Math 3228, Assignment 3 solutions.

e Q1. Let P(2) := an2" + a,_12" "1 + ... + ay be a polynomial of degree
n such that all the coefficients ay,...,a, are real. Show that if z is a
zero of P, then Z is also a zero of P. (Thus zeroes either live on the
real line, or come in pairs, one above the real line and one below the
real line).

e Al. Suppose that z is a zero of P, then
2" + Q12" 4 ... 4 ag = 0.

We can take conjugates (using the facts 2 +w =z +w and 2™ = Z" to
obtain that
Gz +ap 12" ' 4...+a =0.

But since ay, ..., a, are all real, we thus have
AnZ" + 12"+ . .4+ ag =0,
and so Z is a zero of P.

e Q2. Let P(2) be the polynomial P(z) = 2® + 22 + 4z + 30. Determine
how many zeroes P has on each of the four quadrants, and on each of
the four co-ordinate axes.

e A2. Rather unintentionally, this polynomial has the explicit factoriza-
tion
P(z) =(2+3)(¢ —1+3i)(z — 1 — 3i)

which makes the question rather easy; however the method I describe
below works even when there is no obvious factorization for the poly-
nomial. Let us begin by working out how many zeroes there are on the
imaginary axis. Since

P(iy) = —iy® — y* + 4iy + 30

we see that P(iy) crosses the real axis when —y® + 4y = 0, i.e. when
y = —2,0,+2, while P(iy) crosses the imaginary axis when —y? + 30 =
0, i.e. when y = ++/30. Thus for no value of y is the real and imaginary



parts of P simultaneously zero, so there are no zeroes on the imaginary
axis. Now consider what P(iy) does from y = —R to y = +R for a large
R > 0; from the above discussion it starts off in the second quadrant
(near iR®), crosses into the first quadrant, then makes a small loop
from the first to the fourth back to the first and then back to the fourth
again, and then finally crosses into the third quadrant ending up near
—iR3. In particular the total change in argument is approximately —.
If one then executes an anti-clockwise circle from R back to —iR, i.e.
z = Re? m/2 < 0 < 3m/2, then P(z) is approximately R3e*™ (plus
smaller errors of size R? or so0), for a total change in argument of 3.
Thus in total this contour has an argument change of 27, i.e. it goes
once around the origin. By the argument principle (letting R — o0)
this means that there is only one zero on the left half of the complex
plane, which must therefore be on the negative real axis by Q1. On
the right half plane this leaves two remaining zeroes (the fundamental
theorem of algebra ensures P has three zeroes), but they can’t lie on
the positive real axis because P is positive there. Thus by Q1 again P
must have one zero in both the first and fourth quadrants.

Q3. Find a conformal mapping that takes the half-disk {z € C : |z| <
1;Im(z) > 0} to the half-plane {z € C : Im(z) > 0}.

A3. The map f(z) = (2 + 1)?/(z — 1)?, or more generally f(z) =
C(z +1)?/(z — 1)? for any positive C > 0 will work; as will the map
f(z) = —(2—1)%/(2+1)?, or more generally f(z) = —C(z+1)%/(z—1)%.
This answer can be obtained by first converting the half-disk into one of
the four co-ordinate quadrants and then squaring that quadrant. These
maps are analytic and their derivatives are non-zero on the half-disk
and so they are conformal. Note that if you square the half-disk first,
hoping to convert into a whole disk, you will just barely fail because
the half-disk is open (it doesn’t contain the real axis) and so its square
does not intersect the positive real axis.

Q4. If f(2) = f(xz+1y) is a differentiable function of z and y separately
(but not necessarily a differentiable function of z, define the derivatives
of af
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e (a) Show that if f is complex analytic on C, that af =0 and af T(2) =
f'(2)-

e A4(a). This can be proven by direct algebraic computation using the
Cauchy-Riemann equations; but let me indicate another proof. The
starting point is the Newton approximation

fle+de+i(y +dy)) = flz+iy) + dwg—i(rr + iy) + dya—f(ng +1y);

dy
more precisely we have

. f(z + dz +i(y + dy)) — f(z +iy) — dzdl(z +iy) — dyg—g(x +iy) 0
dw,dy—0 |z + dy| B

(strictly speaking this requires f to be continuously differentiable, not
just differentiable, though analytic functions are automatically contin-
uously differentiable to any order). Writing dz := dx + idy we thus see
from the definitions that

of
0z

of

f(z+d2) = f(2) +dz==(2) + dz a_( 2);

this gives an intuitive explanation as to where % and ‘?—3’; come from.

On the other hand, if f is analytic then

f(z+dz) = f(2) +dzf'(2),

and comparing the two gives (a). (This is not a rigorous proof yet, but
can be made rigorous by using limits as indicated above).

e (b) Show that if f : C — C and g : C — C are differentiable functions,
then the derivatives of the composition f o g : C — C are given by

9090 = Y g2y + L g2
and

df og of dg of g, |

29 (0) = Wtgen %) + Ltoen 2.



A4(b). One has to take care here because g has both real and imaginary
parts, and f o g depends on both. If we write ¢ = u + iv then the chain
rule gives
Ofog Of du  0f dv
oz (2) = oudz T v or

and thus

22900 = Lg(en o) + L g(an o,

There is a similar formula for the y derivative, which will eventually
give the above formulae. Another way to proceed is by Newton ap-
proximation. Starting with

dg dg
g(z+dz) =~ g(z) + dz&( z) + dzg( 2);
we see that 5 9
_ 1,99 99
dg = dzaz (2) + dzaz(z)

and taking conjugates

— —0g dg
dg = dz—== dz
g =dz 82( 2) +dz(2).
On the other hand, from Newton’s approximation again we have

F(9(z) +da) = 1(0(2) +dg 2 (0(2) + Ao (a(),

and combining this with the previous estimates we see that

i ~ a0 (9(2) 22 (2) + 2L (92 22 (2))

of of

B 602+ Y gD

Comparing this with the Newton approximation

0f o —0fo
Fogletdz) ~ fog()+d= 200 () + L 20)

we obtain the result.



e (c) A twice-differentiable function f is called harmonic on C if %(z) +
0%f

52(2) = 0 for all z € C. Show that f is harmonic if and only if
%% = 0. Conclude in particular that every complex analytic function

is harmonic.

e Ad(c). I apologize here; the statement is true as stated, but is far more
difficult to prove unless one already assumes theZLt f is twice continuously
differentiable, since this implies that % = % (Clairaut’s theorem).

. C s oy yor
Assuming this it is easy to see that

0 0 1,0%f o f
9207 Z(@(z) + a—yg(z))
and the claim follows. Note that if f is analytic then % f is zero by
4(a) and hence 22 f = 0.
e (d) Suppose that f : C — C is complex analytic, and g : C — C is
harmonic. Show that go f : C — C also harmonic.

e A4(d). By Q4(c), it will suffice to show that

0 0
maswel)=
First observe from Q4(a) and Q4(b)
O (o)

55900 = UG,

so by the product rule




so the second term vanishes. For the first term, we use Q4(b) and
Q4(a) to expand

0 ,0¢g N
G2 = 5 L) =0

since ¢ is harmonic.

Q5. Determine all the residues at each of the poles 0, —1, —2, ... of the
Gamma function.

A5. Since I'(z) = I'(z + 1)/z, and I'(1) = 1, we see that I'(z) has a
Laurent expansion of the form I'(z) = (1 4+ a;2 + a2z + ...)/z around
0 and hence has a simple pole at 0 with residue 1. Thus I'(z + 1) =
1/(z+ 1) + ... has a simple pole at —1 with residue 1. Since 1/z is
analytic and equals -1 at -1, we see that I'(z) = I'(2+1) /2 has a simple
pole at -1 with residue -1. Thus I'(z + 1) has a simple pole at -2 with
residue -1, which dividing by z again shows that I'(z) has a simple pole
at —2 with residue 1/2. Continuing this way by induction we see that
['(z) has a simple pole at —n with residue (—1)"/n!.

Q6. Let C be the circle C := {z+1iy : (x—a)?+ (y—b)? = r*} centered
at a + bi with radius r, where we assume that » > 0 and r # va? + b?.
Show (either by algebraic means, or geometric means) that the image
of C' under the inversion map z % is still a circle, and determine its
center and radius.

A6. It is easiest to work using complex co-ordinates z := z + iy and
29 := a + ib, so the equation for the circle becomes |z — z|*> = r?. Now
we map w := 1/z, thus z = 1/w and the equation for w is

11/w — z|* = r?.
Multiplying by |w|?, we obtain
1= zow|” = r*|w|*
using the identity |w|?> = ww this becomes
1 — 20w — ZoW + |20)*|w]? = r?|w]?,
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completing the square we get

o % |20/ r
2> =72 2= (2 =) (|2 - r?)*

wl* —

The left hand side is |w — |zo‘§7"_rz\2, so this is the equation for a circle
with center zo/(|zo|> — r?) and radius r/||29|? — r2|. Note that one can
easily reverse these steps and ensure that every point on this image

circle did indeed come from a point on the original circle.

Q7. Let z,w be any complex numbers with Re(z),Re(w) > 0. Show
that )
I'(z)l
/ tz_l(l — t)w—l dt = M
0 I'(z +w)

A7. A modification of page 15 of Week 8 notes gives

1 [e')
D()T(w) = ( / (L= )" dy)( / e )
0 0
and the claim follows.

Q8. Use the residue theorem applied to the function f(z) := m

and the contour which is a square connecting R — Ri, R+ Ri, — R+ Ru,
and —R — Ri where R =m + % is a large half-integer, to deduce that

A8. The function f has poles at the integers Z (since this is where 2z
and tan 7z can vanish). Let us first work out the orders and residues of
these poles. We begin with the pole at 0. Since tan 7z = sinwz/ cos 7z
has a simple zero at zero, f has a triple pole at zero. To compute the
residue, we begin with the Taylor expansions

sinmz =7z — 123 /31 4+ ...

and
cosmz=1—7m222/21+ ...,
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which on dividing gives

1 i

Cos Si = — — =
7z/sinmz - 3z+
and hence .
T
2)=———+...,
1(z) w28 3z

i.e. the residue of f at 0is —7/3.

Now let us consider the residue at any other integer n. Again we Taylor
expand, but this time around n:

sinz = (—1)"m(z —n) +...

cosmz = (—1)"+...

and hence 1
fz)=————<+...

n’mw(z —n)

and hence the residue at 0 is ﬁ Thus by the residue theorem, the

integral on the contour 7, indicated is

m 1

/ f(?) dz=27ri(—7r/3+2%+ _Z %)

which simplifies to

1 g2
IO P

So it will suffice to show that f’Ym f(2) dz goes to zero as m — oc.

Let us see what f does on, say, the top edge of the contour, where
z=(m+1)i+z for some —m — 1 <z < m+ L. Write

1 cos(mz) e

tan(ﬂz)| =|

sin(7z) = |e”iz — ez :



Substituting z = (m + 3)i + z, we obtain

1 f7r(m+1/2) 7rz:v_+_67r(m+1/2) —TiT

tan( )| ‘ — m+1/2 e7rZ$ _ ew(m+1/2)e miT

which simplifies to

14+e 7r(2m+1)627rzw 1 +e—7r(2m—|—1)

tan( )| = ‘ — e—m(@m+1)g2miz ! — 1 _ o—w(2m+1)’

Since m > 1, we have % < 2 (say). Thus —— is bounded in
magnitude by 2 on the top edge of the contour. The bottom edge is
similar (in fact, it follows from the top edge bound because tan is an
odd function), so now consider the right edge where z = (m + 1) + iy.

Now we have

1 ie”™ — je™ 1 — e 2™y

tan(ﬂz)| - ‘ie‘“’ + ie”y‘ T 14w

Similarly for the left side. Thus in all cases we have |
the contour 7y, and hence | z—| < é

length 8 R, the integral is thus at most 2,
as R — 400, as desired.

tan | <2 on
w4

Since the contour has total
which does indeed go to zero



