Mathematics 133
Terence Tao
Final, March 24, 2004

Instructions: Do all nine problems; they are all of equal value. There is plenty of working
space, and a blank page at the end.

You may enter in a nickname if you want your final score posted. Good luck!
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Problem 1. Let N > 1 be an integer, and let  be a subset of Z/NZ which consists of
precisely A elements. Let f : Z/NZ — C be the function defined by setting f(z) := 1 when
z € Q and f(z) := 0 when z ¢ Q. (This function is sometimes called the indicator function
or characteristic function of Q).

(a) Show that f(0) = A/N, and that |f(£)] < A/N for all other values of £.
We have

; 1 ; 1 1 A
fO=5 2, @™ =g > j@=F21=5F
z€Z/NZ z€Z/NZ z€EQ
and
f 1 2mifz /N 1 2mifz /N 1 A
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where we have used the triangle inequality and the fact that e2™%%/N has magnitude 1.

(b) Show that Y ez/nz |f(©)? = A/N.

By Plancherel’s theorem we have

£ 2 1 2 1 2 A
Y fOr=5 > H@P=5>1=%

E€EZ/NZ zE€EZ/NZ z€eQ




Problem 2. Let f € S(R) be a Schwartz function with the property that f(z) = 0 for
|z| > 1/2 (in other words, f is supported on the interval [-1/2,1/2]). Prove the identity

= s1n(7r n—E§))
_Z m(n —¢§)

for every non-integer frequency £ € R\Z. (Hint: start with the Poisson summation formula
Y fle4+n) =32 ___ f(n)e2™in applied to any —1/2 < & < 1/2, multiply both sides

n—=-—oo n—=—oo
by e~27®¢ and integrate both sides in z from —1/2 to 1/2. You may freely interchange
integrals and summations without justification). The above identity is known as the Nyquist-
Shannon sampling theorem, and plays an important role in information theory and in signal

processing.

Starting with

Z f.fL'+TL Z f Zfrinz

n=—oo n=—oo

and multiplying by e~27%%¢ we obtain
o0
Z f(.’L' + n)e—Qwin — Z f 27rzn (z—¢€)
n=—oo n=——oo
and then integrating x from —1/2 to 1/2, we obtain

1/2 0 1/2 oo )
/ Z f $+n —27rz:c§ dr _/ ) 2miz(n—¢) dr.

1/2 p=—w0 1/2 n=—co

Interchanging the integral and sum, we obtain

/
Z /1 2 f - +n —27rzz§ dr = Z / 27rz'a:(n—§) dr.

n=-—oo 1/2 n=——oo 1/2

Observe that in the integral fi{% f(x + n)e~ 2728 dg, the quantity = + n ranges between
n —1/2 and n + 1/2. But f is only non-zero between —1/2 and 1/2. Thus for non-zero n,
the integral fi{% f(z +n)e~2m¢ dy is zero. Thus the left-hand side is

1/2 .
/ f(x)e ™8 dg,

—1/2

Again, since f vanishes outside of [—1/2,1/2], this is the same as

/_ F(@)e=2m%¢ dg = f(£).



Now we turn to the right-hand side. Observe that

2miz(n—§)

1/2 .. .
. (=€) 4. _ i€ 12z 2isinw(n—§) o sinm(n—1)
L, femerte da = o g M = o0 20 = e S

Thus the left-hand side is %0 ___ f (n)% The claim follows.




Problem 3. Let u(t,z) : R x R = C be a solution to the one-dimensional wave equation

8%u 8%u
W(tam) = W(ta T).

Suppose that for each time ¢, u(t,z) is a Schwartz function. Define the spatial Fourier
transform 4 (¢, &) of u at time ¢ and frequency £ in the usual manner by the formula

u(t, &) = /Ru(t,m)e2”””§ dz.

(a) Show that 4(t, ) must be of the form
i(t,€) = F(E)eT 4 G(ee

for some functions F: R — C and G : R — C. (You may freely interchange time derivatives
with the Fourier transform without justification, and assume as much differentiability in time
as you wish).

Taking Fourier transforms in space of the wave equation, we obtain

..
e (1,6) = (2ri6) a1,

or in other words )

0

@a + 472620 = 0.

The characteristic polynomial ¢ 4+ 472¢2 = 0 has simple roots at ¢ = 427 and ¢ = —27i€,
so for each &, the solution to the above equation is of the form

a(t, ) = P + G(e)e >

for some F' and G. (To actually solve for F' and G, we would need to know both the initial
position u(0,z) and initial velocity 2%(0,z) of the wave. I'll leave it as an exercise to find out

exactly what the formula is, and to see why F' and G will be Schwartz if the initial position
and velocity are Schwartz.).

(b) Conclude that u(t,x) must be of the form
u(t,z) = f(z +1) + gz — 1)

for some functions f : R — C and g : R — C. (You may assume without justification that
the functions F', G constructed in (a) are Schwartz).

Since F' is Schwartz, we can write F' = f for some Schwartz f, and similarly write G = g.
Thus

a(t, €) = f(§)e*™E + g(g)e 2miE.



Taking inverse Fourier transforms and using the symmetries of the Fourier transform, we
obtain
u(t,z) = f(x +1t)+g(x —t)

as desired.



Problem 4. (a) Let f : R? — C be a Schwartz function of two variables. Let g : R — C be
the function defined by

g(z1) == / f(z1,z2) dzo for all z; € R;
R

this function is sometimes called the orthogonal projection of f to the z-axis. Give a formula
for the one-dimensional Fourier transform §(§) of g in terms of the two-dimensional Fourier
transform f(&,&) of f. (You may interchange integrals without justification. Your final
formula should not have any integrals in it).

For any £ € R, we have

71€3) :‘/Rg(;m)ei%mlg d‘f:/R/Rf(xl,xQ)e*%imﬁ de.

Writing z1£ as (z1,z2) - (£,0), we thus see that

g(é-) — /R2 f(iUl,$2)€_2ﬂi(w1’$2)'(€’0) d‘f — f(é"o)

(b) Let fi : R — C and f» : R — C be Schwartz functions of one variable. Define the
function f : R?2 — C by

fa1,22) i= fi(z1) fa(@2);
this function is sometimes called the tensor product of f; and fo. Give a formula for the
two-dimensional Fourier transform f(&1,&) of f in terms of the one-dimensional Fourier
transforms of f; and f». (Again, you may interchange integrals without justification. Your
final formula should not have any integrals in it).

We have

f(€1,€2) =/ f(.%'l,$2)e_2”i($laz2)'(§1,€2) dz
RZ
:/ / fi1(@1) fo(m2)e 2mimé12mie282 gy dypy
RJR

= (/R fl(wl)e—%rim& dml)(/R fl(m2)e—27riz2§2 da:z)
= fi(&) fo(&).



Problem 5. (a) Let a > 0 be a real number, and let f : R — C be the function f(z) :=

e 2maz[  Prove that f € = W (This function f is sometimes known as the Cauchy

distribution corresponding to the parameter a, and occurs sometimes in probability theory).

We have

[e) o 0
f(é-) :/ e—27ra|z|e—27ri:c§ dz :/ e—27rz(a+i£) dz +/ e—27riz(—a+i§) dz
—0o0 0 —o0

e—27rm(a+i§) e—27ra:(—a+i§)
= |5 + % oo
—2n(a+1i€)° ' —2m(—a+i€) "
Now observe that as  — 400, the function e~27%(a+i€) has magnitude e~27%* and hence

goes to zero (since a > 0). Similarly as © — —oo, the function e~272(=a+%) goes to zero.
Thus we have

f(f) 1 1 2a a

T on(a+if)  —2m(—a+if)  2m(a+if)(—a+if) 7(€ +a?)

as desired

(b) Using part (a), prove the identities
/ T_d
wEta G

[t =
oo (52 +a2)2 - 2a3"

(You may assume without justification that the Fourier inversion and Plancherel theorems
apply not only to Schwartz functions, but more generally to functions of moderate decrease;
cf. Section 1.7 of Chapter 5).

and

From the Fourier inversion formula we have

BN ™ [ d
o= [ foa-I[ S5

since f(0) = 1, the first claim follows. Meanwhile, from Plancherel’s theorem we have

e’} 0 2 e} d

On the other hand,
—4miax

‘/700 |f(£13')|2 dr = [m 6747ra|z| dr = 2/0 6747mz dr = 2@_47Ta

and the second claim follows.

o _
|0 2ma




Problem 6. Let n > 1. For each t > 0, let Hy : R™ — C denote the function

— 1 —|z|? /4t

(This function is sometimes known as the heat kernel at time ¢ in n dimensions, and is related
to the heat equation). Prove that for every s,¢ > 0 we have the identity

Hs *Ht = Hs+t-

(Hint: There are two ways to proceed. One is direct computation of the convolution. The
other proceeds by first computing the Fourier transform of H;.)

Starting with the fact that the Fourier transform of the Gaussian e~ is the Gaussian
e~m€ "and dilating = by V/4rt, we see that the Fourier transform of Hy is e =47 §°t. Sim-
ilarly the Fourier transform of H; is e=47°1€1s | Thus the Fourier transform of H, x H, is
e~47"16(s+)  which is the Fourier transform of H,,. Since the Fourier transform is a bijec-
tion on Schwartz functions, we obtain Hy x H, = H s as desired.




Problem 7. Let N > 1 be an integer, and let f : Z/NZ — C be a function on the
cyclic group Z/NZ. Suppose we take the Fourier transform of f twice, creating a function

f : Z/NZ — C. Find a simple formula relating this function to the original function f.
(Your final formula should not have any summations in it. Be warned that the formula may
look slightly different from the corresponding formula for the Fourier transform on R, which
you worked out as one of your homework problems).

We have

fa)=x Y F@ermee,

€€Z/NZ
Comparing this with the Fourier inversion formula

f@)y= Y fEem=em

£€Z/NZ

we see that f(z) = + f(—=z). (One can also use f(N — z) instead of f(—z) if wants to keep

the variable ranging between 0 and N — 1 (or between 1 and N).

10



Problem 8. Let f : R® — C be a Schwartz function. Show that f is real-valued (i.e.

~

f(z) € R for all z € R") if and only if we have f(—&) = f(£) for all £ € R". (Hint: f is

real-valued if and only if f(z) = f(z) for all z € R™).

Observe that for any Schwartz f we have

= (z)e2miz€ d¢

R”

= [ Taerrt a
R’n

= F(-¢).

~

~

Thus if / is real, then f = f, and hence f(~¢) = f(€). Conversely, if f(—£) = f(¢), then

f (=€) = f(=¢) for all ¢, which implies that f and f have the same Fourier transforms. Since
the Fourier transform is a bijection on Schwartz spaces, we have f = f, thus f is real.

11



Problem 9. Let N be an odd integer, and let f : Z/NZ — C be the function f(z) :=
2@’ /N (a) Show that the Fourier transform f : Z/NZ — C of f obeys the identity

f(26) = e 2N f(0)
for all £ € Z/NZ. (Hint: complete the square).
We have

]E(%):% Z e27rix2/Ne—27ri(2g)z/N_
z€EZ/NZ

Since z2 + (26)z = (z + £)? — €2, we thus have
F(26) = 2mi(a-+§)* /N g—2mi€* /N
fe=5 > & e 2N,
2€Z/NZ
Making the change of variables y = z + £ (and noting that if you shift all the elements of

Z/NZ by &, you just get Z/NZ again (with each element of Z/NZ appearing exactly once)
we thus have

¢ — l 2miy? /N ,—27wit2 /N
f(28) e e .
N y€Z/NZ

Since f(0) = 4 >yez/NzZ 2™’ /N the claim follows.

(b) Using (a) and Plancherel’s theorem, conclude that |f(£)] = N~/ for all £. (You may
use without proof the fact that when N is odd, the map & — 2£ is a bijection from Z/NZ
to Z/NZ). The quantities f(€) studied here are sometimes called Gauss sums, and play an
important role in number theory.

From (a) we have |f(2¢)| = |f(0)] for all £ € Z/NZ; changing variables 7 = 2¢ we thus see
that |f(n)| = |f(0)| for all € Z/NZ (using the above-mentioned bijection property). Thus
by Plancherel

% Y @P= Y i@ = Y [fOF=NIfOP

z€Z/NZ neZ/NZ neZ/NZ

On the other hand, we have

+ Y UeP=5 X @=L Y 1=,

z€Z/NZ z€Z/NZ z€Z/NZ

and the claim follows.
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