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Suppose that f(k) is a probability density on the positive integers, and let
u(k) be the corresponding renewal sequence. Kaluza (1928) and de Bruijn
‘and Erd3s (1953) proved several results which relate convexity properties of
J to convexity properties of u. We first note that these convexity properties
can be formulated in terms of the total positivity of certain orders of the
functions f(¢+7 + 1) and u(i + j). This observation permits us to prove an
infinite collection of implications which contain the Kaluza and de Bruijn
and Erdds results as special cases. In our second result, we show how the
imposition of a mild total positivity assumption on f(k) permits one to give
a straightforward proof of the fact that u(n) — u(n 4 1) is asymptotic to a
constant multiple of the tail probabilities of f. Continuous time versions of
these results are discussed briefly. This work was motivated by a problem
in interacting particle systems.
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1. INTRODUCTION

Samuel Karlin has made fundamental contributions to the two fields of
total positivity and renewal theory. In this paper, we will investigate some
connections between these two areas. We begin by recalling some basic
definitions. The equation '

(L.1) u(n) =Y flb)u(n—k), n>1, u(0)=1

k=1

gives a one-to-one mapping between sequences { f(k), k > 1} and {u(k), k >
0} of real numbers with u(0) = 1. When f(k) is a probability density on the
positive integers, (1.1) is known as the renewal equation. In this case, we
can let {X;,i > 1} be a sequence of independent and identically distributed
random variables with distribution given by P(X; = k) = f(k), and set
Sp = X1+ -+ X, and 5¢ = 0. Then u(n) has the following probabilistic
interpretation:

(1.2) - u(n) = i P(Sn =n) for n>0.

m=0

The basic renewal theorem étates under a mild aperiodicity assumption that
' oo -1 .
(1.3) u(oo) = lim u(n) = [kz_l k f(k)] :

A matrix M = (m; ;) is said to be totally positive of order » > 1 (TP,)
if for every k& < r, every k by k submatrix of A has a determinant which is
nonnegative. If these determinants are all strictly positive, the matrix M is
said to be strictly totally positive of order » (STP,). Given a function g{n)
on the nonnegative integers, one can consider total positivity properties of
the matrix with entries m; ; = g(i+7). Samuel Karlin has been the primary
developer of the extensive theory of total positivity, and has demonstrated
its usefulness in differential equations, probability theory, and many other
parts of mathematics — see his book Karlin (1968), for example.

Karlin (1964) discusses applications of total positivity to Markov chains,
and hence indirectly to renewal theory, insofar as renewal theory occurs in
their study. There have been a number of investigations of relations between
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monotonicity and renewal theory — see Brown (1980) and the references
there, for example. Little if anything, however, has been done on direct
connections between total positivity and renewal theory. We hope to fill
this gap to some extent in this paper.’

About twenty years ago, when I began to work with Sam Karlin as a
graduate student at Stanford, he was heavily involved in total positivity,
and encouraged me to work in that area. I read his book, which was then
in galley form, but ended up working in pure probability theory instead.
I did find one of the Karlin-McGregor (1959) theorems very useful in one
paper which I wrote shortly after my thesis —~ Liggett (1970). It is the rather
striking assertion that for a one dimensional continuous time stochastic pro-
cess, continuity of paths is equivalent to the total positivity of the transition
probabilities of the process in the spatial variables. With that exception,
this is my first paper related to total positivity. 1 hope that it partially
makes up for my not having followed some of Sam’s advice twenty years
ago.

The starting point for our first result is the following collection of four
facts, which at first glance seem to be unrelated, concerning sequences f(k)
and u(k) which are connected by {1.1):

(a) If f(k) > O for all & > 1, then u(k) > 0 for all k£ > 0.

(b)Y If f(k—1)f(k+1) > f2(k) for all k > 2 then u(k — Du(k+1) > ui(k)
brall b > 1.

{e) If u(k — Du(k + 1) > v?(k) for all k > 1, then f(k) > 0 forall & > 1.

(d) f(k) = ;" z*du for some measure 4 and all & > 1 if and only if
u(k) = f;° z*dv for some measure v and all k > 0.

The first fact is obvious, the second was proved by de Bruijn and Erdos
(1953) and the last two were proved by Kaluza (1928) - see also Horn (1970)
and Shanbhag (1977).

In order to inferpret these facts in terms of total positivity, note that
_a function g(k) on the nonnegative integers is nonnegative if and only if
g(i + 7) is TPy, and that it satisfies g(k —~ 1)g(k + 1) > g*(k) for all k > 1
if and only if ¢(i + §) is TPy. Furthermore, g is a moment sequence if
and only if ¢(i + j) is TP, for all r > 1 (see Section 7 of Chapter 2 of
Karlin {1968) for a continuous version of this result, or obtain the discrete
version directly by combining Theorem 1.3 of Shohat and Tamarkin (1943)
with the comments on page 18 of Karlin (1968)). Therefore the four facts
above are special cases of the following result. Its proof is based on a set of
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identities which relate determinants based on u to determinants ba.sed on
f. 1t will be carried out in the next section.

THEOREM 1. Suppose thatl the sequences f(k) and u(k) are connected by
(1.1), and let r be ¢ posilive integer.

(a) If f(i +j+ 1) is TP,, then u(i + j) is TP,.
(b) If (i + ) is TPyy1, then f(i + j +1) is TP,.

There are some connections between Theorem 1 and some of the results
proved in Karlin (1964). In that paper, Karlin proves that if X,, is a discrete
time Markov chain on {0,1,...} whose transition probabilities are TP, in
the spatial variables, then u(n + m) = P X,y = 0) is 1P, in n,m > 0
(Theorem 2.7) and f(n+m) = P°(r, =n+m)is TP, inn>0and m > 1,
where 79 is the hitting time of 0 (Proposition 10.4). By our Theorem 1, the

-second of these results implies the first.,

Over the years, many tlieorems have been proved which assert that under
some assumptions, and in one sense or another, u{n) — u(n + 1) behaves
like the tail

F(n)=_ f(k)
k=n

of the probability density f. Karlin {1955) proved an early result in th{\,_._,.--
direction: If r is a positive integer and

Z n""lf(n) < o0,
n=1

then
[v0]

> nmHuln) - u(oo)[-< 0.

Other results along these lines are given by Stone (1965) and by Griibel
(1982, 1983) — see also the references in the latter papers. Using results of
Chover, Ney and Wainger (1973), Embrechts and Omey (1984) proved that

. (k)F(n -k N
i S TOReoD) 23 BIE) < o0

k=1
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implies that

. —uin + 1
In our second theorem, we show that by i imposing a mild total positivity
assumption on F, one can give a relatively simple proof of a similar result.
Our proof is essentially the same as one of the usual proofs of the ordinary
renewal theorem (1.3), but it yields the more refined statement about con-
vergence of ratios.

- THEOREM 2. Suppose that f(k) is a probability density on the positive
tntegers. Assume that F(i+ j+ 1) is TP, and that F(2) > 0. Then

(1.4) 0L u(n)—u(n+1) < F(n+2).
Now put
(1.5) p=n1§g°%1(:—)”s 1,

where the limit exists and is positive by monotonicily since F(i+j+1)1s
TP3, and p < 1 since F(n) is decreasing. Then

1.6) Jim T 0 if ;F(n)p_" =0
and
o M) —um ) [ ]

REMARKS. (a) The property that F(i + j + 1) is TP is also known as
DFR (decreasing failure rate). It is slightly weaker than the property that
Fi+7+1)is TP,.
{b) It would be interesting to determine the rate of convergence to zero
in (1.8). :
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ExAMPLES. (a) Fix 0 < p < 1, and define f(k) by
@2n)t /p\"
F )= —r| =~ .
(n+1) Al(n+ 11 \4 for n>0
Using identity (1.20) in Chapter VI of Liggett (1985), it is not hard to check
_ that the corresponding renewal sequence is determined by

u(n) —u(n + 1} = EF(n + 1),

so that the limit of {u(n) — u(n + 1)}/ F(n+ 2} is 1/4 in this case. This is a
case in which (1.7) holds, since F(n) is asymptotic to a constant multiple
of n=3/2p",

(b) Consider the distribution of one half of the time until the first return
to the origin for the simple symmetric random walk on the integers. 1t has

density
' _ 1 2n—1Y\ ,-2n41
fn) = n—1 ( n ) 2 :

The corresponding renewal sequence is of course given by

u(n) = (2;‘) 272,

Both u(n) — u(n + 1) and f(n) ate asymptotic to a constant multiple of
n—3/2_ so this provides an example of (1.6).

Continuous time analogues of Theorems 1 and 2 will be discussed briefly
in Section 4. We will conclude this section by describing two application,
of Theorems 1 and 2 which played important roles in my recent solution ~
in Liggett (1989) of a problem involving exponential rates of convergence
for certain interacting particle systems which are known as nearest par-
ticle systems. (See Chapter VII of Liggett (1985) for more about these
processes.) The first makes precise the statement that if f(n) has expo-
nential tails, then u(n) converges to its limit exponentially rapidly. For our
application to interacting particle systems, it is not sufficient to say that
u(n) — u(co) is exponentially small — the following stronger statement in
terms of ratios is needed. :

COROLLARY. Suppose that f is a probability density on the pasitive in-
tegers which satisfies f(1) < 1 and is'not @ geometric density. If etther

(a) fi+5+1) is TPs, or

b 2
(b) P(i+j+1) is TP and”zF(?<oo,
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then

. u(n) — u(oco) i
(18) h,‘flso‘;p u(n) — u{n +1) STz p’

where p 1s defined in (1.5).

REMARK. In Liggett (1989), we used the obvious fact that (1.8) holds
‘under the stronger assurnption that f(k) (and hence by Kaluza’s result, also
u{k)) is a moment sequence. We can now replace the moment sequence
assumption in Theorem 1.5 of that paper by the assumption of the above
corollary, at the expense of changing the constants somewhat.

Proor. We can assume that p < 1, since otherwise {1.8) is trivial.
Suppose first that (a) holds. By Theorem 1, u(i+ j) is also TP3. Therefore,
after performing two column operations, we see that for n > 0 and & > 1,

we have
u(n) — u(n + 1) u{n+1) —u(n+2) u(n + 2)
u{n + 1) —u{n+ 2) u(n+2) —u(n+3) u(n + 3)

un+k)—un+k+1) un+k+l)—win+k+2) un+k+2)

2 0.

Tetting & tend to co, it follows that A(n) = u{n) — u{n + 1) has the
roperty that A(Z + j) is TPy, Therefore, either A(n) > 0 for all n > 0
or A(n) = 0 for all n > 1. We have excluded the geometric case, so the
former case holds. It then follows by monotonicity that

A1) _
A A

exists. By (1.4), ¥ < p. Now write
u(n) —u{co) i Aln +k)

u(n) —u(n+1) ot A(n)

and use the dominated convergence theorem to get (1.8). Now assume that
{b) holds. Then the limit of [u(n) — u(n+1)]/F(n + 2) exists and is strictly
positive by Theorem 2, so that {1.8) will follow from the inequality

o ey < FAB) :
ZF(A)S—E for nZl.

k=n
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But this is a consequence of F(k+ 1) < p F(k), which in turn follows from
the monotonicity in the convergence in (1.5).

Our second application of total positivity in renewal theory provides a
representation of a stationary renewal process in terms of a sequence of
independent and identically distributed random variables. Suppose that
w(0) = 1, u(i + j) is TPz, and 0 < u() < oo. By Theorem 1, the
corresponding f(k) is a probability density with finite mean. Define a
probability measure on the nonnegative integers by 7(0) = u(1) and

uln+1)  u(n)
u(n) u(n—1)

w(n) = for n>1,
which is nonnegative by the total positivity assumption. Let {Xi,—00 <
i < 0o} be independent random variables with P(X; = n) = n(n). Now let
{ni,—o0 < i < 0o} be Bernoulli random variables defined in terms of the
X;’s by

7 =1 ifandonlyif Xjyp <k forall k>0

In Theorem 4.6 of Liggett (1989), we proved that {m,—oc < i < 00}
has the distribution of the set of renewal times of a stationary renewal
process whose interarrival times have density f(k). This construction of a
stationary renewal process has a number of applications which are discussed
in that paper. Of course, for any stationary renewal process, the interarriva’
times form an i.i.d. sequence. However, the renewal process cannot bk
expressed directly as a function of this sequence because of the difficulty
in initializing the process. Our construction is therefore often quite useful,
even though it can only be used if u(é + j) is TPs.

ACKNOWLEDGEMENT. [ wish to thank R. Griibel for bringing several re-
cent papers on renewal theory to my attention, and in particular for point-
ing out the connection between Theorem 2 and Theorem 3.2 in Embrechts
and Omey (1984).

2. THE TOTAL POSITIVITY CONNECTION

This section is devoted to the proof of Theorem 1. The main work is in
finding and checking a set of identities which relate determinants based on f
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with determinants based on «. They are given in the following proposition.
We will use the following notation for determinants of matrices constructed
from a sequence g(-) :

g(io) g(io +1)---g(io + k)
g(i) g(ia +1)---g(i + k)
g(fo,...,‘ik)"——- - . .

o) alie+ 1) glix +8)

PROPOSITION 2.1. Suppose that the sequences f and u are related by
(1.1). The following four identities are valid forn > 1 and k> 1:

(@f(n+ln+2,... .04 bu(n,n+ 1,...,n+k)
"_"Zf(j,n—!—l,n+2,...,n-i-k)u(n—j,n,n-{« 1,...,n+k—-1).
i=1 ) 7
(b)f(n+1,n+2,...,n+k)u(n,n+ 1,...,n+k-1)
n
:Zf(j,n+1,'n+2,...,n+k—1)u(n—j,n,n+l,... 7t k-1).
i=1 .
© u(1,2,...,k) = f(1,2,... k).

(d) w0,1,.. ., k) = £(2,3,... . k+1).

REMARK. Note that identities (a) and (b) bear a resemblance to (1.1).
Special cases of the identities in Proposition 2.1 have appeared earlier.
Identities (c) and (d) are given in equation (32) in Kaluza (1928). Identity
(b} for k = 1 is equation (15) in Kaluza (1928). Identity (a) for k = 1 is
equation (7) in de Bruijn and Erdos (1953). :

Proor: First we show that {c) and {d) follow from (a) and (b}. In doing
80, we may assume that f(1,2,...,k) # 0 and f(2,3,...,k+1) # 0 for
all & > 1, since the sequences satisfying these inequalities are dense in
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the collection of all sequences. Identities (a) and (b) with n = 1 give
respectively

f(2,... B+ Du(d, ... . k+1) = f(1,...,k+ 1)u(0,... k)
and
(2, R+ Du(l,. .., k) = 7., B)u(0,. .., k)

for k > 1. Therefore

u(l, .., k+1)  w(0,...,k) _u,... k)
FO, o EED @ kD F(L,- B

for k > 1. It follows that the expression above is independent of &, and is
hence equal to one since u(1} = f(1). This gives both (c) and (d). Turning
now to the proof of (a), let f; = f(n+1,... ,n+én+i+2,... nat+k+1)
and v = u(n, ... ,n+i—1,n4l4+1,... ,n+k) for 0 <i, I <k, and expand
the determinants on the right side of (a) along their top rows to get

n k k
RES(a) = D > > f( + du(n — j + D=1 fius.

j=1i=01=0

Now carry out the sum on j using (1.1) to get

k i .
(2.1) RHS(e) = z fiug(—1)*T [u(n+i+l) =3 fGu(n i+l —4)-
, =t

il=0
itngl
- > fEun +i+l—j)]
J=itntl
k i
= Z fiur(-—l)i+f[u(n +i+1l)— Z_f(j)u(n +itl—=3)
i,l=0" ‘ j=1

_Y st
i=0

Nexi we examine separately the sums corresponding to each of the three
terms in brackets:

k
(2.2) Zua(—l)’u(n—i-i-{-l—'j) =u{n+i—jnn+l,... M+k—1)=0
- i=0 .
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for 0 < i —j < k— 1, where the first equality comes from expanding the
determinant on the right along its top row, and the second comes from the
fact that the determinant of a matrix with two equal rows is zero. Similarly,

E
(2.3) Zf,;(—l)"f(n—[-i-}-l—_-j) =frntl—jnntl,...,n+k—-1)=0

for 0 <!—j <k —1. Finally,

k
(2.4) Zu;(—l)’u(n +Ek+D)=un+knnt+tl,...,ntk-1)
=0

= (-D*u(n, ..., n+ k).

Using (2.2), (2.3), and (2.4) in (2.1) gives (a). The proof of (b) is similar.
This time, let f; = f(n+ 1,...,n+in+i+2,...,n+ k) and uy =
wln,...,n+l—1,n+I+1,...,n+k}, and compute

n k-1 k

RES(B) =3 335G + uln — §+ D=1 frun

F=1i=0 I=0
Using (1.1) again gives

k-1 k

(2.5) RHS() = Y 3 (=1)* fimy

i=0 =0

X [u(n—l—i-i—f) Ef (Dun+i+1-7)

1
—Ef(n+1+1—J)U(J)]

i=
To prove (b), use (2.2) and the following identity in (2.5):

k-1
S A ftitl—f)=fa+l-jntl,.. ntk—1)
i=0
0 if 1<i-j<k-1
{(—1)’“+1f(n+1,...,n+k)- it 1—j =k
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This completes the proof of the proposition. [ |

The following result is a special case of Theorem 3.3 of Chapter 2 of
Karlin (1968).

ProPoSITION 2.2. The sequence g(-) has the property thal g(i + j) is
STP, for 0 <'i, j < N ifand only if gln, n+1,...,n+ k) > 0 for all
n>0and allk >0 withk < r and n+ 2k < 2N.

Proor or THEOREM 1. We will prove the slightly modified version of
the theorem in which TP is replaced by STP in both the hypotheses and the
conclusions. To then remove the S’s, it is necessary to approximate totally
positive sequences by strictly totally positive sequences. The simplest way
to do this is to add a small strictly totally positive sequence to the given
sequence. See Chapters 2 and 3 of Karlin {1968} for details. To prove part
(a) of the theorem, assume that r is a positive integer and that f(i+j+ 1)
is STP, for ¢, j > 0. By Proposition 2.2, in order to show that u(i + j) is
STP,. for ¢, j > 0, it iz enough to show that

(2.6) win,...,n+k)>0

foralln >0and all 0 <k < r. Thisistrueforn = 0andn =1 byi_
parts (c) and (d) of Proposition 2.1. We proceed now by induction on n."
Suppose that (2.6) is true for n < N and all 0 < k < . Put n = N in part
(a) of Proposition 2.1. Then all of the determinants which appear in that
identity except u(¥N,..., N + k) are strictly positive by the total positivity
assumption on f(-), the induction assumption on u(-), and Proposition 2.2.
Therefore, u(N,... , N +E) > 0 as well. The proof of part (b) of Theorem
1 is similar, using part (b) of Proposition 2.1 in place of part (a) for the
induction step. 1

3. THE CONVERGENCE THEOREM

Here we prove Theorem 2. We will assume throughout that f(-) is a
probability density on the positive integers whose tail probabilities F'(-)
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have the property that F(i+ 7+ 1) is TPg.. The key step is to find a useful
recurrence relation satisfied by

u(n) ~ u(n + 1)

(3.1) v(n) = Flnt D)

The first thing one might think of doing is to take differences in (1.1),
and then divide by F(n + 2). This does lead to a recursion for v(n), but
one which is not particularly useful, and which does not take sufficient
advantage of the total positivity assumption in Theorem 2.

A better recursion is obtained by coupling together two copies of the re-
newal process corresponding to the density f(-). To carry out this coupling,
let

(3.2) op(k) = % for k>1

be the conditional probability of having a renewal at time k given that there
has been no renewal prior to that time. Note that

n

(3.3) I - e = F(r+1)

k=1

and that the total positivity assumption on F(-} is equivalent to the state-
ment that p(k) is a decreasing function of k. Construct two sequences
{n(n),n > 1} and {¢(n),n > 0} of Bernoulli random variables with values
0 and 1 in the following way: (1) = {(0) = 1, P{{(1) =1} = f(1), {(n) £
n{n) for all n > 1, and conditional on n(k) and (k) for k < n,

n(n} = {(n) = 1 with probability p(n — max{j < n:{(j) = 1}),
7(n) = ¢(n) = 0 with probability 1 — p(n — max{j < n : 9(j) = 1}), and
‘n(n) = 1,{(n) = 0 with probability p(n — max{j < n: n(j) = 1})
= p(n—max{j <n:((j) =1}).

This construction is possible because of the monotonicity of p(k). It is
easy to check that the marginal distribution of the sequence {n(n), n > 1}
is that of a sequence of renewals with first renewal at time one and inter-
renewal density f(-). Similarly, the marginal distribution of the sequence
{¢({n), n > 0} is that of a sequence of renewals with first renewal at time
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zero and inter-renewal density f(-). Therefore, we can use a decomposition
according to the time of the last discrepancy between 5 and ¢ to perform
the following calculation for n > 1, keeping in mind that if there is a
discrepancy at m, then {(k) = 0 for &k < m:

w(m) = u(n +1) = Plan+1) = 1] - Plcn+1) = 1]
= Plp(n+1) = 1,{(n+1) = 0]

=Y Phn+ 1) =1, ((n+1) =0, n(k) = 1, ¢(k) =0, n(j) = 0
k=1 -
for all k < j < n]
n n-=Fk
SN Pl =1, C(k) = 01{ H[l—p(j)l}[p(n~k+ 1) = p(n + 1))
j=1 ‘

k=1

3

R ]

— F(n+1) F(n—k+1)
where the last equality follows from (3.3). Rewriting this in terms of v(-)
using (3.1), and then making a change of variable in the summation gives

n) = nun_ , F(n_k+1)_F(n_k+2)
(G4) v ; * 1)F(L+1)[ F(rn+1) F(n+2) ] !
= Z gn—k(k)o(n — k), L
k=1
where
) = F(k) Fk¥+1)
) ) = F(m+2)[F(rn+k+1) - F(m+k+2)]

for rn > 0 and k > 1. Note that gn,(k) > 0 by the total positivity assump-
tion, and is a sub probability density:

[e-)
(3.6) D o gm(k)=1-F(m+2)p"" <1

k=1
by (1.5). Thus since v(0) = 1, (3.4) exhibits v(n) as the renewal sequence
corresponding to inter-renewal times which are independent, but whose
distributions are time dependent and defective. '
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Note that if Fi(n) is replaced by F'(n)s"~! for some 0 < s < 1, then gm(k),
and hence v(n), remains unchanged. This explains why the statement of
Theorem 2 does not depend on the “exponential part” of the density f(n).
We can now proceed to the proof of Theorem 2. '

PRrROOF OF THEOREM 2. Since gm(k) is a sub probability density and
v(0) = 1, (3.4) implies that

(3.7 0<v(n) <1

for all n > 0. This gives (1.4). Now note that

(3.8) g(k) = lim gm(k) = F(Ry " — F(k+1)p7"
m—oo

for k > 1 by (1.5), and that g(-) sums to one if and only if limy F(k)yp™* = 0.
By (3.6), (3.8) and Scheffé’s Theorem,

(39) Jim > lgm(k) — gk = 0.
: k=1

Define a sequence of Bernoulli random variables {n(n),n >0} by n(0) =1
and

Pla(k+1) = --- = n(n — 1) = 0,n(n) = 1 | a(0),n(1), . Lok — 1),
n(}u) = 1] == gk(n — k‘)

Using (3.4) and induction, it follows that v(n) = Pln(n) = 1]. Then,
considering the distances between N and the nearest indices smaller and
larger than N at which 7 is one, we have

N oo
(3.10) P[ﬂ(m) =1 for some m > N] = }:Zv(N —k)gn-r(k+1)

k=0 1=1

_% . . Fh+1)  wveee
_kZﬂU(Nu-L)F(N-Hz)[F(NH) ]

by (3.5) and (1.5). Now consider a subsequence of the N’s along which
v(N + n) converges for each —co < n < 00, say to w(n). Every sequence
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has such a subsequence by (3.7). Then we can replace n by N +n in (3.4)
and pass to the limit along that subsequence using {3.9) to obtain

(3.11) w(n) = Zg(&)w(n —k) for —oco<n <o
: k=1 ‘

If the sum of g(-) is strictly less than one, then w(n) = 0 for all n, so
we can conclude that lim, v(n) = 0. Therefore, we may assume from now
on that g(-) sums to one, and hence that limy F(k)p~* = 0. In this case,
(3.11) says that w(-) is a (bounded) harmonic function for a random walk,
and hence is a constant € by the Choquet-Deny Theorem. Now pass to -
the limit in (3.10) along our subsequence using Fatou’s Lemma to conclude
that

0]

CY Fk+1)p™* <1.

k=0
If the sum above is infinite, it follows that C = 0, and hence that lim, v(n) =
0. This proves (1.6). Proceeding to the proof of (1.7), we may assume that

o0
F?(n)
(3.12) > Flam) <
: n=l
The TP3 assumption on the tail probabilities implies that \

Flk+ 1)F(N —k+2) < F2(k)
F(N +2) - F(2k)

if 2k < N + 2. Therefore (3.12) and the dominated convergence theorem
imply that '

Nz F(k+1) e .
H — YR —fn R, L S A _N+k"1 = F k 1 - B
Jﬂ)gvm kYF(N k+2)[F(N+2) p } cg (_+ Yo

After making the change of variable { = N — k, the same argument applied
to the other half of the terms in the sum on the right of (3.10) gives

Nj2 :

=0
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So, we can pass to the limit along the subsequence of N’s in (3.10) to
conclude that

(o o)
(3.13) Pln{m) = 1 for infinitely many m] = C’ZF(!: + 1)~k
k=0
This determines the value of C, so it follows that the limit of v(n) exists
along the full sequence, and

P{n(m) = 1 for infinitely many m]

3.14 lim »{n) =

(34 g, o) > rwo Pk +1)p~"

It remains to show that
s -1

(3.15)  P[p(m) =1 for infinitely many m] = [Z F(k+1)p—’°] :
k=0

To do so, let

(3.16) 2(n) = P[g(m) =1 for some m = 7],

The idea. is to show that z(n) is the renewal sequence associated with the
density g(k). Once this is done, we can let tend to oo in (3.16) using the
ordinary renewal theorem to obtain (3.15). To see that z{n) satisfies the
renewal equation for g, write for n > 1:

3 g(k)eln — k) — #(n)
k=1

= zn: PR * i z(n — k) — 2(n— k+ 1)) — Fln+ 1)p7"
k=1

=S R Pa(n— k) =1, n(j) =0 forall j>n— k)
k=1
~F(n+2)p™"

= i Pk~ o(n = B)F(n — k +2)p~ = *¥D — F(n+ 1)p7"
k=1
S DILCICED R VR b}
k=1

= p—n{ iu(n —B)f(k) — u(n)} = 0.

k=1
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In the above computation, we have summed by parts in the first and next
to last steps, and have used the renewal equation (1.1) in the last step. The
third equality follows from the construction of the sequence 5(n) and (3.6),
and the fourth comes from the definition of v(n) in (3.1). ]

4. CONTINUOUS TIME

In this section, we will give a brief description of the continuous time ana-
logues of the results which were presented earlier for discrete time. Let Fi)
be a continuous probability density on {0,00), and let u(t) be the corre-
sponding renewal density, i.e., the sum for & 2 1 of the k-fold convolutions
of f with itself. Then u(t) satisfies the renewal equation

¢
(4.1) u(t) = f(1) +f f(S)u(t —s) ds, t>0.
0
The analogue of Theorem 1 is
THEOREM 3. Let r bé a positive inleger.

(a) If f(s+1) is TP,, then u(s +1¢) is TP,.
(b} If w(s+1t) is TP,y1, then fls+1t) is TP,.

The proof of Theorem 3 is most easily carried out by discretizing f(-),
applying Theorem 1 to the discretization, and then passing to the limit.
There are continuous time analogues of the identities in Proposition 2.1,
but they are not particularly useful for proving Theorem 3. Still, it is
probably worth stating some of these analogues. To do so, we need some

¢
!

notation. If g(-) is a function on [0, 00) which has k continuous derivatives,

let .
(o) g(te)-g(to)
o) o) s ty)

gk-}—l(to,...,fk): . R i

9(;::) g’(t-k) X 'g(k)&tk)
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for 0 <to <ty < -+ <lg. When there are coincidences among two or more
of the t;’s, successive TOws are differentiated, so that for example

g(s) ¢'(s) ¢"(s)
g3(s, 1, 8) = | g(t) ') g’ -
gl(t) g”(t) glﬂ(t)

The continuous time analogues of identities (a) and (c) of Proposition 2.1
then become for k& > 1

fulty . Dy ) = frralloes gt - 1)

t
+ ] frar(s,t, .- JDupp(t -5 ,1) ds
0

and
uk(0, ... ,0) = fi(0,...,0)

respectively. The proof of the first of these is the same as the proof in
discrete time — one simply expands the determinants in the integral along
the first row, and then uses (4.1). To prove the second identity, simply put
t = 0 in the first, and then use induction on k. The analogues of (b} and
(d) are more complicated, so they will be omitted.

In order to state the continuous time version of Theorem 2, let

P = l " f(s) ds

be the tail probabilities corresponding to the density f(-). Note that F(s+t)
is TP, in s, > 0 if and only if F(1)/ F(t) is decreasing in t, so that in this
case, we may define :

A= lim ) > 0.

AT *

THEOREM 4. Suppose that fise probabilily density on [0,00) such that
the tail probabilities salisfy F(s+1) s TPy in s,t = 0. Then the renewal
density u(t) is decreasing on [0,00), so that we may define @ measure v 07
[0100) by : N
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r> 0, let vr be the measure on [—7', 00) which is oblained by translat-

. 1o the left by a distance T. Ther vy converges vaguely as T tends to
ity to the zere measure if

W
/ F(t)eM dt = oo,

0

converges vaguely lo a strictly positive muliiple of Lebesgue measure if

= F2()
/0 m dt < co.

he proof of Theorem 4 is similar

to the proof of Theorem 2 which is given
ection 3. We will simply write

down the continuous time analogues of
more important formulas used there. The continuous time versions of
) and (3.5) are

dv(t) = —d{?—((-% +f0 g (t — s) dv(s) dt

sre the first term on the right is the (finite) measure obtained by differ-
iating the increasing function — f()/F(t), and

() = ~FO) 5 7 5

pectively. Note that the TP, assumplion vy I'(+) implics again that g,

1 sub probability density on [0, 00), and that

lim g,(2) = Fltye — AF (e
$—0
rthermore,

T
f oty di = 1 — LOID) >
0 CF(T+s) :

Jich is.increasing in s for each T', so that th
e stochastically decreasing in s. This can be
uniformly bounded in T for fixed a < b.
rried out as before.

e measures with densities g,
used toshow that v(T+[a, b))
Therefore the proof can be

MGMW’

o P L

e el DR
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