
T. Liggett Mathematics 131BH – Midterm Solutions February 10, 2010

(25) 1. (a) For a bounded function f on [a, b], define: “f is Riemann inte-
grable on [a, b]”. (I.e., take Rudin’s function to be α(x) = x.)

For a partition P = {a = x0 ≤ x1 ≤ · · · ≤ xn = b} of [a, b], let ∆xi =
xi−xi+1, mi = infxi−1≤x≤xi

f(x), Mi = supxi−1≤x≤xi
f(x), L(P ) =

∑
imi∆xi,

and U(P ) =
∑

iMi∆xi. Then define∫
−
fdx = sup

P
L(P ) and

∫ −
fdx = inf

P
U(P ).

By considering common refinements, and since L(P ) ≤ U(P ) for each P ,∫
−
fdx ≤

∫ −
fdx. (1)

The function f is integrable if these two quantities agree.

(b) Prove directly from the definition that if f is continuous on [a, b], then
f is Riemann integrable on [a, b].

Since f is continuous on [a, b], it is uniformly continuous there. Given
ε > 0, choose δ > 0 so that |x− y| < δ implies |f(x)− f(y)| < ε. If P is any
partition with ∆xi < δ for each i, then Mi − mi ≤ ε for each i. It follows
that U(P )− L(P ) ≤ ε(b− a), so that

0 ≤
∫ −

fdx−
∫
−
fdx ≤ ε(b− a).

Since ε is arbitrary, equality holds in (1).

(21) 2. Compute
∫ 1

−1
(x2 + 3)dα, where

α(x) =

{
x if x < 0;

x2 + 1 if x ≥ 0.

∫ 1

−1

(x2 + 3)dα =

∫ 0

−1

(x2 + 3)dx+ 3 +

∫ 1

0

(x2 + 3)(2x)dx =
10

3
+ 3 +

7

2
=

59

6
.

(15) 3. Does the series

1

1 + x2
= 1− x2 + x4 − x6 + · · ·

converge uniformly on [0, 1)? Explain.



It converges pointwise, but not uniformly. To see this, write for n ≥ 1

sup
0≤x<1

∣∣∣∣ ∞∑
k=n

(−1)kx2k

∣∣∣∣ = sup
0≤x<1

x2n

1 + x2
=

1

2
,

which does not tend to 0 as n→∞.

(21) 4. Decide whether each statement below is true or false. If true give a
proof; if false give a counterexample, or otherwise disprove it.

(a) If fn → f uniformly on (0, 1), then f 2
n → f 2 uniformly on (0, 1).

False. Counterexample:

f(x) =
1

x
, fn(x) =

1

x
+

1

n
.

Then

sup
0<x<1

|fn(x)−f(x)| = 1

n
→ 0; sup

0<x<1
|f 2
n(x)−f 2(x)| = sup

0<x<1

(
2

xn
+

1

n2

)
=∞.

(b) If fn and f are Riemann integrable on [0, 1] and fn → f pointwise on
[0, 1], then

lim
n→∞

∫ 1

0

fndx =

∫ 1

0

fdx.

False. Counterexample: f = 0 and

fn(x) =

{
n if 0 < x < 1/n;

0 otherwise.

(c) The function

f(x) =
∞∑
n=1

sinnx

n5/2

has a continuous derivative.

True. Let

fn(x) =
n∑
k=1

sin kx

k5/2

be the partial sums of the series. Then fn is differentiable, and

f ′n(x) =
n∑
k=1

cos kx

k3/2



converges uniformly to
∞∑
k=1

cos kx

k3/2
.

Since fn(0) = 0 for each n, the result follows from Theorem 7.17.

(18) 5. In each case, state whether the assertion is true or false. No expla-
nation is needed.

(a) The family of functions {fn(x) = sinnx, n = 1, 2, . . . } is equicontinu-
ous on [0, 1].

False, since
sup

|x−y|≤π/n
|fn(x)− fn(y)| = 2.

(b) If A ⊂ [0, 1] is countable, the indicator function 1A is Riemann inte-
grable on [0, 1].

False; take A = Q ∩ [0, 1].

(c) If fn(0) = 0 and f ′n exists, is continuous, and converges to 0 uniformly
on [−1, 1], then fn converges to 0 uniformly on [−1, 1].

True, by Theorem 7.17.

(d) If |fn(x)| ≤ 1 for all n and x, and
∑∞

n=1 fn(x) converges uniformly on
[0, 1], then

∑∞
n=1 sup0≤x≤1 |fn(x)| <∞.

False. Counterexample:

fn(x) =

{
1/n if 1/(n+ 1) < x < 1/n;

0 otherwise.

(e) If f ∈ R(α) and g is continuous, then h ∈ R(α), where h(x) =
g(f(x)).

True, by Theorem 6.11.

(f) If f ∈ R(α) on [a, b] and ε > 0, then there is a function g ∈ C[a, b] so
that ||f − g|| < ε, where ||h|| = supa≤x≤b |h(x)|.

False; take a = 0, b = 1 and

f(x) =

{
1 if 0 ≤ x ≤ 1

2
;

0 otherwise.

If g ∈ C[0, 1], the ||f − g|| ≥ 1
2
.


