Assignment 6 (Due Mar 11). Covers: pages 145-149 of text. Optional
reading: pages 149-153, 184-196.

The questions marked ”Optional” are more challenging, and will not
count toward your final grade. They will however strengthen both your
technical skills and your conceptual understanding of the material.

e Q1. Do Exercise 17 of Chapter 5 of the textbook.

e Q2. Do Exercise 5 of Chapter 6 of the textbook.

e Q3. (Optional) Do Exercise 7 of Chapter 6 of the textbook.

e Q4. Do Problem 7(a) in Section 7 of Chapter 6 of the textbook.

e Q5. Let f(x) be a Schwartz function on R, and let u(z,t) be the
solution to the one-dimensional heat equation

ou 0%u
E(%t) = @(%t)

as discussed in class (or in Section 2.1 of Chapter 5 of the textbook),
defined for allx € R and t > 0. Here we have set the thermal diffusivity
k to equal 1 for simplicity.

e Q5(a). Show that if f(z) is non-negative for all x € R (i.e. f(z) >0
for all z € R), then u(z,t) is also non-negative for all x € R. (Hint:
use the heat kernel).

e Q5(b). Show that if there exist upper and lower bounds M; < M, such
that My < f(z) < M, for all z € R, then we also have M; < u(z,t) <
M, for all x € R and ¢t > 0. Can you give a physical interpretation or
explanation of this fact (which is sometimes referred to as the mazimum
principle)?

e Q6. The Schridinger equation

a_w + iaQ_w —
Zat om 0x2

describes the evolution of a wave function ¢(z,t) of a particle, which is
a complex-valued function of one spatial variable z € R and one time
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variable ¢ € R. Here /i and m are positive constants (% is Planck’s
constant, and m is the mass of the particle). This equation plays an
important role in quantum physics. The purpose of this exercise is to
illustrate the power of the Fourier transform in discovering important
physical consequences of this equation.

Q6(a). Suppose 1(z,t) is Schwartz for each ¢, and suppose we are given
initial data ¢(z,0) = f(z) for some Schwartz function f. By arguing
as in class or in the textbook, derive the formulae

1/1(67 ) 27 z§2th/mf(€)
and

w(x’ t) — /R 627r2i§2th/m6727riw§f-(€) df

Note: You may freely interchange time derivatives with spatial integrals
without justification.

Q6(b). Continuing part (a), suppose that we also know that [ |f(z)|* dz =
1. Conclude that [ _[¢(z,t)|* dz =1 for allt € R. (This fact is some-
times referred to as conservatwn of probability in quantum physics).

Q6(c). Continuing part (b), suppose that we also know that [ 2 4 (z)|? dz =

oo 2m

(E) for some non-negative real number (E} (this quantity is known as
the ezpected energy). Conclude that [*° 2|3 (z,1)2 dz = (E) for all

t € R. (This fact is sometimes referred to as conservation of energy in
quantum physics. Note that the factor %, while important for physics,
will not play a major role in this mathematical problem. The presence
of angled brackets around the F is for physical reasons; you can ignore
them from a mathematical standpoint.).

Q6(d). (Optional) Continuing part (c), suppose that we also know that
[ B4 (3)f(z) dv = (p) for some (p) € R (this quantity is known as

oo % dx

the ezpected momentum). Conclude that that [~ ?gf (z,)(x,t) do =
(p) for all ¢ € R. (This fact is sometimes referred to as conservation
of momentum in quantum physics. Again, the factor ’Zl out the front
do not play a major role in this question, although it is important for
the next question). Is it possible for the expected momentum to be a

complex number rather than a real number?




e Q6(e). (Optional) Continuing part (d), for each time ¢ € R, let (z(t))
denote the quantity

o0

(@) = [ alolw )P do
—0o0

this quantity is known as the expected position at time t. Suppose also

that the expected momentum (p) is equal to (p) = m(v) for some real

number (v) (this quantity is known as the ezpected velocity). Show that

(z(t)) = (x(0)) + t{v)

(this is sometimes referred to as Newton’s first law for the Schrédinger
equation).

e Q7. Let v = (vy,v2,v3) and w = (wy, ws, ws) be two vectors in R>.
Recall that the dot product v-w and cross product v x w are defined as

VW = VW1 + VW2 + V3Ws

and

v X w = (VoWs — V3We, V3W — VW3, V1Wg — VoW1 ).
Let f(x1,z9, z3) = (fi(z1, 22, T3), fo(z1, 22, 3), f3(21, T2, T3) be a vector-
valued function on R?, i.e. a function from R? to R®. (The component
functions fi, fo, f3 are thus scalar valued functions, i.e. functions from
R?® to R. If f is differentiable (i.e. each of the components fi, fs, f3 are

differentiable, we define the divergence div f of f to be the scalar-valued
function
ofi | 0fe n Ofs

divf =
IVf 8951 * 8x2 8333

and the curl curl f of f to be the vector-valued function

Ofs 0fy 0fi 0fs 0fs 0fi

83:2 B 8153’ 81'3 - 8$1, 63:1 6372 )

curlf = (

It f is Schwartz (i.e. each of the components fi, fa, f3 is Schwartz, we

define the vector-valued Fourier transform f(§) by the formula

~
—

() = / et fle) de.



o Q7(a) If fis Schwartz, show that f: (fl, o, fg)

e Q7(b) If f is Schwartz, show that

~
—

div (&) = 2mi€ - J(€)

and
/\—i /\—I

curlf (&) = 2mi€ x f(§)

(recall that & = (&, &, &) is a vector in R?). In a similar spirit, show
that for any scalar-valued Schwartz function F(z), we have

gradF (€) = 2mig F(€)
where the gradient gradF' of F' is defined as gradF' = (g—ﬁ, g—i, g—i).

e Q7(c) Suppose we define the Laplacian Af of f by the formula

8 . 9 . B

Af =

Show that e R
Af(€) = —4m*[€]*f(€).

e Q7(d) For any two vectors v and w in R?, verify the identity

|2

lv|*w =v(v - w) +v %X (v X w).

(Note: while this can be done algebraically, the geometric proof may
be more clear conceptually).

e Q7(e) Using Q7(bcd), verify the Hodge identity

A f = graddiv f + curlcurl f



