
T. Liggett Mathematics 31B – Final Exam June 7, 2009

(11) 1. Consider the power series
∞

∑

n=1

(x − 3)n

n2n
.

(a) Find the radius of convergence. Answer: 2.

(b) Find the interval of convergence. Answer: [1, 5).

(14) 2. (a) Evaluate

∞
∑

n=0

1 + 2n

6n
=

∞
∑

n=0

(

1

6

)n

+

∞
∑

n=0

(

1

3

)n

=
6

5
+

3

2
=

27

10
.

(b) Use partial fractions to evaluate

∞
∑

n=1

1

9n2 − 3n − 2
=

1

3

∞
∑

n=1

(

1

3n − 2
− 1

3n + 1

)

=
1

3

(

1 − 1

4
+

1

4
− 1

7
+ · · ·

)

=
1

3
.

(15) 3. Find a solution of the form y(x) =
∑

∞

n=0 anxn of the differential equation y′′−2xy′−2y = 0
satisfying y(0) = 0, y′(0) = 1 as follows:

(a) What are a0 and a1? Answer: a0 = y(0) = 0, a1 = y′(0) = 1.

(b) Find a recursion that allows you to compute each an in terms of the previous ones.

y′(x) =

∞
∑

n=0

nanxn−1, y′′(x) =

∞
∑

n=0

n(n − 1)anx
n−2,

so the differential equation becomes
∞

∑

n=0

(n + 2)(n + 1)an+2x
n − 2

∞
∑

n=0

nanxn − 2
∞

∑

n=0

anx
n = 0.

Equating coefficients of xn leads to

an+2 =
2

n + 2
an.

(c) Find a2 and a3. Answer: a2 = a0 = 0, a3 = (2/3)a1 = 2/3.

(d) Find an for general n. Answer: a2n = 0, and a2n+1 = 2
2n+1

a2n−1, so

a2n+1 =
2n

(2n + 1)(2n − 1) · · ·3 · 1 =
4nn!

(2n + 1)!
.

(10) 4. Consider the series
∞

∑

n=2

1

n(ln n)2
.

(a) Does it converge or diverge? Answer: It converges.
1



(b) Explain your answer in (a). Answer: Use the integral test, with

f(x) =
1

x(ln x)2
;

∫

∞

2

f(x)dx =

∫

∞

ln 2

du

u2
< ∞.

(15) 5. Let f(x) = 1/(1 − x).

(a) Find the nth Taylor polynomial Tn(x) of f about 0.

f (k)(x) =
k!

(1 − x)k+1
, so f (k)(0) = k!, and Tn(x) =

n
∑

k=0

xk.

(b) Find a good upper bound (depending on x) for |Tn(x) − f(x)|, valid for |x| ≤ 1
2
.

Use the error bound with K = (n + 1)!2n+2 to get |Tn(x) − f(x)| ≤ 2(2|x|)n+1.

(c) Find the Taylor series for f about 0. From part (a), it is

∞
∑

k=0

xk.

(d) Use the result of part (b) to show that the Taylor series for f about 0 converges to f for
|x| < 1

2
.

lim
n→∞

|Tn(x) − f(x)| ≤ lim
n→∞

(2|x|)n+1 = 0.

(10) 6. Find the equation of the tangent line to y = ln(sin x) at x = π/4.

y′ = cot x = 1 at x = π/4. y = − ln 2/2 at x = π/4. So, the equation is y + ln 2/2 = x − π/4.

(13) 7. Evaluate:

(a) lim
x→0

ln x tan−1(2x)

Use L’Hopital:

lim
x→0

ln x tan−1(2x) = lim
x→0

[

− 2x(ln x)2

1 + 4x2

]

= 0.

(b)

∫

tan−1 x

1 + x2
dx =

1

2
(tan−1 x)2 + C.



(12) 8. Evaluate:

(a)
d

dx
e(x2+2x+3)2 = 4(1 + x)(3 + 2x + x2)e(x2+2x+3)2

(b)
∫

e2x − e4x

ex
dx =

∫

exdx −
∫

e3xdx = ex − 1

3
e3x + C.

(12) 9. Decide whether each of the following statements is true or false, and put T or F in the
box. (Scoring: for each one, 2 points for the right answer, -1 point for the wrong answer, and 0
points for no answer.)

(a) If an is bounded, then it converges. F

(b) The sequence an = (−1)n/(n2 + 1) is monotonic. F

(c) Every convergent sequence is bounded. T

(d) Every decreasing sequence converges. F

(e) The sequence an =
√

n + 1 −√
n is decreasing. T

(f) If an + bn converges, then an converges. F

(13) 10. Evaluate
∫

π

0

sin4 x cos4 xdx =
3π

128
.

(12) 11. Find

lim
n→∞

n
∑

k=1

1√
n2 + k

.

Note that for 1 ≤ k ≤ n,
1

√

n(n + 1)
≤ 1√

n2 + k
≤ 1√

n2 + 1
,



so that
n

√

n(n + 1)
≤

n
∑

k=1

1√
n2 + k

≤ n√
n2 + 1

.

The sequences on the left and right each tend to 1 as n → ∞, so the limit of the middle
sequence is 1 also by the squeeze theorem.

(13) 12. Use integration by parts (twice) to evaluate
∫

ex sin xdx =
1

2
ex(sin x − cos x) + C.

In problems 13 and 14, decide whether the series (1) converges absolutely, (2) converges condi-
tionally, or (3) diverges, and put the corresponding number (1,2 or 3) in the box provided. No
explanation is required. (Scoring: in each case, 3 points for the right answer, -1 point for the
wrong answer and 0 points for no answer.)

(15) 13.

(a)

∞
∑

n=1

n

n2 + 1
3

(b)

∞
∑

n=1

n!

nn
1

(c)
∞

∑

n=1

(−1)n
n!

nn
1

(d)

∞
∑

n=2

(−1)n
1

lnn
2

(e) 1 +
1 · 2
1 · 3 +

1 · 2 · 3
1 · 3 · 5 +

1 · 2 · 3 · 4
1 · 3 · 5 · 7 + · · · 1

(15) 14.

(a) 1 +
1

3
+

1

5
+

1

7
+ · · · 3



(b)
∞

∑

n=1

sin

(

π

n2

)

1

(c)

∞
∑

n=1

(−1)n

(

n − 1

n

)n

3

(d) 1 +
1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ · · · 2

(e)

∞
∑

n=1

sin n

n3
1

(10) 15. (a) Prove: If
∑

n
an converges, then limn→∞ an = 0.

Letting Sn be the partial sums and S be the sum, limn an = limn(Sn − Sn−1) = S − S = 0.

(b) Give an example to show that limn→∞ an = 0 does not imply that
∑

n
an converges. There

is no need to show that your example has the properties you claim it has.

The harmonic series.

(10) 16. (a) Prove: If
∑

n
an converges absolutely, then

∑

n
an converges.

Using 0 ≤ an + |an| ≤ 2|an|, we see that
∑

n
(an + |an|) converges. Since

∑

n
an is the difference

of the two convergence series
∑

n
(an + |an|) and

∑

n
|an|, it converges.

(b) Give an example to show that
∑

n
an converges does not imply that

∑

n
an converges

absolutely. There is no need to show that your example has the properties you claim it has.

The alternating harmonic series.



Scratch paper – If you detach it, do NOT turn it in!

You may find the following formulas useful:
Error bound for Simpson’s rule: If K4 satisfies |f (4)(x)| ≤ K4 for all x ∈ [a, b], then

Error (SN) ≤ K4(b − a)5

180N4
.

Reduction formulas:

∫

sinn xdx = −1

n
sinn−1 x cos x +

n − 1

n

∫

sinn−2 xdx
∫

cosn xdx =
1

n
cosn−1 x sin x +

n − 1

n

∫

cosn−2 xdx

Arc length of the graph of y = f(x) over [a, b]:
∫

b

a

√

1 + [f ′(x)]2dx.

Surface area of the surface obtained by rotating the graph of f(x) for a ≤ x ≤ b about the
x-axis:

2π

∫

b

a

f(x)
√

1 + [f ′(x)]2dx.

Error bound for the nth Taylor polynomial: If |f (n+1)(u)| ≤ K for all u between a and x, then

|Tn(x) − f(x)| ≤ K
|x − a|n+1

(n + 1)!
.

d

dx
sin−1 x =

1√
1 − x2

,
d

dx
tan−1 x =

1

1 + x2
,

d

dx
sec−1 x =

1

|x|
√

x2 − 1
.


