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T. E. HARRIS’ CONTRIBUTIONS TO INTERACTING PARTICLE
SYSTEMS AND PERCOLATION

BY THOMAS M. LIGGETT1

University of California at Los Angeles

Interacting particle systems and percolation have been among the most
active areas of probability theory over the past half century. Ted Harris played
an important role in the early development of both fields. This paper is a
bird’s eye view of his work in these fields, and of its impact on later research
in probability theory and mathematical physics.

1. Introduction. Ted’s passing was a great loss to me personally and pro-
fessionally, as well as to probability theory in Southern California and beyond.
For three decades, he and I were the primary probabilists at USC and UCLA, re-
spectively. Our approach to mathematics and our mathematical interests were very
similar. My wife, Chris, and I enjoyed many wonderful social occasions at the
Harris home in Beverly Hills with Ted and Connie. They were great hosts. The
conversation was always stimulating. They were interested in so many things!

Ted initiated the Southern California Probability Symposium in about 1970. It
is probably the oldest meeting of its type in the US, and continues to provide an
exciting place for interactions among Southern California probabilists to this day.
In two of the years, 1989 and 2007, the meeting was dedicated to Ted. The first
was on the occasion of his 70th birthday, and the second was in his memory. Even
after his retirement, Ted attended the USC probability seminar regularly—always
sitting in the front row, and asking perceptive questions.

Few mathematicians have had a greater ratio of number of ideas to number of
papers. Ted wrote fewer papers (about 30) than many prominent mathematicians,
but each is a jewel. In each of the several areas in which he worked, he was among
the first in the field. He had an uncanny ability to sense which problems would lead
to major developments. His taste was impeccable. After having a significant impact
on one area, he would go on to another topic, leaving it to others to flesh out the
subject. His work went a long way toward shaping the growth of probability theory
in the second half of the twentieth century. I hope to do justice to his many ideas
on interacting particle systems and percolation in this brief article. I will mention
only a few later papers in which his influence can be seen—there are many others.
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2. Percolation. In the standard percolation model, bonds in Zd are indepen-
dently labeled open with probability p and closed with probability 1 − p. One
then asks whether the subgraph of Zd obtained by retaining only the open bonds
contains an infinite connected component. The answer of course depends on the
value of p—it is yes if p is sufficiently large, and no if p is small. The value at
which the answer changes is known as the critical value, pc.

The mathematical theory of percolation is generally viewed as beginning in
1957 with paper [6] by Broadbent and Hammersley. Only three years later, Ted
proved in [14] that in two dimensions, pc ≥ 1

2 . In fact, he proved that there is no
infinite cluster when p = 1

2 . Prior to that, the best result on the critical value was
0.35 ≤ pc ≤ 0.65. The primary tools he used were a correlation inequality (more
on this in Section 5 below), the self-duality of the two-dimensional lattice, and path
intersection arguments. It took another 20 years for Kesten to prove in [23] that
pc = 1

2 , using among other techniques, more refined path intersection arguments.
It takes only a glance at Grimmett’s book [13] or the more recent [4] by Bol-
lobás and Riorden to get a sense of how big and important percolation has become
since Ted’s pioneering work. Recent work on SLE scaling limits for percolation
and other models is one of the most exciting developments in modern probabil-
ity theory—see [4, 7, 25] and [35], for example. In fact, one of the 2010 Fields
Medals was awarded to Smirnov for his work in the field. Again, path intersection
arguments play an important role. Ted did not return explicitly to percolation after
[14], but percolation ideas were to play a major role in his later work in interacting
particle systems.

3. The contact process. Contact processes constitute one of the two or three
major classes of interacting particle systems. They play somewhat the same role
in this area that Brownian motion plays in the theory of stochastic processes in
Euclidean space: they are simple to describe, they have many of the useful proper-
ties that other systems in the field may or may not have—in this case, self-duality,
attractiveness and additivity—and they lead to challenging mathematical prob-
lems. Contact processes were first introduced and studied by Ted Harris in [17].
Literally hundreds of papers have been written about them in the past 35 years.
Few mathematicians have been credited with starting a field that would become as
important as this one.

The basic contact process on S = Zd is a Markov process ηt on {0,1}S , which
can be thought of as a model for the spread of infection. A configuration η ∈ {0,1}S
represents the state in which certain sites are infected [those for which η(x) = 1];
the others are healthy. The value at a site x ∈ S changes from 1 to 0 at rate 1
(i.e., infected sites recover after a unit exponential time), and from 0 to 1 at a rate
proportional to the number of infected neighbors. The constant of proportionality
is λ. Of course, the configuration η ≡ 0 is a trap for the process—infections cannot
appear spontaneously. When there are only finitely many infected sites, the state
of the system is usually denoted by At = {x :ηt (x) = 1}.
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A principal reason for interest in the contact process is that it, like the percola-
tion model, can have two different types of behavior, depending on the value of a
parameter—λ in this case. It can survive, in the sense that the survival probability
is positive,

π(A) ≡ P A(At �= ∅ for all t) > 0, A �= ∅,(1)

even for initial configurations with finitely many infected sites, or it can die out.
In [17], Ted did not talk in terms of the critical value λc that separates these two
regimes, or even note that this value was well defined. However, he did prove that
the process survives if λ is large enough, so that λc < ∞, and that λc ≥ 1

2d−1 , with
an improvement to λc ≥ 1.18 in one dimension. By now, much more is known:
1.53 ≤ λc < 2 in one dimension, and λc ∼ 1/2d in high dimensions. The actual
value of λc is thought to be about 1.65 in one dimension, but nothing close to this
is rigorously known. (Most later results that are mentioned in this article can be
found in [28] or [29].)

Ted was a fan of inequalities, as we will see in Section 5. In [17], he proved
some inequalities that are not of the correlation type discussed there. It is fairly
clear that the survival probability π(A) is increasing in A. It is less obvious that it
is submodular in the sense that

π(A ∪ B) + π(A ∩ B) ≤ π(A) + π(B).(2)

This inequality played a role in his derivation of lower bounds for the critical value.
Only much later was this result used in an essential way in [31] to compare a con-
tact process with mutations to the basic contact process, showing that the former
process dies out whenever the latter does. This comparison apparently cannot be
carried out via more common and intuitive coupling arguments. As far as I know,
(2) was not used in the intervening 34 years, even though it was generalized to
some extent, and has been used in some related contexts—see [33]. Ted was again
ahead of his time.

One of the most useful techniques in interacting particle systems is duality,
which expresses probabilities related to one process in terms of probabilities re-
lated to another (dual) process. Forms of duality had been used quite early in the
study of Brownian motion and birth and death chains. In the context of symmetric
exclusion processes, duality was discovered by Spitzer in [36], and has played an
essential role in that theory. In particular, it made possible a complete description
of the stationary distributions of the system. Such a classification in the asymmet-
ric case remains elusive.

In [18], Ted looked at duality more generally, and discovered in particular that
the contact process is self-dual. (He used the word “associate” rather than “dual.”)
Self-duality for the contact process is the identity

P η(ηt ≡ 0 on A) = P A(η ≡ 0 on At), |A| < ∞,
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which relates the contact process with infinitely many infections to the process
with finitely many infections. Letting 1 denote the configuration with all sites in-
fected, this says in particular that

P 1(
ηt (x) = 1

) = P {x}(At �= ∅),

so that survival in the sense of (1) is equivalent to survival in the sense that

lim
t→∞P 1(

ηt (x) = 1
)
> 0.

When the process survives, the “upper invariant measure” ν is defined as the lim-
iting distribution as t → ∞ of the distribution at time t of the system starting in
configuration 1. Thus, duality gives

ν{η :η �≡ 0 on A} = π(A).

Duality can be used to give a simple proof of the submodularity property (2) that
Ted had discovered earlier and proved by coupling. It is obtained by integrating the
elementary inequality

1{η �≡0 on A∪B} + 1{η �≡0 on A∩B} ≤ 1{η �≡0 on A} + 1{η �≡0 on B}
with respect to ν. Of course, Ted’s duality was not available to him when he
proved (2).

There are a number of applications of duality in [18], including a proof of the
fact that every translation invariant stationary distribution for the contact process
is a mixture of ν and the point mass on η ≡ 0. Now, we know that the translation
invariance assumption is not needed in this statement.

Another important technique in the field is known as the graphical represen-
tation, or percolation substructure. The basic idea developed in [20] is that it is
very natural and useful to construct processes like the contact process explicitly in
terms of collections of independent Poisson processes. There are many advantages
to this approach, including the possibility of constructing the process starting from
all potential initial configurations on the same probability space. It also gives du-
ality in an explicit way. In the space–time graphical picture, the evolution of the
dual process is seen by reversing the time direction.

The graphical representation has played a crucial role in many proofs, including
the 1990 proof by Bezuidenhout and Grimmett [3] that the critical contact process
dies out. It is the underlying theme of Griffeath’s monograph [11], and is the basis
of a lot of work of Durrett and his collaborators on systems related to the contact
process—see his paper [9] in the volume dedicated to Ted’s 70th birthday, for
example.

In his paper, Ted proved a number of results using the graphical representation.
Here are two:

(a) Linear growth: for sufficiently large λ,

P A

(
inf
t>0

|At |
t

> 0
∣∣∣At �= ∅ for all t

)
= 1.
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He points out that the t in the denominator can probably be replaced by the more
plausible td .

(b) The individual ergodic theorem: for a large class of initial η and all contin-
uous functions f ,

lim
T →∞

1

T

∫ T

0
f (ηt ) dt =

∫
f dν a.s.

Now we know that (a) holds (with td in the denominator) for any λ > λc. State-
ment (b) has also been improved.

4. Exclusion processes. This represents another large part of the field of in-
teracting particle systems. An exclusion process is described via the transition
probabilities p(x, y) for a discrete time Markov chain on a countable set S. The
process is again a continuous time Markov process on {0,1}S . This time, however,
η(x) = 1 means that site x is occupied; η(x) = 0 means that it is vacant. A parti-
cle at x waits a unit exponential time, and then chooses a y ∈ S with probabilities
p(x, y). If y is vacant, the particle moves there, while if y is occupied, it stays
at x. The process was introduced by Spitzer in [36], and has been the subject of a
very large number of papers in both mathematics and physics—both rigorous and
nonrigorous—since then.

Again, Ted was in the game from the beginning. Prior to my general existence
theorem in [27], three mathematicians constructed particle systems under various
assumptions—Dobrushin [8], Holley [22] and Harris [16]. In his paper, Ted was
concerned with nearest neighbor exclusion processes on Zd . He used percolation
ideas in his construction. Noting that it suffices to construct a Markov process for
an arbitrarily short interval of time—the Markov property allows for an extension
to all time—he showed that for such short time periods, Zd breaks up into random
finite subsets that do not interact with one another during that time period. On each
of these finite subsets, the process is of course well defined.

A useful point of view in the study of symmetric [i.e., those satisfying p(x, y) =
p(y, x)] exclusion processes was pioneered by Ted, and is known as “stirring.”
This is closely related to the graphical representation he introduced for contact-like
processes in [20]. The idea is that a Poisson process of rate p(x, y) is associated
with each pair of sites x, y. At the event times of the Poisson process, the “con-
tents” of the two sites are exchanged. If both were empty or both were occupied,
nothing happens, since the particles are indistinguishable. If exactly one site is oc-
cupied, the result is that the particle at the occupied site moves to the other site.
This again constructs all exclusion process with arbitrary initial configurations on
the probability space of the Poisson processes. With this construction, the system
is realized as a collection of interacting copies of the original Markov chain. Ted
wrote about stirring in [21], and one of his students used it in [26].

An important application of stirring occurred in a paper with another connection
to Ted’s work. In [15], he considered a system of reflecting Brownian motions,
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one starting at each point of a unit Poisson process on the line, and an extra one
starting at the origin. He defined reflection by saying that when two Brownian
paths meet, they interchange their paths, so that the particles maintain their original
ordering. He then proved that the position of the particle originally at the origin
satisfies a central limit theorem, but with scaling t1/4, rather than t1/2. This led
Spitzer in [36] to make a conjecture on the behavior of a “tagged” particle in
a symmetric exclusion process. Ted’s USC colleague R. Arratia then proved the
conjecture in [1], using stirring in an essential way. Here is the result. Consider the
exclusion process with S = Z1 and

p(x, x + 1) = p(x, x − 1) = 1
2 .

Initially there is a particle at the origin, and particles are placed at other sites in-
dependently with probability ρ ∈ (0,1). The particle that started at the origin is
the tagged particle. Its position satisfies a central limit theorem, but again with the
nonstandard normalization. It turns out that this is (apparently) the only case in
which an unusual scaling occurs. Central limit theorems for tagged particles in ex-
clusion systems have been proved by Varadhan and others with normalization t1/2

in many cases in which p(x, y) is translation invariant on Zd , including systems
with mean zero in [24] and [37] in any dimension (excluding Arratia’s case), and
systems with nonzero mean in dimensions d ≥ 3 in [34].

5. Correlation inequalities. Perhaps Ted’s best known and most influential
result is the correlation inequality in [14]. Amazingly, it is not even mentioned in
the MathSciNet review of that paper. Perhaps that is not so amazing after all. Who
would have known 50 years ago what an effect it would have?

To state it, let S be a finite set, and consider the Bernoulli measure νρ on {0,1}S
defined by

νρ{η :η(x) = 1 for all x ∈ T } = ρ|T |, T ⊂ S.

A set A ⊂ {0,1}S is said to be increasing if η ∈ A and η ≤ ζ imply that ζ ∈ A.
[η ≤ ζ means that η(x) ≤ ζ(x) for all x ∈ S.] Ted’s result is

A,B increasing implies νρ(A ∩ B) ≥ νρ(A)νρ(B).(3)

Actually, he only proved this for the increasing sets that arose in his percolation
problem, but that is a minor point.

Property (3) is now usually stated in terms of increasing functions rather than
sets, and when applied to a general probability measure, is called “association.”
Thus, a probability measure μ on {0,1}S is said to be associated if

f,g increasing implies
∫

fg dμ ≥
∫

f dμ

∫
g dμ.(4)
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Ted’s theorem then states that homogeneous product measures are associated. Mo-
tivated by this result, as well as by a 1967 result of Griffiths [12], Fortuin, Kaste-
leyn and Ginibre [10] proved a far reaching generalization that is known as the
FKG theorem: if the probability measure μ is strictly positive and satisfies

μ(η ∧ ζ )μ(η ∨ ζ ) ≥ μ(η)μ(ζ ), η, ζ ∈ {0,1}S,(5)

where η ∧ ζ and η ∨ ζ denote the coordinate-wise minimum and maximum of η

and ζ , respectively, then μ is associated. In their paper, they mentioned the un-
derstated nature of Ted’s result, while recognizing its importance: “While Harris’
inequality seems to have drawn less attention than it deserves, . . . .” Ted himself,
with his usual modesty, said “perhaps the methods are also of some interest.” Note
that while (3) is far from obvious, the lattice condition (5) is easy to check for νρ .
The FKG theorem has played a pivotal role in the study of phase transitions in
statistical physics over the past four decades.

Ted’s other paper on correlation inequalities [19] is short, elegant, and has many
consequences. It deals with implications among the following three properties for
a continuous time Markov process ηt on {0,1}S :

(a) Preservation of association: if μ is associated, then so is μt , the distribution
of ηt with initial distribution μ.

(b) All transitions are between comparable configurations.
(c) Attractiveness: if f is increasing on {0,1}S , then so is Eηf (ηt ).
His theorem is that in the presence of (c), (a) and (b) are equivalent. Much later,

I proved in [30] that if all transitions are between configurations that differ at only
one site, then (a) implies (c).

An easy consequence of Ted’s result is that the upper invariant measure for the
contact process ν is associated. To see this, note that the point mass at η ≡ 1 is
associated, and the contact process satisfies (b) and (c). Therefore, the distribution
at time t is associated. Now, let t → ∞. The fact that ν is associated is not a
consequence of the FKG theorem, since it is known that ν does not satisfy (5).

Ted’s theorem has been extended in the case of the contact process to show
that certain properties that lie between (5) and association are also preserved by
the evolution—see Theorem 3.5 of [2] and Theorems 1.5 and 1.7 of [30]. One
consequence of this is that the upper invariant measure ν percolates if d ≥ 2 and λ

is sufficiently large—see [32].
It is interesting to note that (3) follows from Ted’s later theorem: consider the

spin system in which the coordinates ηt (x) flip independently from 1 to 0 at rate
1 − ρ and from 0 to 1 at rate ρ. This process satisfies (b) and (c), and has limiting
distribution νρ for any initial state. Therefore, νρ is associated.

Paper [19] has stimulated recent work on negative correlations as well. The
theory of negative correlations is more subtle than that of positive correlations.
One way to see this is that in the definition of negative association, one cannot
simply reverse the inequality in (4), as can be seen by taking f = g there. One must
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add the constraint that f and g depend on disjoint sets of coordinates. With this
definition, the negative version of the FKG theorem is false: (5) with the opposite
inequality does not imply negative association.

A possible version of Ted’s 1977 theorem for negative association might be that
systems like the symmetric exclusion process preserve the property of negative
association. After all, if many particles are known to be in one part of S, then
fewer can be in other parts of S. In hindsight, it is not too surprising that this is
false. The restriction to functions that depend on disjoint sets of coordinates in the
definition causes problems, since even if f and g satisfy this constraint, Eηf (ηt )

and Eηg(ηt ) generally will not. All is not lost, however. In [5], a property that is
stronger than negative association, but still satisfied by product measures, is shown
to be preserved by symmetric exclusion processes.

Acknowledgments. I appreciate comments from Rick Durrett and Geoffrey
Grimmett on this paper.

REFERENCES

[1] ARRATIA, R. (1983). The motion of a tagged particle in the simple symmetric exclusion system
on Z. Ann. Probab. 11 362–373. MR0690134

[2] VAN DEN BERG, J., HÄGGSTRÖM, O. and KAHN, J. (2006). Some conditional correlation
inequalities for percolation and related processes. Random Structures Algorithms 29 417–
435. MR2268229

[3] BEZUIDENHOUT, C. and GRIMMETT, G. (1990). The critical contact process dies out. Ann.
Probab. 18 1462–1482. MR1071804

[4] BOLLOBÁS, B. and RIORDEN, O. (2006). Percolation. Cambridge Univ. Press, New York.
MR2283880

[5] BORCEA, J., BRÄNDÉN, P. and LIGGETT, T. M. (2009). Negative dependence and the geom-
etry of polynomials. J. Amer. Math. Soc. 22 521–567. MR2476782

[6] BROADBENT, S. R. and HAMMERSLEY, J. M. (1957). Percolation processes. I. Crystals and
mazes. Proc. Cambridge Philos. Soc. 53 629–641. MR0091567

[7] CAMIA, F. and NEWMAN, C. M. (2006). Two-dimensional critical percolation: The full scal-
ing limit. Comm. Math. Phys. 268 1–38. MR2249794

[8] DOBRUSHIN, R. L. (1971). Markov processes with a large number of locally interacting com-
ponents: Existence of a limit process and its ergodicity. Probl. Inf. Transm. 7 149–164.
MR0310999

[9] DURRETT, R. (1991). A new method for proving the existence of phase transitions. In Spa-
tial Stochastic Processes. Progress in Probability 19 141–169. Birkhäuser, Boston, MA.
MR1144095

[10] FORTUIN, C. M., KASTELEYN, P. W. and GINIBRE, J. (1971). Correlation inequalities on
some partially ordered sets. Comm. Math. Phys. 22 89–103. MR0309498

[11] GRIFFEATH, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes
in Math. 724. Springer, Berlin. MR0538077

[12] GRIFFITHS, R. B. (1967). Correlations in Ising ferromagnets I. J. Math. Phys. 8 478–483.
MR1552524

[13] GRIMMETT, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin. MR1707339

http://www.ams.org/mathscinet-getitem?mr=0690134
http://www.ams.org/mathscinet-getitem?mr=2268229
http://www.ams.org/mathscinet-getitem?mr=1071804
http://www.ams.org/mathscinet-getitem?mr=2283880
http://www.ams.org/mathscinet-getitem?mr=2476782
http://www.ams.org/mathscinet-getitem?mr=0091567
http://www.ams.org/mathscinet-getitem?mr=2249794
http://www.ams.org/mathscinet-getitem?mr=0310999
http://www.ams.org/mathscinet-getitem?mr=1144095
http://www.ams.org/mathscinet-getitem?mr=0309498
http://www.ams.org/mathscinet-getitem?mr=0538077
http://www.ams.org/mathscinet-getitem?mr=1552524
http://www.ams.org/mathscinet-getitem?mr=1707339


HARRIS IPS AND PERCOLATION 415

[14] HARRIS, T. E. (1960). A lower bound for the critical probability in a certain percolation
process. Proc. Cambridge Philos. Soc. 56 13–20. MR0115221

[15] HARRIS, T. E. (1965). Diffusion with “collisions” between particles. J. Appl. Probab. 2 323–
338. MR0184277

[16] HARRIS, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional
lattices. Adv. Math. 9 66–89. MR0307392

[17] HARRIS, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969–988. MR0356292
[18] HARRIS, T. E. (1976). On a class of set-valued Markov processes. Ann. Probab. 4 175–194.

MR0400468
[19] HARRIS, T. E. (1977). A correlation inequality for Markov processes in partially ordered state

spaces. Ann. Probab. 5 451–454. MR0433650
[20] HARRIS, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann.

Probab. 6 355–378. MR0488377
[21] HARRIS, T. E. (1991). Interacting systems, stirrings, and flows. In Random Walks, Brown-

ian Motion, and Interacting Particle Systems. Progress in Probability 28 283–293.
Birkhäuser, Boston, MA. MR1146453

[22] HOLLEY, R. (1970). A class of interactions in an infinite particle system. Adv. Math. 5 291–309.
MR0268960

[23] KESTEN, H. (1980). The critical probability of bond percolation on the square lattice equals 1
2 .

Comm. Math. Phys. 74 41–59. MR0575895
[24] KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of

reversible Markov processes and applications to simple exclusions. Comm. Math. Phys.
104 1–19. MR0834478

[25] LAWLER, G. F. (2009). Conformal invariance and 2D statistical physics. Bull. Amer. Math.
Soc. (N.S.) 46 35–54. MR2457071

[26] LEE, W. C. (1974). Random stirring of the real line. Ann. Probab. 2 580–592. MR0362563
[27] LIGGETT, T. M. (1972). Existence theorems for infinite particle systems. Trans. Amer. Math.

Soc. 165 471–481. MR0309218
[28] LIGGETT, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New
York. MR0776231

[29] LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion
Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences] 324. Springer, Berlin. MR1717346

[30] LIGGETT, T. M. (2006). Conditional association and spin systems. ALEA Lat. Am. J. Probab.
Math. Stat. 1 1–19. MR2235171

[31] LIGGETT, T. M., SCHINAZI, R. B. and SCHWEINSBERG, J. (2008). A contact process with
mutations on a tree. Stochastic Process. Appl. 118 319–332. MR2389047

[32] LIGGETT, T. M. and STEIF, J. E. (2006). Stochastic domination: The contact process,
Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. 42 223–243.
MR2199800

[33] MOSSEL, E. and ROCH, S. (2007). On the submodularity of influence in social networks. In
STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing
128–134. ACM, New York. MR2402436

[34] SETHURAMAN, S., VARADHAN, S. R. S. and YAU, H.-T. (2000). Diffusive limit of a tagged
particle in asymmetric simple exclusion processes. Comm. Pure Appl. Math. 53 972–
1006. MR1755948

[35] SMIRNOV, S. (2006). Towards conformal invariance of 2D lattice models. In International
Congress of Mathematicians, Vol. II 1421–1451. Eur. Math. Soc., Zürich. MR2275653

[36] SPITZER, F. (1970). Interaction of Markov processes. Adv. Math. 5 246–290. MR0268959

http://www.ams.org/mathscinet-getitem?mr=0115221
http://www.ams.org/mathscinet-getitem?mr=0184277
http://www.ams.org/mathscinet-getitem?mr=0307392
http://www.ams.org/mathscinet-getitem?mr=0356292
http://www.ams.org/mathscinet-getitem?mr=0400468
http://www.ams.org/mathscinet-getitem?mr=0433650
http://www.ams.org/mathscinet-getitem?mr=0488377
http://www.ams.org/mathscinet-getitem?mr=1146453
http://www.ams.org/mathscinet-getitem?mr=0268960
http://www.ams.org/mathscinet-getitem?mr=0575895
http://www.ams.org/mathscinet-getitem?mr=0834478
http://www.ams.org/mathscinet-getitem?mr=2457071
http://www.ams.org/mathscinet-getitem?mr=0362563
http://www.ams.org/mathscinet-getitem?mr=0309218
http://www.ams.org/mathscinet-getitem?mr=0776231
http://www.ams.org/mathscinet-getitem?mr=1717346
http://www.ams.org/mathscinet-getitem?mr=2235171
http://www.ams.org/mathscinet-getitem?mr=2389047
http://www.ams.org/mathscinet-getitem?mr=2199800
http://www.ams.org/mathscinet-getitem?mr=2402436
http://www.ams.org/mathscinet-getitem?mr=1755948
http://www.ams.org/mathscinet-getitem?mr=2275653
http://www.ams.org/mathscinet-getitem?mr=0268959


416 T. M. LIGGETT

[37] VARADHAN, S. R. S. (1995). Self-diffusion of a tagged particle in equilibrium for asymmetric
mean zero random walk with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 31
273–285. MR1340041

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

520 PORTOLA PLAZA

LOS ANGELES, CALIFORNIA 90095
USA
E-MAIL: tml@math.ucla.edu

http://www.ams.org/mathscinet-getitem?mr=1340041
mailto:tml@math.ucla.edu

	Introduction
	Percolation
	The contact process
	Exclusion processes
	Correlation inequalities
	Acknowledgments
	References
	Author's Addresses

