Assignment 3 (Due Feb 5). Covers: pages 51-54, 70-81 of text.

The questions marked ”Optional” are more challenging, and will not
count toward your final grade. They will however strengthen both your
technical skills and your conceptual understanding of the material.

e Q1. Do Exercise 15 of Chapter 2 in the textbook.

e Q2 (Optional). Do Problem 2 (in Section 7) of Chapter 2 in the text-
book.

e Q3 (a). Suppose f is 2m-periodic and continuously differentiable. Show
that for every ¢ > 0, there exists a trigonometric polynomial P such
that

|f(z) = P(z)| <e

and
|f'(z) — P'(z)| <e

for all —m < z < 7; this is a variant of Corollary 5.4 of Chapter 2 in the
textbook, but with a stronger hypothesis (f is not just continuous, but
is in fact continuously differentiable) and a stronger conclusion (we not
only have P close to f, but we also have P’ close to f'). More succinctly,
C'! functions can be approximated in the C! sense by trigonometric
polynomials. (Hint: Apply Corollary 5.4 to f’(z), and then use the
fundamental theorem of calculus, writing f(z) = f(0) + [ f'(y) dy).

e Q3 (b). (Optional) Formulate and prove a generalization of the above
result to functions f in the class C* for some k > 0.

e Q4 (a). Find a sequence of functions f, for n = 1,2,... which are
each continuous and 27-periodic, with the property that f, converges
to zero in the mean-square sense, but not in the pointwise sense. (Hint:
choose the f, so that f,(z) is large at, say, z = 0, but has small mean
square).

e Q4 (b). Find a sequence of functions f, for n = 1,2,... which are
each continuous and 27-periodic, with the property that f, converges
to zero in the pointwise sense, but not in the mean-square sense. (Hint:
choose the f, to be small except on an interval such as [1/n,2/n], and
to have large mean square).



e Q5 (a). Find a sequence of 27r-periodic functions f, forn =1,2,..., and
another 2r-periodic function f, with the properties that f, converges
to f in mean-square sense, and that each of the f,, is continuous, but
that f is discontinuous.

e Q5 (b) (Optional). Repeat (a), but ensure that f, converges to f in
the pointwise and the mean-square senses.

e Q6. Let f and g be Riemann-integrable 27-periodic functions, and let
h = f % g. Show that the (Dirichlet) partial sums of the Fourier se-
ries of h converges absolutely and uniformly to A. (Hint: the following
results will be useful: Parseval’s identity, Corollary 2.3 of Chapter 2,
Proposition 3.1(vi) of Chapter 2, and the Cauchy-Schwarz inequality).
Remark: This exercise shows that A is “better” than just being a con-
tinuous function (which it is, by Proposition 3.1(v)), since continuous
functions do not always enjoy uniformly convergent Dirichlet sums. In
fact, h belongs to a regularity class called the Wiener class, which is
stronger than being continuous, but not as strong as being continuously
differentiable. (Being in the Wiener class just means that your Fourier
coeflicients are absolutely summable).

e Q7. Let f be continuously differentiable and 27-periodic. Show that
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(Hint: use Parseval’s identity and the identity in the middle of page 43
of the textbook). Conclude that the Fourier series of f converges ab-
solutely and uniformly to f. (Hint: use the Cauchy-Schwarz inequalty
and Corollary 2.3 of Chapter 2). Remark: compare this to the last part
of Corollary 2.4 of Chapter 2.

e Q8. In this homework question we introduce the notion of Holder con-
tinuity, which is a range of intermediate regularity classes between C°
(continuous functions) and C' (continuously differentiable functions).

e Let 0 < a <1 be a number, and let f be a 2m-periodic function. We
say that f is Hélder continuous of order « if there exists a number



M > 0 such that |f(z) — f(y)| < M|z — y|* for all real numbers z, y.
(The class of all Holder continuous functions of order « is sometimes
denoted C%%).

Q8(a). Show that if f is Holder continuous of order «, then it is also
continuous. (In other words, C%® is contained in C?).

Q8(b). Show that if f is Holder continuous of order o, and 0 < 8 < a,
then f is also Holder continuous of order 5. (Hint: treat the cases
|z —y| < 27 and |z — y| > 27 separately. For the latter case, use the
fact that continuous periodic functions are bounded). In other words,
C%* is contained in C%#,

Q8(c). Let f be the function defined by f(z) := |z|'/? if |z| < 7, and
extended periodicially to the whole real line. Show that f is Holder
continuous of order 1/2, but is not Hélder continuous of order « for
any 1/2 < a < 1.

Q8(d). Show that if f is continuously differentiable, then it is also
Hélder continuous of order « for every 0 < o < 1. (Hint: prove the
a = 1 case first, using the Fundamental theorem of Calculus, and
then use Q8(b)). In other words, C' is contained in C%*. Remark:
functions which are Holder continuous of order 1 (i.e. functions in
C%!) are sometimes called Lipschitz continuous. Thus all continuously
differentiable functions are Lipschitz contintuous.

Q9. (Optional) Suppose f is Holder continuous of order «. Show that
there exists a constant M’ > 0 such that | f(n)| < M'/|n|® for all n # 0.
(Hint: let A > 0 be arbitrary, and consider the functions Ay f defined
in the previous homework. Use the Holder continuity assumption to
prove that the Fourier coefficients of Ay f do not exceed Mh®~!. Then
use Q5(b) of the previous homework and conclude a bound on f(n)
depending on h. But h is arbitrary; now set h = 1/|n| and see what
happens.)

Q10. Let f and g be Riemann-integrable, 2r-periodic functions. Let g
be the function §(z) := g(—z).

Q10(a). What is the relationship between the Fourier coefficients of g
and the Fourier coefficients of §?

3



e Q10(b). Show that

1 m

or | lo@P dz=(g%3)(0).

(There are two distinct proofs; one using Parseval’s identity, and one
using direct computation that avoids all use of the Fourier transform.)

e Q10(c). Show that

o | \re@P do= o [ I+ ae)

(Again, there are two proofs, one via Parseval and one via Q10(b) and
Proposition 3.1 of Chapter 2).



