
Problems 1,2,3 on page 326.

Definition. A positive integer valued random variable \(N \) is a stopping time with respect to the discrete time stochastic process \(\{X_1, X_2, \ldots \} \) if for every \(n \), the event \(\{N = n\} \) is determined by the values of \(\{X_1, X_2, \ldots, X_n\} \).

\(J_1 \). Suppose \(\{X_1, X_2, \ldots \} \) is a Bernoulli process. Show that \(N \), the time at which the second success occurs is a stopping time.

\(J_2 \). Show that if \(N \) is a stopping time, then so is \(N_k = \min\{N, k\} \).

Wald’s second identity states the following: If \(X_1, X_2, \ldots \) are i.i.d. and satisfy \(EX_i = 0, EX_i^2 = \sigma^2 < \infty \), and \(N \) is a stopping time with \(EN < \infty \), then \(ES_N^2 = \sigma^2 EN \). You need not prove this; those of you in Math 171 may have done the proof.

\(J_3 \). Consider the simple symmetric random walk \(S_n = X_1 + \cdots + X_n \), where \(X_1, X_2, \ldots \) are i.i.d. random variables taking the values \(\pm 1 \) with probability \(\frac{1}{2} \) each. For positive integers \(l, m \), let

\[
N = \min\{n \geq 1 : S_n = -l \text{ or } m\}
\]

and \(N_k = \min\{N, k\} \). (\(N \), and hence \(N_k \), is a stopping time, but you need not prove this – it should be obvious to you!)

(a) Use Wald’s second identity to obtain an upper bound for \(EN_k \) that does not depend on \(k \).
(b) Conclude that \(EN < \infty \).
(c) Apply Wald’s first identity to compute \(P(S_N = m) \).
(d) Use Wald’s second identity to compute \(EN \).