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(Thanks to N. Gantert and T. Seppalainen for many of these.)

Page xi. One occurrence of “sections” has a typo.
Page 5. Definition 1.10 should read as follows: A stochastic process (X(t), t ≥ 0) has station-

ary increments if the joint distribution of (X(tj+1 + s)−X(tj + s), 1 ≤ j < n) does not depend
on s whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1. It has independent increments if ....

(Of course, if the increments are independent, this version of the definition agrees with the
previous one.)

Page 7. To avoid referring to a possibly nonmeasurable set, change Definition 1.14 to read
P (A) = 1 for some measurable set A so that X(t, ω) is a continuous function of t for every ω ∈ A.

Page 18. In Theorem 1.40(a), remove the word “hence”.

Page 22. The continuity of (1.13) is obvious, since the fm’s are bounded and continuous. The
proof given in the book is a holdover from an earlier version, in which the fm’s were just assumed
to be bounded and measurable.

Page 23, line 13. ... of bounded random variables Y for which the mapping ...

Page 27. The second and third sentences in the proof of Theorem 1.52 are unnecessary. The
display in the proof shows, as mentioned there, that P x(A) is a continuous function of x. Setting
x = 0 in that display then gives the conclusion of the theorem.

Page 28. In the proof of Proposition 1.56, replace Q by Q+.

Page 29. In the proof of Proposition 1.60, there is a typo: Furthermore.

Page 33. In the first display, replace E by Ex.

Page 34. In the definition of τ in the proof of Theorem 1.74, change X(s) = a to X(s) > a.

Page 36. In the proof of Corollary 1.77, nothing is said about why the joint density exists.
There are several ways to see this. Perhaps the simplest is to use the fact that the joint distribution
function, being increasing in both variables, is a.e. differentiable. Since the derivative integrates
to 1, it follows that the joint distribution is absolutely continuous and has the given density.

Page 37. Suggestion for Exercise 1.81 (a): Of course, Yt(ω) should be an indicator, and for
the application of the strong Markov Property, it should satisfy

Yτa(θτaω) = 1 if and only if τa+b(ω) <∞
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on the event τa < ∞. Rewrite the statement τa+b(ω) < ∞ in such a way that it involves θτaω
and τa, and then replace these expressions by ω and t respectively to define Yt(ω). Then compute
ExYt, and see what it becomes when x = t+ a.

Page 41. Following the proof of Theorem 1.93, insert the following. Exercise. An immediate
consequence of Theorem 1.93 is that if τ is a stopping time and M(t) is a right continuous
martingale, then M(τ ∧ t) is a martingale with respect to the filtration Fτ∧t. Show that this is
also the case with respect to the (larger) filtration Ft.

Page 57, line -2. Change Ω to (Ω,F).

Page 59, Exercise 2.5. The Poisson process and the discrete time chain should of course be
independent.

Page 60, Exercise 2.8(b). Use Laplace transforms (or any other technique) to check that ...

Pages 73-74. Here is another way of making this construction that avoids conditioning: For
x ∈ S and i ≥ 1, let τx,i be independent exponential random variables, with τx,i having parameter
c(x). Then use τx,i for the holding time for the ith visit by the discrete time chain to x. This
may make some arguments more transparent later. See the proof of Theorem 2.50, for example.

Page 75, Exercise 2.31. Make the current exercise part (b), and add the following part (a):
(a) Let τ0, τ1, . . . be independent exponentially distributed random variables with paramters

c0, c1, . . . . Define N(t) as on the top of page 74, and N∗(t) in the same way, except that now the
parameters of the τi’s are ck, ck+1, . . . . Show that for s, t > 0,

P (N(t) = k,N(t+ s) = k + l) = P (N(t) = k)P (N∗(s) = l).

Page 76, Exercise 2.35. α > 0.

Page 78, Theorem 2.39. Add the hypothesis
∑

z 6=y q(z, y) <∞.

Page 85, top line. This again corresponds to a non-explosive Markov chain. It is recurrent by
Theorem 2.50. Letting ...

After display (2.48), add: To see this, multiply the forward equation

d

dt
pt(k, l) =

∑

j

pt(k, j)q(j, l)

by l and sum.

Page 89. On line -9, change to f(k) = θk is harmonic .... On line -11, change to ψ(1) = 0,
and ψ′(1) = m− 1 > 0.

Page 92, Definition 3.1(b). Change Ω to (Ω,F).

Page 93, Exercise 3.2. Show that (3.2) and (3.3) imply ....

Page 93, Definition 3.4(e). Add parenthetically that in particular, fn → 1 pointwise.
Page 93. The proof of the contraction property mentioned in the paragraph following Defini-

tion 3.4 is easy when S is compact, but less so in the non-compact case. The idea in this case is
the following. For fixed t and x, the mapping

f → T (t)f(x)

2



is a bounded linear functional on C(S). By the Riesz representation theorem, there is a finite
measure µt,x on S that represents it in the sense that

T (t)f(x) =

∫

fdµt,x.

Applying this to fn and letting n → ∞ shows that µt,x is a probability measure. This gives the
contraction property. (Note that in part (e) of the definition, t = 0 is included; the functions fn,
which do not depend on t, converge pointwise to 1.)

Page 95, Exercise 3.8. ... transition function for a Markov chain on a ...

Page 95. In Exercise 3.9, “...for a death process with resurrection, given by...” Also, add a
third part: (c) Under what conditions on the death rates is T (t) a probability semigroup on the
Banach space of functions on S with limits at infinity?

Page 99. At the end of the proof of Theorem 3.15, add: This is a consequence of the Riesz
Representation Theorem and the Bounded Convergence Theorem; a uniformly bounded sequence
of functions on S that converges pointwise converges weakly.

Page 102. In Exercise 3.21, the state space is intended to be R1.

Page 110. Following the proof of Proposition 3.30, add the following:
Corollary. If L satisfies (a), (b), and (d) of Definition 3.12 and the weaker form of (c) that

states only that R(I−λL) is dense in C(S) for sufficiently small positive λ, then L is a probability
generator.

Example. Suppose S is countable, and Lf = c(Pf − f), with c > 0, P as in Exercise 2.5
and p(x, y) satisfying

lim
x→∞

p(x, y) = 0 for every y.

(This latter property is needed for L to have values in C(S).) Then L is a probability generator.
To check property (c), use Proposition 3.22, while to check (d), let fn be the indicator function
of Sn, where Sn is finite and Sn ↑ S.

Page 111, lines -8 and -9. Replace E by Ex.

Page 114, following display (3.29). Add the following: In the last step, we have used the fact
that

∫ n

0

−

∫ n+t

t

=

∫ t

0

−

∫ n+t

n

.

Page 120, line -5. There is a missing overline on the generator.

Page 122, line 3. Add: and therefore is L1−bounded

Page 122, line -9. Replace the last two X’s by X̃ and add that X̃ is an independent copy of
X.

Page 124, line -10. Replace the last two X’s by X̃ and add that X̃ is an independent copy of
X.

Page 139, in several places, R should be R.

Page 147, line -3. The brackets are misplaced in the last term. It should read−[LT (t)f ][T (t)g].
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Page 150, line 11. Remove the parentheses around |A|.

Page 153, line 6. The η(x) should be ηt(x).

Page 167, line 8. The last 0 should be an ∅.

Page 181, line 9. The middle expression is missing brackets. It should read |E[h(At)−h(Bt)]|.

Page 181, line -3. The statement is clearer if it is changed to: ... stationary distribution µα
for the process that satisfies....

Page 198. The square brackets on the left side of (5.10) should be absolute values.

Page 199, Exercise 5.7. Warning – A(t) is not necessarily bounded!

Page 200. Before the statement of Theorem 5.10, add the following: The assumption that Yi ∈
Fti (as opposed to Fti+1

, for example) is needed to ensure that the integral is an adapted process.
The reason for considering left continuous integrands will be seen in the proof of Proposition
5.13.

Pages 200–202. The proof of Theorem 5.10 given there is correct. However, the version given
below may be easier to follow.

Let ∆i(t) = Yi[M(t ∧ ti+1)−M(t ∧ ti)], and ∆(t) = Y [M(t ∧ b)−M(t ∧ a)] where a < b and
Y ∈ Fa, which is a generic form of this. Then

M∗(t) =

∞
∑

i=1

∆i(t),

so to show that M∗(t) is a martingale, it suffices to check that ∆(t) is one. If a ≤ s < t ≤ b,

E[∆(t) −∆(s) | Fs] = Y E[M(t)−M(s) | Fs] = 0, (1)

since M is a martingale. Since ∆(t) is independent of t for t ≥ b, the left side of (1) is zero for
all a ≤ s < t. Putting s = a in (1) gives

E[∆(t)−∆(a) | Fa] = 0 for t > a. (2)

If s < a, condition (2) with respect to Fs to get

E[∆(t)−∆(a) | Fs] = 0.

Since ∆(s) = 0 for s ≤ a, the proof is complete.
Take i < j and s < t. Since ∆i(t) ∈ Ft∧ti+1

, Yj[∆i(t)−∆i(s)] ∈ Fs∨tj . Also,

E[M(t ∧ b)−M(t ∧ a)−M(s ∧ b) +M(s ∧ a) | Fs∨a] = 0.

If s ≥ a, this is just the martingale property checked above (with Y ≡ 1), while if s < a, it
becomes

E[M(t ∧ b)−M(t ∧ a) | Fa] = 0,

which is automatic if t ≤ a, and is the martingale property if t > a. It follows that

E
[

[∆i(t)−∆i(s)][∆j(t)−∆j(s)] | Fs∨tj

]

= 0,
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and then that the same is true when the conditioning is with respect to the smaller Fs.
So,

E
[

[M∗(t)]2 − [M∗(s)]2 | Fs

]

= E
[

[M∗(t)−M∗(s)]2 | Fs

]

=
∞
∑

i=1

E
[

[∆i(t)−∆i(s)]
2 | Fs

]

.

Therefore, to show that [M∗(t)]2 −A∗(t) is a martingale, it suffices to check that

E
[

[∆(t)−∆(s)]2 | Fs

]

= E
[

Y 2[A(t ∧ b)−A(s ∨ a)]+ | Fs

]

.

Again, the main case is a ≤ s < t ≤ b, in which case, this becomes

Y 2E
[

[M(t)−M(s)]2 | Fs

]

= Y 2E
[

A(t)−A(s) | Fs

]

,

which follows from
E[M2(t)−M2(s) | Fs] = E[A(t) −A(s) | Fs].

But, this is just the statement that M2(t)−A(t) is a martingale.

Page 202. In Definition 5.12, ... are left continuous with right limits and for which ...

Page 202. Following Definition 5.12, insert: Adapted left continuous processes are jointly
measurable – see the proof of Proposition 1.34, or of Proposition 5.13 below. Therefore, the
integral defining ||Y ||2T on [0, T ]×Ω is meaningful, and can be evaluated as an iterated integral.
Alternatively, one can think of this as a double integral with respect to a measure on the product
space – see Section III.2 of J. Neveu’s book “Mathematical Foundations of the Calculus of Prob-
ability”, for example. This allows the application of theorems such as bounded and dominated
convergence to be applied either on the coordinate spaces, or on the product space. The resulting
|| · ||T is not a norm, unless the usual equivalence classes are used. However, it does satisfy the
triangle inequality, since it is the usual L2 norm on the product space.

Page 206. Let the existing Exercise 5.25 be part (a), and add a part (b): (b) Generalize the
statement in (a) to the situation in which different integrators are used in the definition of M1

and M2. (This proof is harder than the one for part (a). Prove the result first for predictable
step functions Yi, and then pass to the limit.)

Page 208, line -10. There is an extra parenthesis at the end of the display.

Page 211. Insert a new exercise between Exercises 5.36 and 5.37: If B1(t) and B2(t) are
independent standard Brownian motions, then B1(t)B2(t) is a martingale by Exercise 1.100.
Find its variance process.

Page 213, middle of the page. ... =0 by Exercise 5.25. Note that ...

Page 229. There is an unimportant constant missing in (6.4).

Page 236. There is a P x missing in the final display.

Page 237, line 5. R2 should be Rn.

Page 242. In the next to last line of the proof of Theorem 6.41, the 0 should be t.

Page 249. In Theorem A.4(ii), the Xn’s should be nonnegative.

Page 265, line 11. h should be α.
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