Practice final

Questions 1-4 are short answer; Questions 5-12 are multiple choice (except for Q11)

• Q1. Find the row reduced form of

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
2 & 1 & 1 & 1 \\
3 & 1 & 0 & 4 \\
1 & -1 & -2 & -2
\end{array}\right)$$

• Q2. Is the matrix

$$A = \left(\begin{array}{ccc} -2 & 1 & -1 \\ 0 & -2 & 0 \\ 0 & -2 & 1 \end{array}\right)$$

invertible? Justify your reasoning.

• Q3. Let A be the matrix

$$\left(\begin{array}{ccccc}
2 & -1 & 1 & -4 \\
1 & -1 & 1 & -2 \\
3 & -1 & 1 & -6 \\
1 & 0 & 0 & -2
\end{array}\right)$$

and let \vec{v} be the vector

$$\left(\begin{array}{c}1\\2\\3\\4\end{array}\right).$$

Compute the orthogonal projection of \vec{v} onto the kernel $\ker(A)$ of A.

- Q4. Let A be an $m \times n$ matrix with nullity zero, and let v_1, \ldots, v_k be k vectors in \mathbf{R}^n which are linearly independent. Explain why the k vectors Av_1, \ldots, Av_k in \mathbf{R}^m are also linearly independent.
- Q5. Let A be the matrix

$$A = \left(\begin{array}{cccc} 2 & 3 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{array}\right).$$

1

Then the geometric multiplicity of the eigenvalue $\lambda=2$ is

- (a) 0
- (b) 1
- (c) 2
- (d) 3

- (e) 4
- Q6. Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the transformation that rotates the plane counterclockwise by $\pi/6$ radians. Let A be the matrix of T. Then the matrix of A^{25}

- is

 (a) $\begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$.

 (b) $\begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$.

 (c) $\begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix}$.

 (d) $\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$.

 (e) $\begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & -\sqrt{3}/2 \end{pmatrix}$.

 (f) $\begin{pmatrix} -\sqrt{3}/2 & 1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$.

- Q7. Let k be a real number. Then the system of equations

$$x_1 + 2x_2 + 3x_3 = 4$$

$$x_1 + kx_2 + 4x_3 = 6$$

$$x_1 + 2x_2 + (k+2)x_3 = 6$$

is consistent (i.e. has at least one solution) precisely when

- (a) k = 1.
- (b) $k \neq 1$.
- (c) k = 2.
- (d) $k \neq 2$.
- (e) k = 1 or k = 2.
- (f) $k \neq 1$ and $k \neq 2$.
- (g) The system is always consistent.
- (h) The system is never consistent.
- Q8. Let V be the image of the matrix

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Then the dimensions of V and of the orthogonal complement V^{\perp} are

- (a) $\dim(V) = 4$ and $\dim(V^{\perp}) = 0$.
- (b) $\dim(V) = 3$ and $\dim(V^{\perp}) = 1$.
- (c) $\dim(V) = 3$ and $\dim(V^{\perp}) = 0$.
- (d) $\dim(V) = 2$ and $\dim(V^{\perp}) = 2$.
- (e) $\dim(V) = 2$ and $\dim(V^{\perp}) = 1$.

- (f) $\dim(V) = 1$ and $\dim(V^{\perp}) = 3$.
- (g) $\dim(V) = 1$ and $\dim(V^{\perp}) = 2$.
- (h) $\dim(V) = 0$ and $\dim(V^{\perp}) = 4$.
- (i) $\dim(V) = 0$ and $\dim(V^{\perp}) = 3$.
- Q9. Let A, B be the matrices

$$A = \left(\begin{array}{cccc} 1 & 5 & 8 & 10 \\ 2 & 6 & 9 & 0 \\ 3 & 7 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{array}\right); \quad B = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \end{array}\right).$$

Then the rank of $A^{-1}B$ is

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4
- (f) undefined (A is not invertible) (Hint for Q9: you do *not* have to compute A^{-1} or $A^{-1}B$ in order to solve this question, there is a quicker way.)
- Q10. Let A be a 3×5 matrix. Then the statement $(\operatorname{im}(A))^{\perp} = \ker(A^T)$
- (a) is always true
- (b) is sometimes true
- (c) is never true
- Q11. What are the eigenvalues of

$$A = \left(\begin{array}{rrr} 3 & 0 & 1 \\ 2 & 4 & 0 \\ 0 & 0 & 1 \end{array}\right)?$$

• Q12. Let A, B, C be the matrices

$$A=\left(\begin{array}{cc} 4 & 0 \\ 2 & 5 \end{array}\right); B=\left(\begin{array}{cc} 8 & -6 \\ 2 & 1 \end{array}\right); C=\left(\begin{array}{cc} 2 & -4 \\ 4 & 2 \end{array}\right).$$

Then

- (a) A is similar to both B and C.
- (b) A is similar to B but is not similar to C.
- (c) A is similar to C but is not similar to B.
- (d) A is not similar to either B or C.