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Complex maps

Let f : C — C be an analytic map, such as f(z) = 2% or f(z) = exp(z)
or f(z) = i+iz. Until now, we have mostly been thinking of these maps
in algebraic terms, but now we will think of them more geometrically,
as mapping the complex plane C to another copy of the complex plane
C. In particular we want to know, given various shapes A C C, what
happens to the image f(A) := {f(z) : z € A} of this shape under
the transformation f. We have already seen a little bit of this in the
argument principle, when we began caring about the image f(7v) of a
closed curve 7.

In real analysis, we can represent a function f : R — R visually as
a graph, sketching the set of points {(z, f(r)) : £ € R} in R?. This
is not so easy to accomplish for complex maps, because the analogue
of a graph {(z, f(z)) : z € C} would have to live in C?, which is four
dimensional and thus not a particularly helpful visual aid. However, we
can still get some visual understanding of a complex map by drawing
the domain C and range C of the map separately (as opposed to being
orthogonal axes of a four-dimensional space), and sketching some points
in the domain and their corresponding image in the range.

For example, take the function f(z) = 2z. This takes a complex number
z in the domain as input, and returns another number 2z with the
same argument, but twice the magnitude; thus it dilates z by a factor
of two about the origin. If A is any set in C, then f(A) will be twice



as large as A (in both the horizontal and vertical directions) but will
otherwise have the same shape and orientation. More generally, the
map f(z) = cz for any ¢ > 0 is a dilation around the origin by ¢ (though
if ¢ < 1 then this map is actually a contraction!). Note also the extreme
case ¢ = 0, which is a degenerate map that sends everything to a single
point (the origin).

Now consider the map f(z) = —z. This takes a number z to the
number with the same magnitude but opposite phase; more generally,
it takes any shape A in the complex plane C and reflects it through the
origin (or what amounts to the same thing, it rotates A by 180° either
clockwise or anticlockwise around the origin). One can compose this
map with one of the previous dilation maps, e.g. f(z) = 2z, to form
another map f(z) = —2z; this rotates by 180° and then dilates by 2.

Now consider the map f(z) = ez for some angle . This takes a
number z and increases its argument by #, while keeping its magnitude
fixed. In other words, f is a anti-clockwise rotation around the origin
by @ (though if # is negative, one can also think of this as a clockwise
rotation around the origin by —#). Again, one can combine this with
dilations, thus the map f(z) = re?z rotates by 6 and then dilates by
r.

Notice that all of the above maps preserve the location of the origin.
Now consider a map f(z) = z + 2 for some fixed complex number
2p = xg + 1yp- This map takes a complex number z and shifts the real
part to the right by xy and the imaginary part up by yo; thus the map
is a translation to the right by x4 and up by yo (using the convention, of
course, that a rightward translation by a negative number is the same as
a leftward translation by a positive number, etc.) One can also compose
this translation operation with dilations and rotations, but now one
has to be careful about the order in which one does so, because the
operations of dilation and translation don’t commute. For instance,
if one composes the translation map f(z) := z + ¢ with the dilation
map ¢(z) := 2z, one obtains the map g(f(z)) = 2(z + i) = 2z + 21,
but if one does the dilation first and the translation second, one gets
f(g(2)) = 2z + i instead.



e Using translations, one can now describe dilations and rotations about
any fixed reference point (not just the origin). Suppose, for instance,
that one wanted to create a map z — f(z) which rotated the complex
plane by 90° anti-clockwise around 2i; thus 2¢ stays fixed, while 27 + 1
gets mapped to 3¢, etc. The way to do this is to start with the variable
z, move it down by 2¢, w := z — 2¢, and then rotate the new variable
anti-clockwise around the origin by 90°, ¢ := 1w, and then move it back
upwards by 24, w := ( + 2¢. The final map is then

f)=w=C+2i=iw+2i=1i(z —2i) +2i =iz + 2i + 2.

e So far the mappings we have considered (dilations, rotations, transla-
tions, and combinations of the three) are shape-preserving; they may
rotate, shift, enlarge or shrink an object but they don’t affect the ac-
tual shape of the object - a square remains a square, a circle remains a
circle, and so forth. In particular, they are also angle-preserving - two
lines intersecting at an angle of § remain intersecting at angle 6 after
any of the above transformations. They are also orientation-preserving
- a curve traversed in the anti-clockwise direction will remain anti-
clockwise (this is in contrast to reflections such as f(z) := z, which are
shape-preserving and angle-preserving but orientation-reversing). Now
we will look at a different type of analytic map - one which is not shape
preserving, although we shall see later that it is still angle-preserving
and (mostly) orientation preserving. This map is the inversion map

f(z):=1/z.

e Strictly speaking, this map is not defined on all of C; instead, one has to
work in the extended complex plane CU{oo} (also called the Riemann
sphere), and adopt the conventions that % = oo and é = 0. (Note that
the dilations, translations, and rotations can also be extended to the
Riemann sphere, by adopting the convention that any dilate, translate,
or rotation of oo still ends up at oco.

e In polar co-ordinates, the inversion map f(z) = 1/z takes the number

z = re'® to the number % = %e‘ia. Thus, the inversion map replaces
the magnitude of z with its reciprocal (so magnitudes greater than 1
become magnitudes less than 1, and vice versa) while the phase gets

reflected across the z-axis (so points above the z-axis get reflected to
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points below the z-axis, and vice versa. Geometrically, one can think of
inversion as reflection across the unit circle {z € C: |z| = 1}, followed
by another reflection across the z-axis. (Inversion turns the complex
plane inside-out and upside-down).

Qualitatively: if you move z closer to the origin, then w moves further
away, and vice versa; if you move z clockwise around the origin, then
w moves anti-clockwise, and vice versa.

Let us now see what the inversion map does to various geometric objects
such as lines and circles. Let us first consider a line through the origin,
e.g. {re?® : r € R} for some fixed angle 6 (note that we allow 7 to be
negative as well as positive, otherwise we would have a ray rather than
a line). This is the line which makes an anti-clockwise angle of § with
the z-axis. Applying the inversion map would convert this line into
{Le7® :r € R}, which is the line which makes a clockwise angle of 0
with the z-axis (note that 1/r is just an arbitrary real number, since r
was already arbitrary).

Now let us consider what inversion does to a line that does not go
through the origin. For instance, let us consider the line {z : Re(z) =
1}. The image of this line under inversion is then {1 : Re(z) = 1}.
Making the substitution w := 1/z (so that z = 1/w), this is the same
as {w : Re(+) = 1}. To understand this set, we write w in Cartesian
co-ordinates w = x + 1y, so that
1 T — 1y _ z Ly

w x4y (z+ay)(r—ay) 22+ y? "y

In particular, the real part of i is % Thus the image of the line

@ ty?”
{z : Re(z) = 1} under inversion is

=1}.

{z+i _r
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We can rewrite the equation — wwy

completing the square,



In other words, the image of the line {z : Re(z) = 1} under inversion
is the circle centered at % + 0¢ with radius 1/2. Note that this circle
goes through the origin; this is because the line goes to infinity, and
inversion maps infinity to 0 and vice versa.

More generally, one can show that the image of any line not going
through the origin under inversion becomes a circle that does go through
the origin. One could in principle write down a formula for this circle
depending on the line, but this formula is somewhat messy to remem-
ber, and it is usually easier instead to do things by hand using algebraic
considerations, or else geometric considerations. One fairly quick way
to proceed is to use the fact that the closest point of the line to the ori-
gin will get mapped to the furthest point of the circle from the origin,
since inversion replaces the magnitude of a number with its reciprocal.
For instance, suppose we wish to invert the line {z + iy : x +y = 1}.
The closest this line gets to the origin is at % + %z Inversion maps this
point to 1 — 4. Thus the image of the original line is a circle which goes
through the origin and whose furthest point from the origin is 1 — %; in
other words, it is the circle with diameter connecting 0 with 1 — ¢, and
thus has center % — %z and radius @

Note that the operation of inversion is its own inverse: if w = 1/z,
then z = 1/w. Thus if lines not going through the origin map to circles
going through the origin, it is not surprising that conversely circles
going through the origin map to lines not going through the origin.
Again, to compute exactly which line corresponds to which circle it is
easiest to remember that the farthest point of the circle from the origin
maps to the closest point of the line to the origin. Thus for instance the
circle {z € C : |z — 2i| = 2} goes through the origin, and its furthest
point from the origin is 47, so the line that the inversion map takes the
circle to will have 5 = —*i as its closest approach to the origin. Since
a line is orthogonal to the vector connecting the origin to its closest
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point, the line must be horizontal, i.e. it is the line {z : Re(z) = 5}

Finally, we consider what happens to circles that do not go through
the origin. The easiest example of this are circles centered at the ori-
gin, such as {z € C : |z| = 2}. Since inversion replaces magnitudes
with their reciprocal, it is clear that this circle inverts to the circle



{z € C: |z| = 1} (the reflection in phase is irrelevant since the circle
encompasses all phases anyway).

The last case we need to consider are circles that do not go through the
origin, and are not centered at the origin. A typical such example is the
circle {z : |z — 2| = 1}. The image under inversion is {1 : |z — 2| = 1},
or under the change of variables w := 1/z, {w : |+ — 2| = 1}. We could
use Cartesian co-ordinates now, but it will make things easier later on
if we simplify a bit first. Multiplying both sides by w, we can rewrite
the equation |- —2| =1 as |1 —2w| = |w|, which we can then square as
11— 2w]? = |w]?. If we write w = z + iy, then 1 — 2w = (1 — 2z) — 21y
and so |1 —2w|? = (1 — 2z)? + (—2y)? = 42? + 4y* — 4z + 1, while
lw|> = z? + y?. Thus the equation simplifies to 3z% + 3y* — 4z + 1,
which after completing the square becomes 3(z — 2)? + 3y? = £, which
(after dividing by 3) is the equation for the circle centered at % + 012
with radius % Thus, the inverse of a circle not going through the origin
is another circle not going through the origin. This turns out to be true
in general. Again, a relatively simple way to work out what the inverse
of a circle is is to find the closest and furthest points from the origin,
which will then map to the furthest and closest points from the origin.
(Note that these two points always form a diameter of the circle in
question - why?).

Once one sees what the inversion map does to circles and lines, one can
also see what it does to disks, half-planes, and exterior disks. Note that
in some cases an inversion might map a disk to an exterior disk or vice
versa; for instance the disk {z : |z| < 2} clearly inverts to {z : |z| > 1}.
One easy way to work out which part of the complex plane a domain
maps to is to first figure out where the boundary goes, and then take
a test point inside the domain (e.g. the origin) to see which side of the
boundary the domain ends up on. One can also work out how to invert
line segments and arcs by a similar procedure.

Viewed on the Riemann sphere, one can think of inversion as a 180°
rotation around the axis connecting the antipodal points 1 and —1 on
the sphere; thus oo is rotated down to 0, while the unit circle is flipped
back onto itself.



e One can compose the inversion map with the dilation, rotation, and
translation maps defined earlier, to generate a general family of trans-
formations called fractional linear transformations, projective linear
transformations, or Mdbius transformations (named in honour of Au-
gustus Mdébius, of the Mébius strip fame). The general form of these
transformations is f(z) := f:‘jj[g, where a,b, c, d are complex numbers
and we impose the condition ad — bc # 0 to prevent the transformation
from becoming degenerate (e.g. the map f(z) = Zig is degenerate, as
it collapses to the constant map %) Inversion, for instance, is the spe-
cial case when a = d = 1 and b = ¢ = 0, while translations and dilations
come from the cases where ¢ = 0 and d = 1. We observe that every
fractional linear transformation can be “factorized” as a composition
of the basic operations of translation, dilation, rotation, and inversion;

for instance, the map f(z) := z—j can be written as a vulgar fraction as

f(z) =1+ 2, so the map is a composition of a translation downward

by —i (that maps z to z — 7), an inversion (which would map z — i to

ﬁ, a dilation by 2 and a rotation anti-clockwise by 90° (which would

map i to %, followed by a translation to the right by 1. Thus, in

principle, one can understand how this Mo6bius transform f(z) = i—fz
transforms various geometric objects. For instance, to see what f does
to the unit circle {z : |z| = 1}, we first shift downward by —i (thus
yielding the circle of radius 1 centered at —i), then invert (which gives
the horizontal line {z : Imz = %} - why?), then multiply by 2i (which
gives the line {z : Re(z) = —1} - why?) and then add 1 (to obtain
the imaginary axis). This means that the unit disk {z : |z| < 1} must
map to either the left-half plane {z : Rez < 0} or the right half-plane

{z : Rez > 0}; to see which, we test the map at one point of the unit

disk, e.g. the origin 0. Since f(0) = —1 is on the left half-plane, we see

that the image of the unit disk must be the left-half-plane.

e Every Mobius transformation is invertible: if w = ;‘jig, then wez +
wd = az + b, thus (cw — a)z = b — dw, and hence z = =%+ Note

that the non-degeneracy condition ad — bc = 0 is unchanggd. Also,
the composition of any two Mobius transformations is still a Mobius
transformation. (To see this, first observe that following a Mdbius

transformation w = %+ with an inversion ¢ = 1 gives you another
cz+d w




Moébius transformation ( = %. Similarly composing any Mobius

transformation with a dilation, rotation or translation will also give
another Mobius transformation. Since every Mobius transformation is
itself a composition of dilations, rotations, translations, and inversions,
the claim then follows). In other words, the set of all M6bius transfor-
mations form a group (with the identity element being of course the

1 : _ 1240
identity transformation w = Z57).

e Note that Mobius transforms always maps lines and circles to other
lines and circles. Actually one can think of a line as like a circle of
infinite radius. On the Riemann sphere, both lines and circles become
spherical circles; the only difference is that lines go through the point
at infinity whereas ordinary circles do not.

X %k ok ok ok

Constructing Mobius transforms

e Mobius transforms are useful for mapping one type of domain to an-
other, for instance turning an unbounded domain into a bounded do-
main. Often, though one has to undergo a trial and error process in
order to turn a given domain into a domain one wants, starting with
the original domain and gradually getting closer to the desired goal.

e For instance, suppose we want to find a Mobius transform which maps
the upper half-plane {z : Im(z) > 0} to the unit disk {z : |z| < 1}, and
also maps the point ¢ to the origin 0.

e At first glance none of the basic operations of translation, rotation,
dilation, or inversion seem to make the half-plane look anything like
the disk (note that if one inverts the upper half-plane one only gets
the lower half-plane (why?)). The problem with inversion is that the
boundary of the upper half-plane, i.e. the real axis, is going through
the origin. So the solution is to move the boundary away from the
origin first and then invert. For instance, if we start by translating the
upper half-plane upward by i, to the half-plane {z : Im(z) > 1}, and
then invert, one obtains the disk centered at —i/2 with radius 1/2, i.e.
{z:|z+ % < i} (why is this the case?). Meanwhile, the point 7 has
shifted up to 2i and then invertedto —i/2, i.e. it is now in the center



of the disk. If one then shifts this up by %, and then dilates by 2,
one obtains the unit disk as desired, and 7 has mapped to the origin.
The Mobius transformation that we have constructed this way can be
written out explicitly by executing all of the above steps in the correct
order:

1 1

— — =2
z+1 z+1 * 2 (z 4+ 2
which simplifies to the map f(z) = %L, (In this particular problem, it

z+1 " .
turns out there are multiple solutions; the map f(z) = —%

work (why?)).

2= 241

will also

Given any four complex numbers zq, 29, 23, 24, form the cross ratio
[21, 22, 23, 24] by the formula

(21 — 22) (23 — 24)
(21— 23) (22 — 2)

[21: 22, 23, 24] -

The importance of this cross ratio is that it is preserved by Mdbius
transformations, i.e.

21, 22, 23, 24] = [f(21), f(22), [ (23), [ (24)]

for all Mobius transformations f. To see this, first observe that the
claim is trivial if f is a translation f(z) = z 4 z (since all the 2
factors will cancel). Similarly if f is a dilation f(z) = cz (since all

the ¢ factors will cancel) or a rotation f(z) = ez (same reason). For

inversions f(z) = 1/z the claim is a little trickier to see, but if one uses

the identity
1 1 Z1 — 29

f(z1) = fze) = — — — = —

21 22 2122

and then multiplies everything out one can also verify that inversion
doesn’t affect the cross ratio either. Since every Mobius transform is
a combination of dilations, translations, rotations, and inversions, we
thus see that none of the Mdbius transforms affect the cross-ratio.

One consequence of this formula is that Mobius transforms cannot map
any four given points to any other four given points, unless their cross-
ratios are equal; thus for instance there is no Mobius transform that



maps 0,1,2,3t00,1,2,4. However, one can use this cross-ratio formula
to find a Mobius transform f that maps any three given points 21, 29, 23
to any other three given points wy, we, ws (i-e. f(21) = wy, f(22) = we,
f(z3) = ws). Indeed, any such transformation must now obey the
identity

[21, 22, 23, 2] = [f(21), f(22), f(23), f(24)] = [w1, wo, w3, f(2)]

and one can use this identity to solve for f(z) in terms of z. For
instance, if one wants to map the points —1,0,1 to —1, 7, 1 respectively,
we would solve the equation

[-1,0,1,2] = [-1,4,1, f(2)]

~(1-2) _ (=1-i)(1 - f()
—2(—2) —2(i — f(2))
which after some algebra simplifies to f(z) = ;fl

X %k ok ok ok

Conformality and orientation preservation

Moébius transformations do not, in general, preserve the shape of ob-
jects. But a remarkable fact is that they are conformal, i.e. they
preserve angles and orientations of objects. In fact this is a property
not just of Mobius transformations, but of all analytic maps:

Theorem. Let v; and v, be two differentiable paths starting at the
same point zy (so 71(0) = 72(0) = 2p), which make an angle of 8 at z,
(i.e. the tangent vectors 71 (0) and v4(0) make an angle of #). Let f be
any map which is analytic at zo with f'(zp) non-zero. Then f(v;) and
f(72) make an angle of § at f(z).

Proof. By the chain rule, we see that

f(1)'(0) = f'(7:(0))71(0) = f'(20)71(0)

and similarly
F(12)'(0) = f'(72(0))72(0) = f"(20)72(0)-
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Thus f(71)'(0) and f(72)'(0) are obtained from ~;(0) and ~4(0) by mul-
tiplication by a fixed non-zero complex number f’(2;). But this is just
a dilation and rotation (by the magnitude and phase of f'(z9)), and
both of these operations clearly preserve the angle between 7/ (0) and

75(0). O

Thus for instance, two lines intersecting at right angles to each other
will map under a Mébius transformation (or any other analytic map)
to two curves that still intersect at right angles. The assumption that
f'(z) is non-zero is important; for instance, consider the map f(z) =
2%2. The real and imaginary axes meet at right angles, but they map
under f to the positive axis and negative axis respectively, which are

180° apart.
Now we prove orientation preservation.

Theorem. Let f be a function which is analytic at a point 2z, with
f'(29) # 0. Then there exists an € > 0 such that if v is any simple
closed curve in the ball {z € C : |z — 29| < €} which goes around z,
once anticlockwise, then f(v) also goes around f(zp) once anticlockwise.

Proof. Consider the function g(z) := f(z) — f(z). This function
is analytic at zp and has a simple zero at z; (since g(zy) = 0 and
g'(20) = f'(20) # 0). Thus g(z) = h(z)(z — 2zp) for some function h
which is analytic and non-zero near z;. Since analytic functions are
continuous, we know that h(z) is in fact analytic and non-zero on some
ball {z : |z — 29| < €}, and hence g is also analytic non-zero on this
ball (except at zp). In particular, if v goes around z, in this ball once
anticlockwise, then there is one zero of ¢ inside v and no poles. By
the argument principle, this means that g(y) winds once anticlockwise
around 0, which means that f(v) winds once anticlockwise around 2z
as claimed. O

Again, the assumption that f’(z) = 0 is important; if f(z) = 22,

then a small circle going once around the origin will map to a curve
going twice around the origin. Also, the assumption that the curve
is small is important; if one considers the inversion map f(z) = 1/z,
then a small curve going anti-clockwise around 1 (say) will remain anti-
clockwise around 1 under inversion, but a very large curve going around
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anti-clockwise around both 1 and 0 will become clockwise and not go
around 1 at all! (This can be seen from the argument principle).

Note that if f is a Mdbius transform, then f’(z) is never zero (this is
easiest to see by writing f as a vulgar fraction, e.g. f(z) = % =

e+ c’Z;‘fZ) and then differentiating to obtain f'(z) = %, which
cannot vanish since ad — bc # 0). Thus Mobius transforms always
preserve angles, and also preserve the orientation of small curves (more
precisely, they preserve the orientation of curves which don’t go around

the pole of the M&bius transform).

Some Java applets illustrating this behaviour of analytic maps can be
found at

http : //www.math.ucla.edu/ ~ tao/3228

Conformal mappings are useful not only because they preserve angles
and orientations, but they tend to preserve some other things as well
(for instance, it turns out that they map harmonic functions to har-
monic functions). One may then ask whether one can map any domain
to any other. In the case of simply connected domains, this is true,
and is a famous theorem (the proof of which is beyond the scope of this
course, however):

Riemann mapping theorem. Let D and D’ be two simply connected
domains. Then there is an invertible analytic map f : D — D' with f’
non-vanishing (so f is always conformal).

Thus, for instance, it is possible to map a solid square (or any other
polygon) conformally to a disk. Such maps are known as Schwarz-
Christoffel transformations and have many applications, for instance to
fluid mechanics. The hypothesis of simply connectedness is important;
one cannot map a disk to an annulus conformally, for instance.

X %k k 3k X

The gamma function
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e Up until now you have seen a number of useful analytic functions such
as polynomials, Mobius transformations, exponential, trigonometric,
and logarithm functions. But there are many other analytic functions
out there, and one particularly useful one is the Gamma function I'(z).
This function is defined for all complex numbers z (except for the neg-
ative integers z = 0, —1, —2,...), but to begin with we will only define
it for complex numbers with positive real part.

e Definition. If Re(z) > 0, then we define I'(z) := [[°¢t* e dt.

e Let us first check that this integral is absolutely convergent. If z =
T + 1y, then t*71 = *~14® = = leWInt hag the magnitude of t*~!,
so it suffices to show that the integral [;°¢*~'e™" is finite. We split
this integral into fol and [°. For fol we observe that t*=le=t < ¢*71,
and since x > 0 we know that t*~! is integrable on [0, 1] (it has an
antiderivative of ¢* /z, which stays bounded on [0, 1]). For the integral
floo we use the fact that exponentials grow faster than polynomials, so
for instance t**e~! goes to zero as t goes to infinity. In particular the
function t*Tle ! must be bounded by some constant C, thus ¢t* le?
is bounded by C/#?, which is integrable on [1,00). So the Gamma
function is well defined on the half-plane Re(z) > 0.

e Next, we show that I'(z) is in fact analytic on this half-plane. By
Morera’s theorem (the converse to Cauchy’s theorem; you should have
seen it in an earlier week) it suffices to show that

/F(z) dz =0

for all closed curves v in the half-plane {z : Re(z) > 0}. Observe that
the real part of 7, i.e. {Re(v(t)) :t € [0,1]} is a closed interval in the
positive axis, say it is equal to [e, N]. Then v C {2z : ¢ < Re(z) < N}.

Now we expand
/F(z) dz:// t*~te™" dtdz.
Y v /0

Remember that t*~! has magnitude t*~!, which is bounded by ¢*=! +
tN=1. As observed above, (t°7! + t¥~1)e™" is absolutely integrable on
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[0,00]. Thus by Fubini’s theorem (observing that v has finite length
and so does not affect the absolute integrability of the integrand) we
can reverse the order of integration to obtain

/F(z) dz :/ /tZIet dzdt.
v 0 Jy

But for ¢ > 0, the function t*~! = e~V is analytic in z, while e~
does not depend on z. Thus by Cauchy’s theorem the inner integral
is zero, and thus the whole integral is zero. Thus I'(2) is indeed ana-
lytic. (One could also have proven this result by the Cauchy-Riemann
equations and differentiation under the integral sign, but it is a little
harder to justify differentiation under the integral sign than it is to
swap integrals).

t

e Now we work out some values of I'(z). The easiest one to work out is
(1):

() = / et dt = —e = 041 =1.
0

For other values of z, we use integration by parts. Observe that for any
T >¢e>0and Re(z) > 0,

T t? T 2
/ et dt = —e T —/ —(—e") dt
& 3

z

so taking limits as € —+ 0 and 7" — oo we obtain
= z,—t <t —t 1
I'(z) = et dt =0+ —etdt =-T(z+1).
0 0 2 z
In other words, we have
['(z + 1) = 2T'(z) whenever Re(z) > 0;

thus I'(2) = 1, T'(3) = 2, I'(4) = 6, and more generally I'(n + 1) = nl.
Thus one can think of I'(z + 1) as a generalization of the factorial
function.

e Now we prove another identity for the Gamma function.
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Theorem. If 0 < Re(z) < 1, then I'(2)['(1 — 2) =

sin(7z)

Proof. We expand

L)1 —-z2) = / / t*le s e™® dsdt
o Jo

(this integral is absolutely convergent by the previous discussion). Mak-
ing the change of variables s = v — ¢, this becomes

/ / e " (u —t)™* dudt
o Ji

or by swapping the ¢ and u integration (and watching the limits of
integration carefully)

/ / t* Hu—t) * dte “du.
o Jo

Making another change of variables ¢ = uy, this becomes

oo 1
/ / w” Ty (1 — y) T udye " du.
o Jo

The powers of u all cancel, and we can separate the integrals as

oo an e an,

The second integral is I'(1) = 1 which can be discarded. To evaluate

the first integral, we use yet another change of variables, y = 247> Where
x goes from 0 to co. Then dy = m dz, and the above expression
becomes o . )
| G e e
o x+1 z+1" (x+1)2

which simplifies to
oo ,.z—1 oo (z—1)Inz
/ a dr = / SR dx.
o T+1 o T+1
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Call this quantity X; our task is to show that X = L) We are now

sin(7z
in a position to use contour integration. Let f({) denote the function

ez—1Log,(¢)

Q=7

where Log, is the branch of the logarithm with imaginary part in [0, 27).
This function is analytic everywhere except at -1 and on the positive
real axis. At -1 it has a simple pole with residue
e(z—1)Log0(—1) — prile—1) — _ iz

Let 0 < r <1 < R. We now introduce the C-shaped contour v which
consists of the following four arcs: the straight line segment from r 4 &1
to R + et for some extremely small ¢; the circular arc anti-clockwise
from R + ¢7 to R — e1; the straight line segment from R — ¢i to r — &1;
and the circular arc clockwise from r — 7 to r 4+ €i. This is a simple
closed anticlockwise contour enclosing a simple pole at -1, so by the
residue theorem

/ﬂo@:—%ww
Y

On the other hand, on the line from r+¢i to R+¢i, Log,(() is basically
the same as In(Re(), and this integral becomes (as ¢ — 0)

R (2—1)Inz
/ Y
» T+1

Conversely, on the line R — i to r — €1, Log,(() is basically the same
as In(Re¢) + 274, and this integral becomes (as ¢ — 0)

/7‘ 6(z—l)(ln;n—|—27ri) dp — _627m'z /R e(z—l)lnm i
R r+1 r x+1

Now look at the big circle with radius R. This circle has length 27 R (as
e — 0). On this circle, the real part of Log,( is In R, and the imaginary
part at most 27, so we have

|e(z—1)Log0g‘ _ 6Re((z—l)(ln R+ATg0) < elnRRe(z—l)e27rIm(z—1) _ RRe(z—1)€27rIm(z)_
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Meanwhile, Ci—l has magnitude at most ﬁ. Thus the integral on this

circle is bounded in magnitude by
RRe(z71)€27rIm(z)

91R
m R—1

which goes to zero as R — +oo since Re(z — 1) < 0. Now consider
the small circle with radius . This circle has radius 277, and arguing
similarly to before

|e(z—1)L0gOc;‘ — ReG-1) 2rlm(z)

Meanwhile, Clﬁ has magnitude at most llj, thus the integral on this
circle is bounded by
FRe(-1) 2rlm(z)
1—r
which goes to zero as r — 0 (since Re(z — 1) > —1). Putting this all
together we see that in the limit » — 0 and R — 400

2rr

) 00 e(zfl) Inz ]
(1 — esz)/ T dr = —2mie™
0 X

or in other words
—2me™* T T

1 — e2miz (emz _ efmz)/Qi sin Tz

as desired. O

Thus for instance
T

D/2L(/2) = s =

Since I'(1/2) is defined as the integral of a positive function, it is posi-
tive, and hence I'(1/2) = /m, and thus I'(3/2) = /7 /2, etc. Thus for
instance we can say that the factorial of § is /7 /2!

Using these identities we can now extend I' to the left half-plane also.
We first need a technical lemma concerning the uniqueness of analytic
extensions (also called analytic continuations).
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e Lemma. Let D be a domain, and let f(z), g(z) be two analytic func-
tions on D. If f and g are equal on a non-empty open subset of D,
then they are in fact equal on all of D.

e Proof. If f and g are not equal on all of D, then f — g is not the zero
function. But then all the zeroes of f —g are isolated, which contradicts
the assumption that they agree on a non-empty open subset. U

e We can now define the I' function on the half-plane {z : Re(z) > —1},
except at 0, by the formula

['(z):=T(z+1)/z.

This new definition of I is clearly analytic in {z : Re(z) > —1} — {0},
and agrees with the old definition of T' back in {z : Re(z) > 0}, so
by the above Lemma it is the unique analytic extension of I' to this
domain. By construction, the identity I'(z + 1) = 2I'(2) now holds for
the entire region {z : Re(z) > —1} — {0}, and so we can repeat this
process, extending I' to the region {z : Re(z) > —2} — {0, —1} again by
the formula I'(z) = I'(2 + 1)/, and so forth. Eventually we can obtain
a consistent definition of the Gamma function which is defined for all
complex numbers except 0,—1,.... Observe that this procedure tells
us that ['(z) has a simple pole at 0 (because I'(z + 1) is analytic and
non-zero at 0, so when divided by z produces a simple pole), and then
inductively we also have simple poles at —1, —2, etc. (Quiz: what are
the residues at these poles? Start at 0 and work backwards).

e With this new definition of the I' function, which extends the old one,
the function I'(z)T'(1 — 2) is now analytic and defined on the entire
complex plane except the integers. So is the function @ Since
these functions agree on the strip {z : 0 < Re(z) < 1}, they must then
agree everywhere by the above uniqueness lemma. Thus we have

i

rxra—-z) =——
()T ) sin(7z)

for all complex numbers z which are not integers. (This actually gives

an alternate way to extend the Gamma function to the left-half plane).

Note that this formula also shows that I' has no zeroes, because the

right-hand side has no zeroes.
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e The Gamma function arises in many contexts, for instance it turns up
in high-dimensional geometry when computing the volumes of balls or
the surface area of spheres. Next week we will see how it interacts with
another important analytic function, the Riemann zeta function.

19



