Math 3228 - Week 7

Winding numbers

The argument principle

Rouche’s theorem

The fundamental theorem of algebra revisited
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Winding numbers

In this course you have already seen the Residue theorem, which is as
follows:

Residue theorem, first version. Let 7 be a simple closed curve
traversed once anti-clockwise, and let D be the domain enclosed by ~.
Let f be a function which is analytic on YU D except at a finite number
of singularities z1,..., 2, in D. THen we have

/ f(z) dz = 2mi i Res,—, f(2).
v k=1

Example. Take f(z) = 1/z, this is has a simple pole at 0 with residue
1 (why?), and is analytic everywhere else in the complex plane C. So
if v is a simple closed curve traversed once anti-clockwise that encloses
the origin, e.g. (t) = €% for 0 < t < 27, then f7 f(z) dz = 27 (one
can of course also obtain this from the Cauchy integral formula, which
is a special case of the Residue theorem). If however « is a simple
closed curve that does not enclose the origin, e.g. v(t) = 3 + €' for
0 <t < 2w then f(z) is analytic on and inside vy, and then by Cauchy’s
theorem f7 f(2) dz = 0. If instead + is a simple closed curve traversed
clockwise that encloses the origin, e.g. (t) = e for 0 < t < 2m,
then we have instead f7 f(z) dz = —1, since the integral along ~ is the
negative of the integral along —v (the reversal of ). Finally, if 7 is a



non-simple closed curve which encloses the origin twice, e.g. y(t) = e*
for 0 < ¢ < 4m, then we have f7 f(2) dz = 4mi, because we can break 7
into the sum of two smaller simple closed curves, each of which enclose
the origin. Note that in each of these cases v does not actually pass
through the singularity, but only goes around it. If v passed through
the singularity then the integral would only make sense as a principal
value integral, as the integrand would be going to infinity at a point on

.

These examples show that in order to compute an integral fy f(z) dz
when « is closed and f has a finite number of singularities, it is not
always enough to simply just add up all the residues of f inside 7y
and multiply by 27¢; the winding number of v around the singularities
makes a difference. We can quantify this by the following generalized
residue theorem.

Residue theorem, second version. Let D be a simply connected
domain, and f be a function analytic on D except at a finite number
of singularities 21, 22,...,2,. Let v be a closed (but not necessarily
simple) curve in D which does not pass through any of the singularities
Z1,---,2n. Then we have

/f(z) dz = 271 Z W (7, zk)Res,—, f(2);
v k=1

in other words, we add up all the residues as before, but now we mul-
tiply each residue by the winding number of 7 around z; (which could
be a positive integer, negative integer, or zero).

Recall from previous lectures that the winding number of a closed curve
~ around a point zy which does not lie on 7 is defined by

1 dz
W(y, 2) i= /
Y

o J, 2 — 2y

The winding number is not defined if zy passes through . The winding
number is always an integer, and (informally speaking) counts how
many times v winds anti-clockwise around z,. It is additive: if vy, - are
two closed curves with the same starting point, then W (y; 4+ 7o, 20) =
W (71, 20) + W (72, 29). Similarly we have W (—~, z9) = =W (v, 2)-
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e Proof of second version of residue theorem. Write a;, := Res,—,, f(2),
i.e. ay is the residue of f at z,. We construct the auxiliary function g

as .
Qg
z) = .
g9(z) ==Y pa—
k=1
Observe that g is analytic everywhere except at zq, ..., 2, and has sim-

ple poles at each of these points. Furthermore, the residue of g at z; is
just ag. For instance, near z;, g is the sum of zf—lzl (which clearly has a
residue of a; at z1), plus the other terms 7 _, —E - which are analytic
in a neighbourhood of z; and hence do not contribute to the residue

there. Now we split

L 1) dz= [ g(a) de+ [(£) - g(2) a2

Y el

and consider the two integrals separately. (This is the trick of “adding
and subtracting” an auxiliary term, and is extremely powerful in anal-
ysis - provided, of course, that you choose a sufficiently useful auxiliary
term).

e First consider f7 g(z) dz. We can expand this as

- Qg - dz
zdz:/ dz = a/
[ym P I e

7 k=1

since we can interchange integrals and finite sums. (For infinite sums,
one requires uniform convergence of the summands, e.g. by use of the
“Weierstrass M-test”). But by definition of the winding number we
thus have

/g(z) dz = ZakW(’y, 2,) = ZW(%zk)Resz:zkf(z)

which was what we wanted. So now all we have to do is to make sure
the integral f,y f(2) — g(2) dz vanishes.

e Since f and g have the same set of singularities 2y, ..., 2,, and their
residues match (they both have residue ay at zx), we see that f — g is
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analytic everywhere except at zq, ..., 2,, and that the residue of f — ¢
is zero at every one of these singularities. (This does not quite mean
that the singularities are removable, though. Only the i term in
the Laurent expansion of f — g around zj is guaranteed to vanish; the
higher order terms such as m might still be present).

By the first residue theorem, we thus know that f7, f(z) —g(2) dz=0
whenever 7' is any simple closed curve in D traversed once anticlockwise
that does not pass through zy, ..., zx. The same is then true for simple
closed curves traversed clockwise, since —0 = (0. The same is then true
for any closed curve in D that does not pass through zi,..., 2, since
one can break up any closed curve into a union of simple closed curves.
In particular, we have f7 f(z)—g(2) dz = 0 as desired. Combining this
with our previous computation of f7 g(z) dz we obtain the second form
of the residue theorem O

So once we know where all the singularities of an analytic function
are, and what the residues are at each singularity, one can then easily
integrate that function on any closed curve that doesn’t pass through
the singularities, just by counting winding numbers. (Integration on
open curves is still difficult, however; while contour integration is a
wonderful and powerful tool, it isn’t a magic wand and can’t integrate
just anything. This is why we still teach real integration techniques in
addition to contour integration).

For a very complicated closed curve 7, one way to compute the winding
number around a point zy is as follows. Draw a ray r from z; to
infinity in any direction. Count the number of times v crosses r from
the clockwise side of r to the anticlockwise side of r, and subtract the
number of times it crosses from the anticlockwise to the clockwise. (If
~ becomes tangent to r but does not actually cross r, do not count this
as a crossing). This subtraction will give you the winding number. For
instance, using the negative real axis from 0, the winding number of a
closed curve 7 is equal to the number of times 7 crosses from the second
quadrant {z+iy : £ < 0 < y} to the third quadrant {z +iy : z,y < 0},
minus the number of times it crosses back from the third quadrant to
the second. (This is closely related to the Log function, which is an



antiderivative of 1/z which jumps up by 277 when crossing from the
second quadrant to the third, and jumps down by —27¢ when crossing
from the third back to the second. Can you see how this is related
to the winding number - % of v around 07 Use the fundamental

2w Jy
theorem of calculus.)
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The argument principle

e We apply the above version of the residue theorem to count the zeroes
and poles of a meromorphic function.

e Definition. Let D be a domain. We say that a function f : D —
C is meromorphic on D if it only has a finite number zq,..., 2, of
singularities in D, and all of those singularities are poles or removable
singularities (i.e. no essential singularities; all Laurent series around a
singularity have only a finite number of singular terms). A meromrphic
function with no singularities at all is called analytic or holomorphic.

e Example. In the disk |z| < 1, the function 7 is meromor-

phic, with poles at 0 and 1/2 (the pole at 2 is irrelevant since it is
outside the domain of interest). But the function e'/# is not meromor-
phic because it has an essential singularity at 0. (However, the function

e'/(#=2) is meromorphic on the disk, indeed it is holomorphic here.

e Meromorphic functions of course have a residue at every pole, but it is
sometimes difficult to compute. But if instead of considering a mero-
morphic function f, one considers another function called the loga-
rithmic derivative of f, the residues become very easy (and useful) to
compute.

e Definition Let f be a meromorphic function on a domain D with only

finitely many zeroes. We define the logarithmic deriwative of f to be

s f(z)
the function o)

e Th logarithmic derivative is not defined when f has a singularity (clearly),
but is also not defined when f has a zero (since then we are dividing by
zero). Everywhere else, though, the logarithmic derivative is defined



and is even analytic (because we are dividing one analytic function by
another non-zero analytic function). The reason why % is called log-
arithmic derivative is because, formally, it is what the chain rule would
say the derivative of log f(z) is. (Unfortunately log f(z) is multi-valued
and so this isn’t quite correct, but it is fairly close to accurate and so

calling this the logarithmic derivative is not a bad idea.)

Examples. The logarithmic derivative of e’ is 2z. The logarithmic

derivative of z/(z — 1) is £ — L.

Exercise Let f,g be meromorphic functions on D with only finitely
many zeroes. Show that the logarithmic derivative of fg is the sum of
the logarithmic derivatives of f and g separately, while the logarithmic
derivative of f/g is the difference of the logarithmic derivatives of f
and g separately. Notice how this gives a very nice way to phrase the
product and quotient rules for differentiation. It also reinforces why we
call this the logarithmic derivative, since it turns products and quotients
into sums and differences.

Now we compute the residues of the logarithmic derivative.

Theorem. Let f be a meromorphic function on a domain D with

only finitely many zeroes. If f has a pole at zy with order m, then the
logarithmic derivative % has a simple pole at zy with residue —m. If
instead f has a zero at z; with order m, then the logarithmic derivative

’;’((:)) has a simple pole at z, with residue m.

Proof. First suppose that f has a pole of order m at z;. Then in a
neighbourhood of 2z, we have a Laurent expansion

f(z) = a’—m(z - ZO)_m + a—m+1(2 - Zo)_m+1 + ...
with the first co-efficient a_,, non-zero. We can factorize this as
f(2) = (z = 20) "™(@—m + G—mt1(z — 20) + - . .).

Meanwhile, if we differentiate the Laurent series term-by-term (this is
rigorous, as was shown in previous lectures) we have

f'(2) = —ma (2 = 20) ™"+ (=m 4 1)a mia(z —20) 7" + ..
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which can be factorized as
f'(2)=(z—2)"™ Y (—ma pm+(Cm+1Da 1z —2)+...)
and thus the logarithmic derivative takes the form

fl) 1 —mapm+ (—m+L)a_mpi(z — 20) + - ..
flz)  z— 2z G+ G_my1(z — 20) + - .. '

Now look at the second quotient on the right-hand side as z approaches
29. The numerator approaches —ma_,,, and the denominator ap-
proaches a_,,, both of which are non-zero. Thus the second quotient is
the quotient of two non-zero analytic functions, and its limiting value
at zp is —m. Thus we have a Taylor expansion

— MGy, + (—m + D)a_pi1(z — 20) + . ..

= —m+bi (z—20)b2(2—20)°+. ..
Am + Amy1(2 = 20) + . .- m+b1(2—20)b2(2—20)"+

and thus the logarithmic derivative has the Laurent expansion

fi(z) _ —m 2
= + bl + b2 Z— 2 e
flz) z-—2 ( )
around zp. In particular, the logarithmic derivative has a simple pole
at zp with residue —m as claimed.

The case when f has a zero of order m at zy is very similar and is left
to the reader. (In fact, poles and zeroes are opposites of each other in
many ways; one can think of a pole of order m as a zero of order —m,
or conversely a zero of order m as a pole of order —m). O

Example The function f = (z — 2)3¢*/(z — 1)* has a triple zero at 2
(why?), and hence its logarithmic derivative f’/f has a simple pole at
2 with residue 3. Similarly it has a simple pole at 1 with residue -4

(why?).
Combining the above theorem with the residue theorem, we obtain

Corollary. Let D be a simply connected domain, and let f be a
meromorphic function on D with finitely many zeroes and no removable
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singularities (i.e. the only singularities are poles). Then for any simple
closed curve 7y traversed once anticlockwise which does not pass through
any zero or pole of f, the quantity

L)
ori J, ()

is equal to the number of zeroes inside y (counted with multiplicity, e.g.
a double zero counts twice), minus the number of poles inside v (also
counted with multiplicity). In particular, the above quantity must be
an integer.

Example. Consider the function f = (z — 2)3%¢?/(z — 1)* mentioned
earlier; this has a triple zero at 2, a quadruple pole at 1, and no other
zeroes or poles. Thus if y is the circle y(t) = 3¢ : 0 < ¢ < 27, then

o .y J;((;)) dz =3 —4=—1. If o/ is the circle y(t) = 2e" : 0 < ¢ < 2m,

1 f'(z) - _
then 571 Jot T2 dz = —4.

This is already a useful formula - it means that one can count the
number of zeroes and poles of a meromorphic function f inside a region
by integrating its logarithmic derivative on the boundary of that region.
More precisely, the formula does not count the number of zeroes or the
number of poles separately, but rather counts the difference between
the two. This is a fact of life; if a function has both zeroes and poles it is
difficult to find a way to just look at the poles or just look at the zeroes.
For instance, consider the function ——%z= in the disk {z : |2 < 1}.
This function is meromorphic with one zero at 0 and one pole at 0.0001.
However, the zero and the pole almost cancel each other out and if one
was measuring this function on the boundary of the disk one would be
hard pressed to distinguish this function from just the constant function
1, which has no zeroes and no poles. (There is of course some effect of
the combined zero-pole pair - it makes the function slightly larger than
1 on the right half of the unit circle, and slightly less than 1 on the left
half, but this “dipole” effect is much weaker than what a single pole
(such as =) or single zero (such as z) would do to the function
on the unit circle). However, in many cases one knows in advance that
there are no poles (e.g. f might be a polynomial) and then this formula
gives a way to count how many zeroes a function has inside any given
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curve. This formula is especially useful for computer algorithms to
count zeroes, because we know how to teach a computer to compute
integrals numerically. And the algorithm is robust; if the computer
makes a roundoff error and computes 2#7” y j;((:)) dz as 3.99998, we can
see what happened and work out that there were really four zeroes

inside 7y (or at least that there are four more zeroes than poles).

Note also that one has to count multiplicity properly; a function such
as 22 with one double zero is very close to z(z — 0.00001) which has
two simple zeroes. It would be very difficult to design a zero-counting
formula that could distinguish these two functions, so it makes sense
to count a double zero as if it were two simple zeroes.

There is another way to view the formula. Suppose we make the change
of variables
w = f(2)

and hence dw = f'(z) dz. Since z traverses the curve 7, w will therefore
traverse the curve f(v), the image of v under f; this new curve is
parameterized by the function f(7(t)), where the time parameter ¢
ranges over the same interval as with the original curve. By the change
of variables formula (which is just as valid for complex integrals as it
is for real integrals, and it has the same proof) we thus have

1 f'(2) 1 dw
2mi J., f(2) 21 J ppy w

But the right-hand side is nothing more than the winding number of
f(7) around zero. We have thus proven

Argument principle. Let D be a simply connected domain, and let
f be a meromorphic function in D with finitely many zeroes and no
removable singularities. Then for any simple closed curve v traversed
once anti-clockwise which avoids all the poles and zeroes of f, the num-
ber of zeroes of f inside v (counting multiplicity), minus the number
of poles of f (counting multiplicity), is equal to the winding number of
f(7) around the origin.

Example. Consider the function f(z) := 2°, and let v be the curve
v(t) = € : 0 <t < 27. Then f has a quintuple zero at 0, and thus
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has five zeroes and no poles inside 7. Meanwhile, f() is the curve
f(v@®) = € : 0 < t < 2m, which winds five times anti-clockwise
around the origin. Since 5 — 0 = 5, we see that this is consistent with
the argument principle. Now suppose we replace f by the function
g(z) = 2%, which has five poles inside v and no zeroes. Now g(7) is
the curve g(y(t)) = e : 0 < t < 27, which winds five times clockwise
around the origin. Since 0 — 5 = —5, this is again consistent with the

argument principle.

e Informally, what the argument principle is telling us is that every zero
of a meromorphic function f twists the complex plane around the ori-
gin once anti-clockwise, whereas every pole twists the complex plane
around the origin once clockwise. The total twisting around the origin
of a curve 7 by the function f - i.e. the winding number of f(vy) around
the origin - is thus equal to the number of zeroes inside v minus the
number of poles. A double zero will twist twice as much as a simple
zero, and so forth.

* % k % %

Rouche’s theorem

e The argument principle has the following useful consequence: if one
perturbs a complex function by a small amount, then the number of
zeroes minus poles that it contains does not change.

e Rouche’s theorem. Let v be a simple closed curve enclosing a domain
D, and let f, g be meromorphic functions on v U D which have finitely
many zeroes, no removable singularities, and no poles on ~ (i.e. they
are all inside D). Suppose also that

9(2) = f(2)] <[f(2)] for all z € »;

i.e. at every point z of the curve 7, g(z) is closer to f(z) than the
origin is. Then f(7) and g(v) have the same winding number around
the origin, and thus (by the argument principle) the number of zeroes
minus poles of f in D is equal to the number of zeroes minus poles of

g.
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e This theorem is occasionally called the “Walking the dog” theorem; it
says that if you (at f(z)) are walking a dog (at ¢g(z)) around a lamp-
post (at 0), and you always keep the length of the leash (|f(z) — g(2)])
between you and the dog shorter than the distance (|f(z)|) to the lamp-
post, then you and the dog always have the same winding number, i.e.
the leash cannot get tangled up in the lamp-post.

e Proof. Let z be any point in 7. By hypothesis we have |f(z)| >
lg(2) — f(2)], in particular | f(2)| > 0, i.e. f(z) is non-zero. Also g(z) is
non-zero, since if g(z) were zero then |f(z)| would equal |g(2) — f(2)|, a
contradiction. Since f is non-zero on v, and we can define the function
h(z) by h(z) := g(2)/f(z), which will be analytic everywhere on y and
also meromorphic on D. Dividing the hypothesis |g(z) — f(2)| < |f(2)|
by |f(z)| we obtain that |h(z) — 1| < 1, i.e. for every z € 7, h(z) is
contained in the unit ball of radius 1 centered at 1. In particular, h(z)
is never on the negative real axis, and thus Logh(z) is analytic on 7
(where Log is the principal branch of the logarithm. This function has
derivative h((:) by the chain rule, hence h(( )) has antiderivative Logh(z)
on v. Since 7y is a closed curve we thus see from the fundamental
theorem of calculus that f (2) gz = 0. But recall that h = f/g, and

h(z)
hence 2 ((Z)) ’}((ZZ)) - “; ((ZZ)) (see earlier exercise concerning the logarithmic

derivative). Thus
e, [9E)
SEkibek

which implies by the argument principle that f(v) and g(y) do have
the same winding number around the origin, as desired. O

e Example. The function f(z) := z° has a quintuple zero at the origin.
Now consider the function g(z) := z° + z + 1. If we look on the curve
v(t) = 2€™ : 0 < ¢ < 27, which traverses the circle {z € C : |z| = 2},
we see that on this curve

f(2)] = |2> = 2° = 32
whereas

9(2) — f(2)| =z +1| < 2] +1=2+1=3
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(here we have used the triangle inequality |z + w| < |z| + |w]|). Thus
the conditions of Rouche’s theorem are satisfied, and the total number
of zeroes minus poles of g inside v must match that of f, which is equal
to 5. Since ¢ is a polynomial, it certainly doesn’t have any poles, and
hence g has five zeroes inside . To put it another way, on the curve 7,
the term 2z° in g is so much larger than the other two that it dominates
the function g, and hence by Rouche’s theorem g has the same number
of zeroes as 2z° inside this curve, i.e. it has five zeroes.

Indeed we can repeat this analysis for larger circles, i.e. {z € C: |z| =
R} for any R > 2, and conclude that any such circle contains exactly
five zeroes of g. Thus ¢ has exactly five zeroes in the complex plane,
and they all live in the disk {z € C: |z| < 2}.

Let’s analyze these zeroes a little more. We keep the same function
g(z) := 2° + z + 1, but now take the reference function f to be the
constant function f(z) := 1, and use the curve /(¢) = €' : 0 < ¢ < 2,
which traverses the circle {z € C: |z| = 3}. On this curve we have

f(z)] =1
while

; . 1 1 17
90) = S =12 + 2] < 2l 4 |al = g + 5 = =
Thus the conditions of Rouche’s theorem are again satisfied, and we see
that g has the same number of zeroes inside 7' as f does, which is 0 (as
1 is never equal to 0). Thus g has no zeroes in the disk {z : |z| < 1/2},
which when combined with our previous analysis shows that all five
zeroes must lie within the annulus {z : 1/2 < |z| < 2}. (Note that
g cannot have a zero on either v or 4’ by the argument contained in
the proof of Rouche’s theorem). In contrast with the behavior on large
circles, what is happening on small circles such as {z : |[z] = 1/2} is
that the constant term 1 of 2% + z + 1 is dominating, and so g has the
same number of zeroes as 1 (as opposed to z°, which is what happens
for very large circles).

One might hope to continue this analysis further and pinpoint exactly
where the zeroes of f lie. Unfortunately for intermediate circles (e.g.
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{# : |z| = 1}) no single term in g is dominant, and it is not obvious how
to use Rouche’s theorem to count how many zeroes lie inside the unit
circle. Like many tools in complex analysis, Rouche’s theorem is not a
magic wand, but can give a lot of useful information nevertheless.

One consequence of Rouche’s theorem is that it gives yet another proof
of

Fundamental theorem of algebra. Every polynomial P(z) of degree
n has exactly n zeroes (counting multiplicity), and thus can be factored
completely into linear factors.

Proof. Write the polynomial as
P(2) = ap2" + ap 12" 1+ ...+ ag

and note that a, is non-zero (otherwise P would have degree less than
n). Now choose a large circle {z : |z| = R} for some R > 1. On this
circle we compare P against the function f(z) := a,z". Note that

|f(2)] = |an2"| = |an|R"
and
|P(z) — f(2)| = |an_1z"_1 +...Fa < \an_l\R”_l + ...+ |agl.
Thus
1P(z) = f(R)] _ lana| | lan—l |aol

< +o+
| f(2)] an| R |an| R |an | R

(recall that |a,| is non-zero). As R — 400, everything on the right-

hand side tends to zero. Thus there exists some Ry such that for every
R > Ry, we have

|p_1] |an—2|+ 4 lag|

<1
an| R |ay | R? |an| BT

and hence
|P(2) — f(2)] < [f(2)].
Thus by Rouche’s theorem, P and f have the same number of zeroes in

the circle {z € C : |z] = R}. But f clearly has n zeroes in this circle,
and thus P must also. Letting R go to infinity we obtain the result.C].
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Stability of ODE

e We now give an application of the above machinery, to analyzing first-
order linear ordinary differential equations (ODE). Specifically, we con-
sider a system of n (real or complex-valued) functions z1 (%), ..., z,(t),
depending on a time parameter ¢, which evolves by the system of equa-

tions .
Ltl(t) = 01121 (t) + a12x2(t) + ...+ aln.’lfn(t)

%(t) = a91T1 (t) + aggmz(t) +...+ a2nmn(t)

o (1) = amx1(t) + ano®a(t) + . .. + G (t)

where ay1, a2, .. ., @y, are fixed (real or complex) numbers, called the
co-efficients of the ODE. A simple example of such an ODE is the scalar
case n = 1, which is just the equation

d.’El

%(t) = anzi(t)

which is the exponential growth equation (if a;; is positive), or the
exponential decay equation (if a;; is negative), or the constant equation
(if a1; is zero). An example of a more complex system is

dz _

d_tl —2.Z'1—IL'2

dzy :2.7)2—1753
t

& = 23— ay;

dt

thus z; has both an exponential growth factor (the 2z; term on the

right-hand side) and a countervailing decay factor —xs, and similarly

for o and z3. Now it is not clear whether this system will lead to

exponential growth or exponential decay. Other situations are possible;
for instance, the system

dzy

t

ara
dt

= —29
=1

has the oscillating solution 1 (t) = cos(t), z2(t) = sin(t), which neither
grows nor decays exponentially but instead oscillates forever.
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e These types of ODE arise naturally in the study of feedback systems
in engineering or biology - for instance, there might be n species, and
z;(t) represents the population of the j* species at time ¢. The various
coefficients a;; could be positive or negative and measure the relation-
ship between species i and j (symbiotic, predatory, competitive, etc.)
Or the x;(¢) could represent the oscillation of the j™ joint on (say)
a bridge, etc. with each type of oscillation capable of reinforcing or
canceling another. (These are of course simplified models because they
can only deal with linear interactions and not non-linear ones, but they
are still a very useful first approximation in real-life problems). They
also arise in solving higher-order linear ODE such as

f(@) +5f"(t) = 3f'(t) + 6£(t) =0

since after the substitution

zi(t) = f(t); =2() = f1(1);  =s(t) = " (2)

we can rewrite the above third-order ODE as a first order system

dry
¢ = X2
@ =gy
% = —5373 + 3.’1)2 — 6371

(why is this system equivalent to the previous ODE after substitution?).

e There are many interesting questions associated with ODE (or with
partial differential equations (PDE), for that matter), but we shall be
concerned with just one: given a system of ODE of the above form, is
it possible for the solution to grow exponentially as ¢ — +oo (as it does
with e.g. the ODE ‘fi—f = 5x)? If this occurs, we say that the ODE is
exponentially unstable, which is bad news if you are designing a bridge
or managing an ecosystem. There are other possibilities: polynomial
instability (the system grows like a polynomial, as e.g. the system

dzy

dd% = Zy; dd% = 0 will do), stability (the system oscillates, as G =

—To; ddif = z; will do), and exponential stability (the solution decays

exponentially, as e.g. Z—f = —bz will do). A full discussion of stability
analysis is beyond the scope of this course. However, we shall see that
the argument principle (and some linear algebra) can be used to address

this question of stability.
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e To begin with, we use matrix notation to write the system of ODE in
a more compact form. If we let Z(¢) denote the vector

X1 (t)
) (t)

Ialt)

and let A denote the constant (i.e. time-independent) n X n matrix

ay;; a1 ... QAin

21 Q29 ... Q9
A=

ap1 Qp2 ... QOpp

then the ODE can be written in matrix form as

d -
ax(t) = AZ(1).

Now suppose A has an eigenvector v with eigenvalue A € C, thus
Av = Av. Then we see that the function

Z(t) := Mo

will be a particular solution to the ODE. Indeed we have

d d
—Z(t) = —eMv = Ml = eMAv = AZ(2).
For instance, if we write the ODE %L = —gz,; &2 — g, in matrix form

) A0 = (0, 1) ()

and observe that we have an eigenvalue at +i:
0 1 1\ _ (1
-1 0)\i )"\
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then we see that
-'L'l(t) — ot 1

will be a solution to the ODE. Note that as ¢ — 400, e oscillates
but stays bounded, and so the same will happen with z;(t) and z5(t).
This is because the eigenvalue A = 7 that we chose here was purely
imaginary.

More generally, any purely imaginary eigenvalue will lead to an oscillat-
ing solution. But an eigenvalue with positive real part, e.g. A =z + 1y
with z > 0, will lead to an exponentially growing solution, since
eM = e®le®!. Similarly, an eigenvalue with negative real part will lead
to an exponentially decaying solution. This turns out to be the more
or less the complete answer to when an ODE is stable or not:

Stability Criterion. If at least one of the eigenvalues of A has a posi-
tive real part, then the ODE £#(t) = AZ(t) has exponentially growing
solutions. If however all the eigenvalues of A have negative real part,
then all the solutions of £#(t) = AZ(t) decay exponentially. (If there
are purely imaginary eigenvalues, the situation is more complicated -
one may have stability or polynomial instability, depending on some-
thing called the Jordan canonical form of A, which is beyond the scope
of this course).

We will not prove this criterion here, but it will be covered in any
good course on differential equations or advanced linear algebra. If we
accept this criterion as valid, then it basically reduces the question of
whether an ODE is (exponentially) stable or unstable to the question of
whether the eigenvalues of A all lie on the negative half-plane {z € C :
Rez < 0}, or whether there is an eigenvalue in the positive half-plane
{z € C : Rez > 0} (ignoring for now the issue of eigenvalues on the
imaginary axis).

Of course, this begs the question of how one finds eigenvalues. From
basic linear algebra we know that eigevalues A are nothing more than
the zeroes to the characteristic polynomial

f(z) :=det(A — zI)
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which is a polynomial of degree n and thus has n zeroes (counting
multiplicity) by the fundamental theorem of algebra. The polynomial
f is quite easy to compute if one knows A, but finding its zeroes can be
very difficult (for instance, if n > 5, it has been proven that there is no
general formula for the zeroes in terms of the arithmetic operations and
taking k' roots). However, by the argument principle we can count
how many zeroes there are in the negative half-plane; if all n of the
zeroes are there then we have stability, and if at least one is in the
positive half-plane then we have instability. This is best explained by
an example.

Example. Suppose that
1 1 0
A= 0 0 1
-1 -1 0

Then the characteristic polynomial is

1-2 1 0
f(z):=det | 0 -z 1 = (1-2)(2+1)+1x1 = =P +22—2+2.
1 -1 —z

Now we find how many zeroes f has in the left half-plane. We begin by
choosing a large radius R and considering the C-shaped contour that
goes up from —Ri to Ri via the straight line v, (¢) =it : —R <t < R,
and then around the semi-circle y5(t) = Re® : 7/2 < t < 3n/2. The
combined contour 7y := y; 4+ 7, is a simple closed curve traversed once
anti-clockwise, and as R — +o¢ it contains more and more of the
negative half-plane.

By the argument principle, the number of zeroes of f inside 7 is equal
to the number of times f(y) = f(71) + f(72) winds around the origin.
So we shall plot f(vy1) and f(72).

Since v,(t) = it for —R < t < R, we see that f(y.(t)) = —(it)> +
(it)? =it +2 =1i(t> —t) + (2 — t?). Now we draw a sign diagram, and
observe that t3 — ¢ is positive for ¢ > 1 and —1 < ¢t < 0 and negative
for t < —1 and 0 < t < 1, while 2 — 2 is positive for —v2 < t < v/2
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and negative for t < —/2 and t > /2. Also, as t — +o0o the angle of
the curve becomes more and more vertical (because #* becomes larger
in magnitude than all the other terms put together). This allows one
to sketch f(v1) (it looks like a vertical line bent and twisted to create
a loop near the origin). Now look at f(72), which is parameterized by

f(1(t) = —(Re™)>+(Re™)?—(Re™)+2 = —R*¢*'+ terms of size R? or less.

When R gets large then R becomes much larger than R? and we can
effectively ignore the error terms. The curve —R3e*! : 7/2 <t < 37/2
starts at R and winds one and a half times anti-clockwise around
the origin until it reaches —R3i. Gluing this with the sketch of f(7;)
we see that f(y) winds twice around the origin, and never actually
passes through the origin. Thus f has two zeroes on the negative half-
plane and no zeroes on the imaginary axis, which means that there
must be at least one zero on the right half-plane and hence the ODE
is exponentially unstable.
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