Overview

1. Introduction

2. Multiple State Models

3. Problem Solving
Who Am I

My name: Thomas Merkh
My role: The TA of Math 178B

My background:
- Undergraduate degrees in Physics and Mathematics from RPI (NY State)
- This is my 4th year at UCLA, working on Mathematics PhD
- I research artificial intelligence, and have done research in nanotechnology, mathematical modeling for plasma physics, machine learning, and more.
- I have never taught an actuarial mathematics class, though I have been reading the book :)}
Important Information

- Office Hours: Every other week during this discussion section. Otherwise, Wednesday afternoons (times may vary week to week)

- Email: For this class, I will only be answering emails at tmerkh55@gmail.com (my previous spam inbox)

- Bi-weekly quizzes will be held Tuesdays and there will be a timeframe to submit to Gradescope. To get the true effect, we recommend taking the quiz over a 45 minute window.

- Every other week, there will be problem solving sessions on the topics that may appear on the following week’s quiz.
Course Content and Pre-requisites

Pre-requisites: Math 178A, or an equivalent class. This class will cover material on:

- Multiple State Models (Today)
- Multiple Decrement Models
- Profit Testing, Benefit Valuation
- Basic Distributions and probability theory
- Continuous Actuarial Models, and much more
Course Content and Pre-requisites

Pre-requisites: Math 178A, or an equivalent class. This class will cover material on:

- Multiple State Models (Today)
- Multiple Decrement Models
- Profit Testing, Benefit Valuation
- Basic Distributions and probability theory
- Continuous Actuarial Models, and much more

Questions?

Thomas Merkh tmerkh55@gmail.com
Essential aspects:

- Multiple state models are known as Markov processes with discrete states in continuous time.
- Generally, we have a set of states \(\{0, 1, \ldots, n\} \) with transition probabilities between them.
- The random variable \(Y(t) \) takes a value in \(\{0, \ldots, n\} \), and \(Y(t) = i \) means that an individual is in state \(i \) at age \(t \).

Assumptions:

- The next state doesn’t depend on information before current state (Markov Property).
- The is only one transition per “unit of time”.
1. Introduction

2. Multiple State Models

3. Problem Solving
Problem 1(a)

Suppose that Los Angeles has a weather state (sunny or rainy) described by the transition matrix:

\[P = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} \] \hspace{1cm} (1)

The entry \(P_{11} = 0.9 \) indicates that a sunny day will be followed by another sunny day 90% of the time.

Problem

Today is sunny. What is the probability that it will be sunny the day after the day after tomorrow? Find this probability by listing all possible outcomes.
Problem 1(a)

Today is sunny. What is the probability that it will be sunny the day after the day after tomorrow? Find this probability by listing all possible outcomes.

Solution

Let S and R be the events that it is sunny and rainy, respectively. Let $SSRS$ represent the event that it is rainy, sunny, and then sunny. Then the probability that the day after the day after tomorrow is sunny, call this E, given that today is sunny is

$$\Pr(S) = \Pr(SSSS | S) + \Pr(SSRS | S) + \Pr(SSRS | S) + \Pr(SRRS | S)$$

$$= 0.3 + 0.1(0.5)(0.9) + 0.1(0.5)(0.5) = 0.844.$$
Problem 1(a)

Today is sunny. What is the probability that it will be sunny the day after the day after tomorrow? Find this probability by listing all possible outcomes.

Solution

Let S and R be the events that it is sunny and rainy, respectively. Let SSR represent the event that it is rainy, sunny, and then sunny. Then the probability that the day after the day after tomorrow is sunny, call this E, given that today is sunny is

$$
Pr(E) = Pr(SSSS|S) + Pr(SSRS|S) + Pr(SRSS|S) + Pr(SRRS|S)
$$

$$
= 0.9^3 + 0.1(0.5)(0.9) + 0.9(0.1)(0.5) + 0.1(0.5)(0.5) = 0.844.
$$
Suppose that today’s (sunny) state is represented as the probability vector

\[x^{(0)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \]

Similarly, the probability of tomorrow’s weather can be denoted by \(x^{(1)} \).

Problem

*Explicitly using the matrix \(P \), what is \(x^{(1)} \)?
Problem 1(b)

Problem

Explicitly using the matrix P, what is $x^{(1)}$?
Problem 1(b)

Problem

Explicitly using the matrix P, what is $x^{(1)}$?

Solution

$$x^{(1)} = x^{(0)} P = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \end{pmatrix}.$$ (2)
Explicitly using the matrix P, what is $x^{(n)}$? Compare $x^{(3)}$ to the answer of part (a).
Problem 1(c)

Problem

Explicitly using the matrix P, what is $x^{(n)}$? Compare $x^{(3)}$ to the answer of part (a).

Solution

\[x^{(2)} = x^{(1)} P = x^{(0)} P^2, \]

and following this pattern,

\[x^{(n)} = x^{(0)} P^n. \]

Since P^3 is

\[P^3 = \begin{pmatrix} 0.844 & 0.156 \\ 0.78 & 0.22 \end{pmatrix}, \]

one has that $x^{(3)} = \begin{pmatrix} 0.844 \\ 0.156 \end{pmatrix}$.

Thomas Merkh tmerkh55@gmail.com
March 31, 2020
Figure: A two-state Markov chain describing the transitions between the sunny (S) and rainy (R) states. The probabilities shown here can be summarized by the transition matrix P from previous slides.
Problem 2(a)

Since P never changes and all states are repeatedly visited, there exists a stationary distribution describing the probability of sunny/rainy weather in Los Angeles. This distribution is independent of $x^{(0)}$, and can be denoted by $x^{(\infty)} = \lim_{n \to \infty} x^{(n)}$.

Problem

What would $x^{(\infty)} P$ be equal to?
Problem 2(a)

Since P never changes and all states are repeatedly visited, there exists a stationary distribution describing the probability of sunny/rainy weather in Los Angeles. This distribution is independent of $x^{(0)}$, and can be denoted by $x^{(\infty)} = \lim_{n \to \infty} x^{(n)}$.

Problem

What would $x^{(\infty)} P$ be equal to?

Solution

Since $x^{(\infty)}$ is a stationary or stable distribution, P has no effect on it,

$$x^{(\infty)} P = x^{(\infty)}.$$
Problem 2(b)

Problem

*Using the answer from part (a), find $x^{(\infty)}$.***
Using the answer from part (a), find $x^{(\infty)}$.

Solution

Solve

$$x^{(\infty)} P = x^{(\infty)}$$

$$x^{(\infty)} (P - I) = 0$$

$$\begin{pmatrix} v_1 & v_2 \end{pmatrix} \begin{pmatrix} -0.1 & 0.1 \\ 0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} 5/6 \\ 1/6 \end{pmatrix}.$$

Notice that $x^{(\infty)}$ is the eigenvector of P with eigenvalue 1.
Problem 2(c)

In the long run, what percentage of days would be rainy? Sunny?

Solution

From the previous part, one would expect $\frac{1}{6} \approx 16.67\%$ of the days to be rainy on average.
Problem 2(c)

Problem

In the long run, what percentage of days would be rainy? Sunny?

Solution

From the previous part, one would expect $1/6 \approx 16.67\%$ of the days to be rainy on average.
Problem 2(d)

Problem

If

\[P = \begin{pmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \end{pmatrix}, \quad \text{(3)} \]

how would the answer to part (c) change?
Problem 2(d)

Problem

If

\[P = \begin{pmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \end{pmatrix}, \]

how would the answer to part (c) change?

Solution

Using a computer, one could approximate \(x^{(\infty)} \) by computing

\[P^{100} = \begin{pmatrix} 0.88889 & 0.11111 \\ 0.88889 & 0.11111 \end{pmatrix} \]

in MATLAB. Then one can see that approximately 11% of the days will be rainy on average.