Mathematics 170B – HW5 – Due Tuesday, May 1, 2012.

Problems 41 and 42 on page 260 and problem 1 on page 284.

 E_1 . Show that for any random variable X,

$$P(|X| \ge a) \le \frac{EX^4}{a^4}, \quad a > 0$$

in two different ways:

(a) Deduce it from Markov's inequality.

(b) Prove it directly in the same way Markov's inequality is proved.

 E_2 . Suppose X is Poisson with parameter λ . Use Chebyshev's inequality to show:

(a) $P(X \le \lambda/2) \le 4/\lambda$.

(b) $P(X \ge 2\lambda) \le 1/\lambda$.

 E_3 . Suppose X is Poisson with parameter λ .

(a) Apply the result of Problem 2(a) on page 284 to get an upper bound for $P(X \ge 2\lambda)$.

(b) The bound in part (a) above depends on s. Choose the s that makes this bound as small as possible to show that $P(X \ge 2\lambda) \le (e/4)^{\lambda}$.

(c) Compare the bounds obtained in problems $E_2(b)$ and $E_3(b)$ when $\lambda = 10$.

 E_4 . Suppose $X_1, X_2, ...$ are i.i.d. random variables with $P(X_i = 1) = p, P(X_i = -1) = 1 - p$, and let $S_n = X_1 + \cdots + X_n$ be their partial sums. This is called a simple random walk. For k = 1, 2, ..., let $N_k = \min\{n \ge 1 : S_n = -k\}$ be the first time that the random walk hits -k, and let $M_k(s)$ be the moment generating function of N_k . Note that the random variables $N_1, N_2 - N_1, N_3 - N_2, ...$ are i.i.d.

(a) Express $M_k(s)$ in terms of $M_1(s)$.

(b) By conditioning on the value of X_1 , find an equation relating $M_1(s)$ and $M_2(s)$.

(c) Combine the results of (a) and (b) to find an equation satisfied by $M_1(s)$.

(d) Assuming $M_1(s) < \infty$, solve the equation from part (c) for $M_1(s)$. (To resolve the sign ambiguity, use the fact that $\lim_{s\to-\infty} M(s) = 0$.)

(e) Use the result of part (d) to compute EN_1 for $p < \frac{1}{2}$. What do you think happens to this if $p = \frac{1}{2}$?