
p�r�s�t(�1)p�sCr;s;t(a);whereCr;s;t(a) = pXk=0 nXi=k ai�k(1 + a)k� pk + s�(�1)k� i(n� i)p� r � s� t��n� ki� k�hs+k;kgk;k�r:In the �nal step, we have let r = k � j; s = m � k, and t = j � q + p�m. Shortly,we will show thatCr;s;t(a) = ( 0 if t > p=2(1 � 3 � � � (p� 1))(�1)t� tr+s��r+sr �2t�r�s(1 + a)n�p+2r+2s if t = p=2:(4.19)But �rst, we will use this to 
omplete the veri�
ation of (4.14).Sin
e sn ! (1 + a)n as l!1, it follows from (4.19) thatXm � pm�(��l)p�mvm( = O(l(p�1)=2) if p is odd,� [1 � 3 � � � (p� 1)℄[Æ�(1� �)l℄p=2 if p is even. (4.20)Applying row and 
olumn operations similar to what was done in the alternativeproof of Theorem 1.1, we see that vkk;k(l) 
an be written as������������
v0 v1 � �lv0 � � � Pm � km�(��l)k�mvmv1 � �lv0 v2 � 2�lv1 + �2l2v0 � � � Pm �k+1m �(��l)k+1�mvm... ... . . . ...Pm � km�(��l)k�mvm Pm �k+1m �(��l)k+1�mvm � � � Pm �2km�(��l)2k�mvm

������������Using (4.20), we see thatvkk;k(l) � [Æ�(1� �)l℄1+2+���+k ���������� 1 EZ EZ2 � � � EZkEZ EZ2 EZ3 � � � EZk+1... ... ... . . . ...EZk EZk+1 EZk+2 � � � EZ2k
����������where Z is a standard normal random variable. By Corollary 4C in Lindsay (1989),this last determinant is 1!2! � � �k!. It 
an also be dedu
ed from results on the � = 2Gaussian ensemble{ see Chapters 4 and 17 of Mehta (2004).



EXCHANGEABILITY AND MEAN FIELD MODELS 35It remains to to prove (4.19). First, we need some information about the matri
esG and H. By the de�nition of G, for example,iXj=0 gi;jlj = l(l � 1) � � � (l � i + 1):Therefore, i+1Xj=0 gi+1;jlj = (l � i) iXj=0 gi;jlj = i+1Xj=1 gi;j�1lj � i iXj=0 gi;jlj:Equating 
oeÆ
ients of powers of l gives gi+1;j = gi;j�1 � igi;j and then solving theresulting re
ursion leads togi+1;j = � jXk=1 gi�j+k;k(i� j + k):Similarly, hi+1;j = hi;j�1 + jhi;j andhi+1;j = jXk=1 khi�j+k;k:It follows by indu
tion thatgk;k�r =(�1)r2rr! � a moni
 polynomial in k of degree 2r;hs+k;k = 12ss! � a moni
 polynomial in k of degree 2s: (4.21)The next step is to prove by indu
tion on j that if P is any moni
 polynomial ini of degree j, then Xi P (i)ai�k�n� ki� k� = Q(k)(1 + a)n�k�j (4.22)for some moni
 polynomial Q in k of degree j. This is 
learly true for j = 0. For theindu
tion step, writeXi ijai�k�n� ki� k� =Xi ij�1[(i� k) + k℄ai�k�n� ki� k�= (n� k)aXi ij�1ai�k�1�n� k � 1i� k � 1�+ kXi ij�1ai�k�n� ki� k�= (n� k)aQ1(k + 1)(1 + a)n�(k+1)�(j�1) + kQ2(k)(1 + a)n�k�(j�1)= Q(k)(1 + a)n�k�j;



36 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHwhere Q1(x) and Q2(x) are moni
 polynomials of degree j � 1 (by the indu
tivehypothesis) and Q(k) = (n� k)aQ1(k + 1) + k(1 + a)Q2(k)is a moni
 polynomial of degree j.Now start with Xk �pk�(�1)kxk = (1� x)p;di�erentiate j times with respe
t to x and set x = 1. The result is thatXk �pk�(�1)kk(k � 1) � � � (k � j + 1) = ( 0 if j < p;(�1)jp! if j = p:It follows that Xk �pk�(�1)kkj = ( 0 if j < p;(�1)jp! if j = p: (4.23)Sin
e � i(n�i)p�r�s�t� is a polynomial in i of degree 2(p�r�s�t) and leading 
oeÆ
ient(�1)p�r�s�t=(p� r � s� t)!, (4.22) implies thatXi ai�k� i(n� i)p� r � s� t��n� ki� k� = (�1)p�r�s�t(1 + a)n�k�2(p�r�s�t)(p� r � s� t)! Q(k);where Q(k) is a moni
 polynomial of degree 2(p� r � s� t). Therefore,Cr;s;t(a) = (�1)p�r�s�t(1 + a)n�2(p�r�s�t)(p� r � s� t)! Xk � pk + s�(�1)kQ(k)hs+k;kgk;k�r= (�1)p�s�t(1 + a)n�2(p�r�s�t)2r+sr!s!(p� r � s� t)! Xk � pk + s�(�1)k �Q�(k)= (�1)p�t(1 + a)n�2(p�r�s�t)2r+sr!s!(p� r � s� t)! ( 0 if 2(p� t) < p;(2(p� t))! if 2(p� t) = pHere Q�(k) is a moni
 polynomial of degree 2(p � t). We have used (4.21) in themiddle equality and (4.23) in the �nal one.This 
ompletes the proof of (4.14). The proof of (4.15) is similar. In parti
ular,we now know that for large l, vkk;k(l) and wkk;k(l) are stri
tly positive. It follows from
riteria (2.2) that for su
h l there is a random variable N with values in [0; l℄ withmoments v0; :::; vn. We still don't know it 
an be taken to have values in f0; :::; lg,



EXCHANGEABILITY AND MEAN FIELD MODELS 37and for that we still need to 
he
k (4.16). Note that the expression for vkk;k(l) thatfollows (4.20) 
an then be written as���������� 1 E(N � �l) � � � E(N � �l)kE(N � �l) E(N � �l)2 � � � E(N � �l)k+1... ... . . . ...E(N � �l)k E(N � �l)k+1 � � � E(N � �l)2k
����������Similarly, row and 
olumn operations 
an be used to write vki;k(l) as������������

1 E(N � �l) � � � E(N � �l)kE(N � �l) E(N � �l)2 � � � E(N � �l)k+1... ... . . . ...E(N � �l)k�1 E(N � �l)k � � � E(N � �l)2k�1E(N � �l)kfk(�l; N) E(N � �l)k+1fk(�l; N) � � � E(N � �l)2kfk(�l; N)
������������(4.24)where fk(x; y) = i�1Xj=0 j(j � 1) � � � (j � k + 2)xj�k+1yi�j�1:Note that while it might appear that E(N � �l)kfk(�l; N), for example, is a linear
ombination of all the moments of N up to order i, and therefore would not beobtainable as a linear 
ombination of the moments of order 0; 1; :::; k � 1 and i thatoriginally appeared in the �rst 
olumn of the matrix, it really is a linear 
ombinationof these latter moments. This 
an be seen by writingfk(x; y) = dk�1dxk�1 yi � xiy � x :To 
omplete the proof of the �rst part of (4.16), note that by (4.20), N=l! � inprobability, and therefore,fk(�l; N)(�l)i�k ! i�1Xj=0 j(j � 1) � � � (j � k + 2) = � ik�in probability. It follows that asymptoti
ally, one 
an fa
tor out a term� ik�(�l)i�kfrom the last row of the above matrix. This gives the �rst part of (4.16). The proofof the last part is similar. �



38 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHRemarks. (i) In 
ase (a) of Theorem 1.15, we 
an 
onsider for large l a randomvariable Nl that 
orresponds to the extension of length l of the Curie-Weiss Isingmodel. (This is presumably not unique.) By (4.20), any weak limit ofNl � �lpÆ�(1� �)las l!1 has the same �rst n moments as a standard normal random variable.(ii) Dia
onis and Freedman (1980) proved that if the ex
hangeble measure � onf0; 1gn is l-extendible, then the total variation distan
e between � and the 
losestmixture of homogeneous produ
t measures is at most 4n=l. Combining this statementwith Theorem 1.15 yields the following 
on
lusion: If �l is the distribution of theCurie-Weiss Ising model on f0; 1gn with a = �=(1 � �) and b = 1 + (
=l), where
 < 1=(2�(1� �)), thenlim supl!1 l inf
 ���������l � Z 10 ��
(d�)��������TV � 4n;where �� is the homogeneous produ
t measure with density � , and the in�mum isover probability measures 
 on [0; 1℄.One 
ould try to take our analysis further at the 
riti
al point 
 = 1=(2�(1� �))(with � 6= 0; 1). To see what 
an happen, letb = 1 + 12�(1� �)l + dl2 : (4.25)Theorem 4.3 no longer applies, but for small n, one 
an apply Theorem 1.16 dire
tly,as we did earlier in this se
tion. Here are some results for n = 2, where (4.3) is beingused, that illustrate the 
omplexity of the answer: Suppose � is rational, and write� = jk : Take integers m 2 [0; k=2℄ and q 2 [0; k) so that jq � m (mod k) or jq � k�m(mod k). Then the 
riti
al value for l-extendibility for all large l � q (mod k) isd
 = �(1� �) + (m=k)22�2(1� �)2 :Perhaps surprisingly, if n � 4 and � 6= 12 , there is no value of d for whi
h l-extendibility holds for all large l. To see this, one 
an solve (4.13) for k � 4 and
he
k that Nl, if it exists, must satisfy the following, as l!1:E(Nl � �l)! n� 12 (1� 2�);E(Nl � �l)2 ! (n2 � 4n+ 6)� 4(n2 � 5n+ 6)�(1� �)4 � 2d�2(1� �)2;E(Nl � �l)3 � �(1� �)(1� 2�)l;E(Nl � �l)4 � 2�(1� �)�n(1� 2�)2 + 13�(1� �)� 3�l:



EXCHANGEABILITY AND MEAN FIELD MODELS 39If � 6= 12 , this violates the S
hwarz inequality: (E(N��l)3)2 � E(N��l)2E(N��l)4.If � = 12 , one must 
ompute higher moments to draw the same 
on
lusion (for n � 6):E(Nl � �l)2 ! 2n� d8E(Nl � �l)4 � 18 lE(Nl � �l)6 � 30n� 15d� 5664 l:Presumably, this means that power of l that is used in the 
orre
tion in (4.25) is notne
essarily 2, and may depend on � and/or n. We have not investigated this further.5. A formula for finite extensionsIn this se
tion, we prove Propositions 1.17, 1.18, 1.19 and 1.20 as well as Theorem1.21.Proof of Proposition 1.17: Fix n, J > 0, h � 0 and l > n. It is easy to 
he
k thatfor k = 0; 1; : : : ; n, the probability that there are k 1's in the the Curie-Weiss Isingmodel with parameters n, �J and h is given by1Zn�nk� expf�J(2k � n)2=2 + h(2k � n)g = 1Zn�nk�Z 1�1 e(ix+h)(2k�n)fJ(x)dx:Now, de�ne for ea
h j 2 f0; : : : ; lg~Q(j) := 1Zn�lj�Z 1�1 e(ix+h)(2j�l)�e(ix+h) + e�(ix+h)�n�lfJ(x)dx:For h 6= 0, there is no singularity and so the integral is well-de�ned. It is nothard to see that ~Q(j) is real but our later 
omputation will verify this. It is alsostraightforward to verify the 
laim 
on
erning (1.12) for h > 0 with Q repla
ed by~Q. (It is also true that the ~Q 
orresponding to l0 > l has the ~Q 
orresponding to las hypergeometri
 proje
tion in the obvious sense. Although not so interesting, theabove makes sense and is also 
orre
t when l � n.) The proof will be 
omplete ifwe show that ~Q = Q when h > 0. The h = 0 
ase of (1.12) will then follow from
ontinuity.To see that ~Q = Q when h > 0, we now let M := l � k > 0 and u := 2j � l 2f�l;�l + 2; : : : ; l � 2; lg. If h > 0, we have



40 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHZ 1�1 e(ix+h)u�e(ix+h) + e�(ix+h)��MfJ(x)dx =Z 1�1 e(ix+h)(u�M)�1 + e�2(ix+h)��MfJ(x)dx =Z 1�1 e(ix+h)(u�M) 1Xm=0��Mm �e�2m(ix+h)fJ(x)dx =1Xm=0��Mm �e�h(2m+M�u) Z 1�1 e�ix(2m+M�u)fJ(x)dx =1Xm=0��Mm �e�h(2m+M�u)e�J2 (2m+M�u)2 =eh22J 1Xm=0��Mm �e�J2 (2m+M�u+ hJ )2 ;as desired. �Proof of Proposition 1.18: First, assume that n is odd and h = 0. In this 
ase,we will apply Proposition 1.17 by simply verifying that the expression given there isnonnegative. The series we need to 
onsider is1Xm=0(�1)me�J2 (2m+1+u)2 :When u � 0, this is nonnegative sin
e it is an alternating series with terms whoseabsolute values are de
reasing. If u = �2j, where j = 1; 2; : : :, write this series as2j�1Xm=0(�1)me�J2 (2m+1+u)2 + 1Xm=2j(�1)me�J2 (2m+1+u)2 :The se
ond sum is nonnegative again be
ause it is an alternating series with termswhose absolute values are de
reasing. The �rst sum is zero, sin
e the summands form and 2j �m� 1 
an
el.For the 
onverse, we use our a; b parameterization. Fix n, a, b and l. If the Curie-Weiss Ising model with parameters a and b on f0; 1gn is l-extendible, then there mustexist a random variable N taking values in f0; : : : ; lg satisfying (4.13). Using thisequation, we 
an 
ompute the varian
e of N whi
h then turns out to be�`=s2n�Xi;j �`�n� 2j � 2��ni� + �n� 2j � 1��ni�� `�n� 1i� 1��n� 1j � 1�� ai+jbi(n�i)+j(n�j):It is 
lear that all 
ases fall into one of the following three 
ases.



EXCHANGEABILITY AND MEAN FIELD MODELS 41Case(1): n is even, ` = n+ 1 and a is arbitrary. In this 
ase, the dominant term(as b gets large) is i = j = n=2 whi
h 
an be seen to have a negative 
oeÆ
ient.Hen
e for large b the above is negative and the extension does not exist.Case(2): n is odd, ` = n + 2 and a is arbitrary. In this 
ase, there are fourdominant terms (as b gets large) 
orresponding to i; j 2 f(n� 1)=2; (n + 1)=2g. Aneasy 
omputation shows that in this 
ase the sum of the 
oeÆ
ients of these fourterms is negative and hen
e for large b the above is negative and the extension doesnot exist.Case(3): n is odd, ` = n+1 and a 6= 1. In this 
ase, there are again the same fourdominant terms (as b gets large) as in the previous 
ase and an easy 
omputationagain shows that in this 
ase the sum of the 
oeÆ
ients of these four terms is negativeand so, as before, the extension does not exist. �Proof of Proposition 1.19: Again, the series we need to 
onsider is1Xm=0(�1)me�J2 (2m+1+u)2 :If u � �1, then this is an alternating series with terms whose absolute values arede
reasing and hen
e is nonnegative. Otherwise, write u = �2j�1 with j = 1; 2; 3; :::where there are only �nitely many j's here. Then the above sum be
omes1Xm=0(�1)me�2J(m�j)2 :Break the sum into m � 2j+1 and m � 2j+2. The se
ond sum is �ne as before. Forthe �rst sum, expand the exponential in powers of J . The 
onstant term is 0 be
ausethere are an even number of summands. The 
oeÆ
ient of J in the expansion is2 2j+1Xm=0(�1)m+1(m� j)2 = 2(j + 1) > 0:This term dominates for small J and hen
e the sum is positive. We now applyProposition 1.17. �Proof of Proposition 1.20: Fix n, l and p 2 (0; 1). The measures in E(l; l) are l{dimensional and 
orrespond to a simplex A in Rl. Similarly, the measures in E(n; n)are n{dimensional and 
orrespond to a simplex B in Rn. The hypergeometri
 pro-je
tion 
orresponds to a linear mapping f from A to B whose image is a set C inRn 
orresponding exa
tly to E(n; l). Clearly as a map from A to C, f has full rank.Consider the point a in A 
orresponding to the pro
ess Y = (Y1; : : : ; Yl) whi
h isi.i.d. 0,1 valued with P (Y1 = 1) = p. Clearly a is an interior point of A. Sin
e f



42 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHhas full rank, f(a) is an interior point of C. However, f(a) 
orresponds exa
tly toX = (X1; : : : ; Xn). This proves the 
laim.For the last statement, �x p = 1. We take n = 4 and l = 5. Consider the measureon f0; 1g4 whi
h is (1� �)m1 + �m2 where m1 is produ
t measure with p = 1 and m2is uniform distribution on 
on�gurations with exa
tly 2 1's. It is easy to see that forany � > 0, this measure, while in E(4; 4), is not 5-extendible. �Remark. There is an alternative way to prove the above result. When one extendsthe produ
t measure from n to l sites, the resulting random variable N satisfying(4.1) is binomially distributed. By Proposition 4.1, we therefore have that for everypolynomial P 2 Pe, EP (N) > 0. Sin
e jPej < 1, it follows by Theorem 1.16,that if the �nite sequen
e v0; : : : ; vn is 
lose to these binomial moments, then theyare also the moments of some N 0 of the desired form. This, together with (4.13),
ompletes the alternate proof. In fa
t, this proof shows that whenever we havea pro
ess fX1; :::; Xng in E(n; l) whi
h has some "representing" N satisfying (4.1)having at least n + 1 points in its support, then small perturbations of fX1; :::; Xngwhi
h are in E(n; n) are also in E(n; l).We �nally now move to the proof of Theorem 1.21.Proof of Theorem 1.21: Fix n; 
; h and l. Letting J = 
=l, we have, using (1.11), Q(j)de�ned for ea
h j 2 f0; : : : ; lg. We want to show that for h > h�(
), we have thatfor large l, Q(j) is nonnegative for all j 2 f0; : : : ; lg. Sin
e h�(
) > 0, in view of theproof of Proposition 1.17, we need to show that for j 2 f0; : : : ; lg,~Q(j) := Z 1�1 e(ix+h)(2j�l)�e(ix+h) + e�(ix+h)�n�lfJ(x)dx � 0where we re
all that fJ is the density fun
tion for a normal random variable withmean 0 and varian
e J .Sin
e we don't 
are about positive multipli
ative fa
tors, we will use the notationA �= B if the A and B only di�er by a positive multipli
ative fa
tor. Letting 2j�l = vlwith v 2 [�1; 1℄, a simple 
hange of variables shows that~Q(j) �= Z 1�1 eixvpl�eh+i xpl + e�h�i xpl �n�l f
(x)dx: (5.1)Thinking of x as 
omplex, the integrand on the right hand side of (5.1) has isolatedpoles of order l�n at the points x = �ih+(2r+1)�=2�pl for r 2 Z and is otherwiseanalyti
. One 
an then readily dedu
e from Cau
hy's theorem that if h; � > 0, thenthe integrand in (5.1) is un
hanged if we integrate over R + i(h��)pl instead. Thisleads to
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 )pl�e�+i xpl + e���i xpl �n�l'
(x)dx�= Z 1�1 �e�+i xpl + e���i xpl �n ��e�+i xpl (1�v+h��
 ) + e���i xpl (1+v�h��
 )��l'
(x)dx: (5.2)Now, assume � = �(
; h; v) is a solution of the equation� � 
 tanh � = h� 
v; � > 0: (5.3)Denote p = p(
; h; v) := e�e� + e�� ; q = q(
; h; v) := e��e� + e�� ;and observe thatp+ q = 1; p� q = tanh� and 4pq = 1(
osh�)2 :We then readily obtain~Q(j) �= Z 1�1 �pei xpl + qe�i xpl �n�pei2q xpl + qe�i2p xpl ��l'
(x)dx: (5.4)We want to apply the dominated 
onvergen
e theorem to the integral on the righthand side of (5.4), with h and 
 kept �xed, l!1 and uniformly in v 2 [�1; 1℄.Choi
e of �: At this point, we want to understand when (5.3) has a solution and wetreat the 
ases 
 � 1 and 
 > 1 separately. If 
 � 1, it is easy to 
he
k that equation(5.3) has a solution for all v 2 [�1; 1℄ if and only if h > 
 and moreover the solutionis then unique for all su
h v.The 
 > 1 
ase is a bit longer. Let �� be�� = ��(
) := ln �p
+p
� 1�; (5.5)whi
h is equivalent to (
osh��)2 = 
 and �� > 0; (5.6)or to the fa
t that �� is the unique lo
al minimum of � 7! � � 
 tanh �. Observe that�(
) := ln �p
 +p
� 1�+ 
�p
2 � 
 = �� � 
 tanh�� + 
: (5.7)This is, of 
ourse the same as�(
)� 
 = min��0 �� � 
 tanh ��: (5.8)



44 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHAgain, (5.3) has a solution for all v 2 [�1; 1℄ if and only ifh � �(
): (5.9)For h > �(
), we 
hoose the solution of (5.3) with� > ��:Given 
 and h > �(
), we denote by �� = ��(
; h) the solution of the equation (5.3)with v = +1. Clearly, �� < �� = min�1�v�+1�and hen
e, due to (5.6) we always havesup�1�v�+1 4pq
 = 4�p�q
 < 4p�q�
 = 1 (5.10)where �p; �q; p� and q� all have the obvious meaning. Furthermore, keeping 
 �xed,[�(
);1) 3 h 7! ��(
; h) 2 [��(
);1) is stri
tly in
reasing in h withlimh!1 ��(
; h) =1: (5.11)Pointwise 
onvergen
e: For �xed 
 and h > �(
), the integrand on the right handside of (5.4) 
onverges pointwise toexp��x2(1� 4pq
)2
 �p2�
 ; (5.12)as l!1 uniformly on 
ompa
t domains of x and in the parameter v 2 [�1; 1℄. Dueto (5.10), whi
h holds for all 
 and h > �(
), the limit fun
tion is integrable uniformlyfor v 2 [�1; 1℄.Domination: For " 2 [0; 1℄ we de�ne~
(") := supf
 : inf�1<y<1 ey2=
�1� "(sin y)2� = 1g: (5.13)Note that " 7! ~
(") is monotone de
reasing, withlim"&0 ~
(") =1 and ~
(1) := lim"%1 ~
(") = 0: (5.14)It follows that for all 
; h and vinf�1<y<1 ���ey2=(2~
(4pq))�pei2qy + qe�i2py���� = 1; (5.15)and this will be used in order to bound the integrand on the right hand side of (5.4).



EXCHANGEABILITY AND MEAN FIELD MODELS 45Lemma 5.1. (i) For any " 2 [0; 1℄� 1ln(1� ") � ~
(") � min�� �24 ln(1� ") ; 1"� : (5.16)(ii) For " � 2=3 ~
(") = 1": (5.17)Proof:(i) We obtain the �rst upper bound in (5.16) by looking at y = �=2 and we obtainthe se
ond upper bound by expanding near y = 0 in (5.13). In order to prove thelower bound of (5.16) note that for any "; � 2 [0; 1℄,1� "� � (1� ")�:Hen
e 1� "(sin y)2 � expf(sin y)2 ln(1� ")g � expfy2 ln(1� ")g:(ii) In view of the �rst part of this lemma, we need only 
he
k that for � � 2=3,g(y) = e�y2(1� � sin2 y) � 1; y 2 R:To do so, note that g(0) = 1 and 
omputeg0(y) = 2�e�y2h(y);where h(y) = y(1� � sin2(y))� sin y 
os y:Then h0(y) = sin y((2� �) sin y � 2�y 
os y);whi
h is zero if (i) sin y = 0 or (ii)y = (2� �) sin y2� 
os y :In 
ase (i), h(y) = y, while in 
ase (ii),h(y) = sin y(2� 3�+ �2 sin2 y)2� 
os y = y(2� 3� + �2 sin2 y)2� � :If � � 2=3, we see that h(y) and y have the same sign at ea
h 
riti
al point of h.Sin
e h(y)!1 as y !1 in this 
ase, it follows that h(y) � 0 for y � 0, and hen
ethat g is in
reasing on [0;1). Therefore, g(y) � 1 for all y. �



46 THOMAS M. LIGGETT, JEFFREY E. STEIF, AND B�ALINT T�OTHNow we return to the boundedness of the integrand on the right hand side of(5.4). Let�
 = �
(
; h) := min�1�v�+1 ~
(4pq) = ~
( max�1�v�+1 4pq) = ~
�1=(
osh ��(
; h))2�: (5.18)Lemma 5.2. (i) If 
 < �
(
; h) (5.19)holds, then the integrand on the right hand side of (5.4) is bounded bye�x2(�
�
)=(2�

)=p2�
 for all x; l and v 2 [�1; 1℄.(ii) For any 
, if h > h�(
), then (5.19) holds.Proof:(i) We 
learly have ����pei xpl + qe�i xpl �n��� � 1:Using �
 de�ned in (5.18) we write�pei2q xpl + qe�i2p xpl ��le�x2=(2
) =�e� xpl�2=(2�
)�pei2q xpl + qe�i2p xpl ���l e�x2(�
�
)=(2
�
):From (5.15) and (5.18) it follows that the absolute value of this last expression isbounded by e�x2(�
�
)=(2
�
).(ii) Due to (5.11) and (5.14), it is 
lear that for any 
, (5.19) holds for all large h.Carrying out a tedious 
al
ulation leads to the statement of for 
 < 3=2. For the 
ase
 � 3=2, we need only observe that on
e h > �(
), we have that2=3 � 1
 = 1(
osh��(
))2 > 1(
osh ��(
; h))2 = 1~
�1=(
osh ��(
; h))2� ;the last equality following from (5.17). �Con
lusion of the proof of Theorem 1.21: Fix 
 > 0 and h > h�(
). Lemma 5.2(ii)tells us that (5.19) holds. It then follows from the uniform 
onvergen
e in (5.12)and Lemma 5.2(i) that the integral on the right hand side of (5.4) 
onverges to1=p1� 4pq
, as l ! 1, uniformly in v 2 [�1; 1℄. Sin
e 1=p1� 4pq
 is 
learlybounded away from 0 uniformly in v, it follows that this integral is positive for alllarge l. �A
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