Math 132 - Week 8

Textbook sections: 5.5-5.7
Topics covered:

e Zeroes and poles

e The point at infinity
Overview

e In the last two weeks we’ve shown that analytic functions can be written
as a convergent power series. If there are singularities, then sometimes
we can’t write these functions as convergent power series, but we can
usually still write them as convergent Laurent series.

e In this set of notes we use these power series expansions to analyze
the behaviour of analytic functions near zeroes and near singularities.
We’ll be able to classify singularities into different categories, namely
non-isolated singularities, essential singularities, poles, and removable
singularities.

Zeroes of functions

e Before we classify singularities of functions, we’ll first classify zeroes of
functions, which are a bit easier. Later we’ll see that singularities and
zeroes are closely related; basically, 1/f has a singularity whenever f
has a zero.

e A point 2 is called a zero of a function f if f(z)) = 0. However, this
is not the end of the story; some zeroes are “stronger” than others.

e For instance, consider the polynomials f(z) = (z—1)(2+2) and ¢g(2) =
(2—1)?(2+2). Both f and g have zeroes at 1, but the g has a “double
zero” at 1 whereas f only has a “single” zero. Another way of saying
this is that both f(z) and g(z) converge to zero as z — 1, but g
converges “twice as quickly” as f. For instance, f(1.01) = 0.02, but
¢(1.01) = 0.0002, and so forth.



More precisely, if f(z) is a polynomial, we say that f has a zero of
order k at z if you can divide out k factors of (z — z) and still be
continuous at zp, but you can’t factor out k£ + 1 factors of (z — zg)
without introducing a discontinuity at zp.

In other words, if

lim & exists, but
z—z0 (2 — 29)*
lim L does not exist

z—z0 (2 — 2g)kt!

we say that f has a zero of order £ at z.

Thus, (2 — 1)(z + 2) has a zero of order 1 at 1, and (z — 1)?(z + 2) has
a zero of order 2 at 1. Both functions have zeroes of order 1 at -2.

Zeroes of order 1 are also called simple zeroes or single zeroes; zeroes of
order 2 are also called double zeroes; zeroes of order 3 are called triple
zeroes, and so forth. Thus (z — 1)?(z + 2) has a double zero at 1 and a
simple zero at -2.

Somewhat confusingly, if f(z) # 0 then by the above definition, f will
have a zero of order 0; e.g. (z — 1)?(z + 2) has a zero of order 0 at 3.
So a zero of order 0 isn’t actually a zero!

The above definition works for all analytic functions, and not just poly-
nomials. For instance, consider the function f(z) = sin(z) at zy = 0.
This function has a zero at 0; to work out what order of zero it has, we
use the Taylor expansion of f(z) around 0:

We can divide out one factor of (z — 0) = z and still be continuous at
z2=0:

&) 2 =
z 3! bl
Even though @ is undefined, we clearly see that @ converges to 1
as z —+ 0.



e However, if one divides out by two powers of z then the function de-
velops a singularity at 0:

flz)y 1 =z 2

2 z 31 5!

z

Because of this, we see that sin(z) has a simple zero at zy = 0.

e More generally, if f is analytic at zy, the order of the zero at z; is equal
to the smallest number k for which the (z — 2)* co-efficient does not
vanish. For instance, the function

f(2)=2+1)3+3+D*+4(z+1)°+...
has a triple zero at —1.

e Let’s return to the example f(z) = (2—1)?(2+2). The Taylor expansion
around 1 is
flz)=3(z=1)"+ (- 1)°

while the Taylor expansion around —2 is
f(2)=9(z+2) —6(2+2)*+ (2 +2)°
Thus we have a double zero at 1 and a simple zero at —2.

e From Taylor’s formula, the (z—2()* co-efficient of the Taylor expansion
of f at 2o is equal to f*)(zy)/k!. Thus, the order of the zero of f at z
is equal to the first & such that f*)(z) # 0.

e For instance, take f(z) = sin(z). We have f(0) = 0, but f'(0) =1 # 0,
so f has a simple zero at 0.

e Or, take f(z) = (2 — 1)*(z + 2). One can calculate f'(z) = 2(z —
D(z+2)+(z—1)?and f"(z) =2(z +2) +2(2 — 1) + 2(2 — 1). Thus
f(1)=f'(1) =0 but f"(1) # 0, so f has a double zero at 1.

e Or, take f(z) =1 — cos(z). We have f(0) =0, f'(0) =sin(0) = 0, but
f"(0) = cos(0) =1 # 0, so f has a double zero at 0.



If f(2) has a zero of order k at zy, and g(z) has a zero of order [ at z,
then f(2)g(z) has a zero of order k +1 at z,. This is because when you
multiply a power series of the form

ar(z — 20)" + higher order terms

with
bi(z — z)' + higher order terms

you get

)k+l

arbi(z — 2o + higher order terms.

For instance, we already know that z and sin(z) both have simple zeroes
at 0. Thus zsin(z) has a double zero at 0, zsin?(z) has a triple zero at
0, etc. Similarly, (1 — cos(z))'° has a zero of order 20 at 0.

Note that the order of a zero is always an integer; there’s no such thing
as a zero of order 1/2. (One might think that, e.g. p.v.z'/? ought to
have a zero of order 1/2 at 0, but this function is not analytic at 0,
because of the branch cut!)

By convention, the zero function f(z) = 0 has a zero of infinite order
at every point (one can factor out as many powers of (z — zp) as one
pleases!) Later on, we shall see that this is the only function which can
have zeroes of infinite order.

If f(2) has a zero of order k at zy, then we can factor out exactly k&
copies of (z — 2g), and obtain a factorization

f(2) = (2 — 2)*9(2)

where ¢(z) is analytic and non-zero at zo. For instance, since sin(z)
has a simple zero at 0, we may factor

sin(z) = zg(z)

where ¢ is the function

22 A

g(Z):1—§+§—
Since sin(z) has an infinite radius of convergence, g also has an infinite
radius of convergence, and thus g is entire. Also, ¢g(0) =1 # 0, so we

cannot factor out any further powers of z.
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L’hopital’s rule
e One can use the theory of zeroes to prove

e L’hopital’s rule. Let f(z) and g(z) be functions which are analytic
and zero at zy. Then
!
TPAC N O
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e Let k be the order of the zero of f at zy, and [ be the order of the zero
of g at 2y, so

f(2) = ar(z — 2)* + higher order terms

g(2) = bi(z — %)' + higher order terms

where ay, b; are non-zero numbers.

e If £ > [, then the left-hand limit is 0; if £ < [, the left-hand limit is
infinite. If £ = [, then the left-hand limit is ay/b;.

e Differentiating the above power series, we get
f'(2) = kag(z — 20)*~' + higher order terms
g (2) = lbj(z — %)"™" + higher order terms

o If £ > [, then the right-hand limit is 0, if ¥ < [, then the right-hand
limit is infinite. If £ = [, then the right-hand limit is kay/lb; = ax/b;.
Thus in all cases the limits are equal.

Isolated and non-isolated singularities

e Now that we’ve studied zeroes of functions, let’s study the singularities
of functions.

e Definition We call a point 2y a singularity of a function f if f is not
analytic at zy.



The first major distinction we have to make is between an isolated and
non-isolated singularity.

Definition. A singularity zy of a function f is said to be analytic if we
can find a radius r > 0 such that f is analytic on the punctured disk
{z:0< |z — 2| <r}.

Another way of saying this is that a singularity is isolated if it is sepa-
rated from all other singularities of f by a non-zero distance r > 0.

For instance, the function f(z) = Wl(zﬂ) has an isolated singularity
at zp = 1, because we can find a punctured disk (e.g. {z: 0<|2—1| <
1}) around zy on which f is analytic.




e On the other hand, the function f(z) = Log(z) has a non-isolated
singularity at 0, because no matter how small one chooses the radius
r, the punctured disk {z : 0 < |z| < r} must contain singularities other
than 0.

e If f(z) has an isolated singularity at 2o, then f is analytic on an annulus
{z : 0 < |z — 20| < r}, and therefore we have a convergent Laurent
series around zy in this region. We shall abbreviate notation and call
this series the Laurent series of f around zj, although strictly speaking
there may be other annuli around z; which have Laurent series.

Removable singularities



e Isolated singularities can be divided into three classes: removable sin-
gularities, poles, and essential singularities. We first study the concept
of a removable singularity.

e You should already have encountered the concept of a remowvable dis-
continuity in real analysis. This occurs when a real-variable function
f(z) is not continuous at xo, but can be made continuous by re-defining
f(z) at zo. An example is the function f(x) = w This function is
not defined at z = 0 and so has a discontinuity there, however if one

redefines f at 0 as

_ [ sin(z)/z ifz#0
f_{l ifz=0

then f becomes continuous at 0. Since this discontinuity can be so
easily removed, we call it a removable discontinuity.

e Not all discontinuities are removable this way; for instance the function
1/z has a discontinuity at 0 no matter how one redefines it at 0.

e Similarly, in complex analysis we say that a function f has a removable
singularity at zo if f has an isolated singularity at zp, but f can be
made analytic by redefining f at z.

e For instance, consider the function f(z) = 1_%5('2) This function is

undefined at z = 0, but is otherwise analytic, so we have an isolated
singularity at 0. To figure out whether it is removable, we compute the
Laurent expansion of f(z) around 0. Starting with

22 2
cos(z) =1— O T
we have
. 22
— cos(2) or Tl
and thus . @ 1 )
— cos(z z
fO=——2"=a 1
for |z| > 0.



e This Laurent series contains no negative powers of z, and is thus a
power series, and hence analytic on its disk of convergence (which in
this case is the entire complex plane). Since the Laurent series matches
f(z) for all z except the origin, we have thus demonstrated that f has
a removable singularity at 0.

e More generally, if f(z) has an isolated singularity at zo and the Laurent
expansion of f(z) around z, has no negative power terms, then f has
a removable singularity. If the Laurent expansion contains at least one
negative power term, then the singularity cannot be removed, because
otherwise f would be given by a Taylor series with no negative power
terms, a contradiction since Laurent series are unique.

e If a function f(z) has a removable singularity at zq, then it is possible
that f(z) has a zero of some order after the singularity is removed. For
instance, consider the function f(z) = 1zcos(z)  This function has an

isolated singularity at 0; its Laurent expansion around 0 is

z 28

fz) = T
The power series on the right-hand side has a simple zero at 0. Thus
f(2) has a simple zero at 0 once the singularity is removed.

Poles

e Suppose f(z) is a function with an isolated singularity at z;. Even if
this singularity is not removable, it may be possible to remove it after
multiplying f by enough powers of (z — zg). (The function (z — z) is
zero at zg, and so multiplying by (z — z) should make the singularity
“better”).

e For example, consider the function f(z) = 172063(‘5). This function has
a singularity at 0, with Laurent expansion
1 1 1
T =g —qa T

Because the Laurent expansion has negative powers, this singularity is
not removable. However, if we multiply f by four powers of z, then it



the resulting function does have a removable singularity at 0:

1 22
4 —_— e _— —_—
zf(z)—2! 4!+6!
If we multiply by any fewer powers of z, we cannot completely remove
the singularity. Because of this, we say that this function has a pole of

order 4, or a quadruple pole.

More generally, if the Laurent expansion of a function f around an
isolated singularity 2o has the form

flz) = (za—izo)k + higher order terms
where a_ # 0, then we say that f has a pole of order k. For instance,
the Laurent series
3 2 1

GrP (z—i-i)?+Z+7;+0+(—1)(Z+i)+...

has a triple pole at —i. More generally, the order of a pole is equal
to the largest k& which has a non-zero (z — z9) ¥ term in the Laurent
expansion.

Removable singularities are also poles of order 0, although they are
generally not considered poles (the same way zeroes of order 0 are not
considered zeroes).

If f has a pole of order k at zp, then we can write f(z) = 9(2)

= Gl where

g(z) = a_i + higher order terms

is a convergent, power series near zg, and is hence an analytic function
at zp, with g(29) = a_x # 0. In other words, poles of order k arise
by dividing a non-zero analytic function by (z — z)*. (Compare this
to zeroes of order k, which arise by multiplying a non-zero analytic
function by (z — 2)*).

It is easy to see what happens when multiplying or dividing poles and
zeroes together. We already know that a zero of order £ multiplied by
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a zero of order [ is a zero of order k£ + [. Similarly, a pole of order &
multiplies by a pole of order [ is a pole of order k£ 4 [. If one wants
to multiply a pole of order k£ by a zero of order [, there will be some
cancellation, but the end result will depend on whether £ is larger than,
equal to, or less than [.

e For instance, suppose f(z) has a triple pole at 2 and g(z) has a double
zero at 2. This means that f is a non-zero analytic function divided
by (z — 2), while g(z) is a non-zero analytic function multiplied by
(z — 2)%2. Multiplying the two together we see that f(z)g(z) is a non-
zero analytic function divided by (z — 2), which gives a simple pole at
2.

e Take the same example, and now consider f(z)g(z)%. When z # 2 this
is a non-zero analytic function multiplied by (z — 2); when z = 2 this is
undefined because f(2) is undefined. This means that f(z)g(z)? has a
removable singularity at 2, and once the singularity is removed we get
a simple zero.

e By similar arguments, one can divide one function by another and
determine whether one gets a pole or zero as a result. The reciprocal
of a zero of order k is a pole of order k, and conversely

e Once one gets the hang of this, computing the order of a pole or zero
can become quite quick. For instance, to figure out the nature of the
singularity of

e*(1 — cos(z))?
sin(z)323

at zero, we note that e® is non-zero at 0 (hence a zero of order 0),
(1 — cos(z)) has a double zero, while sin(z) and z both have simple
zeroes. 'This gives a total of four zeroes in the numerator and six
zeroes in the denominator, so the function as a whole has a double pole
at 0. (Alternatively, one could try to compute the Laurent series of the
above function around 0, and find the most negative order term, but
this will take a long time).

Essential singularities
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e There are some singularities which are neither removable or poles. For
instance, consider the function f(z) = e!/#. This function has a singu-
larity at zero, and its Laurent expansion around zero is

e Because of the presence of negative powers in the Laurent expansion,
this function does not have a removable singularity at 0. The singularity
is not a pole either, because no matter how many times one multiplies
by z, one cannot eliminate all the negative powers of z and make the
singularity removable. For instance, if one multiplies by 2%, one still
gets negative power terms:

3 _ o 2z 1 1
22f(z) =24z +5+§+E+”'

1/z

Because of this, we say that e'/? has an essential singularity at 0.

e More generally, whenever the Laurent expansion of f(z) around z
contains an infinite number of negative power terms, we say that f has
an essential singularity. (If it has a finite number of negative terms,
then the singularity is a pole, and if it has no negative terms, the
singularity is removable). Thus every isolated singularity is of exactly
one type: removable, pole, or essential.

e Suppose f(z) had an essential singularity at 0, and g(z) had (for in-
stance) a double zero at 0. Then f(z)g(z) cannot have a removable
singularity, since by dividing by ¢g(z) this would mean that f(z) would
be a double pole or better, a contradiction. f(z)g(z) cannot be a pole
of order k, since by dividing by ¢ this would mean that f would be a
pole of order k£ + 2, a contradiction. By elimination, we conclude that
f(2)g(z) has an essential singularity at 0.

e More generally, if you multiply or divide an essential singularity by a
pole, removable singularity, or zero, you still get an essential singularity
(kind of like how if you add or subtract any finite number from infinity,
you still get infinity). Also, the reciprocal of an essential singularity is
again an essential singularity (because it can’t be anything else).
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However, when you multiply or divide two essential singularities to-
gether, anything can happen (it’s somewhat like subtracting infinity
from infinity). For instance, e!/? and z%e~'/* both have essential sin-
gularities at 0, but when you multiply them together you get a double
zero at 0 (after the singularity is removed).

Limiting behaviour at singularities

Suppose f(z) has an isolated singularity at zo. We ask the question
of how f(z) behaves as z — zy. The answer depends on what kind of
singularity one has at zp.

If zp is a removable singularity, then f can be redefined to be analytic,
hence continuous at zo. Thus lim, ,,, f(z) exists and is finite.

If zp is a pole of order k, then f(z) = g(z)/(z — 2)* for some non-
zero analytic function g(z). As z — 2z, the numerator of g(z)/(z — z)*
tends to some non-zero number, whereas the denominator tends to zero.
Thus we have f(z) — 0o as z — z5. Roughly speaking, the higher the
order of the pole, the faster the rate at which f goes to infinity.

If zy is an essential singularity, then the behaviour becomes very strange.
For instance, consider the essential singularity of f(z) = e!/* at 2y = 0.
If we approach 0 from the right, f goes to oo very quickly:

lim e'/* = co.
z—0t

On the other hand, if we approach 0 from the left, f goes to 0 very

quickly:
lim e '/®
z—0~

= —OQ.

If we approach 0 from above, f spins round the unit circle infinitely
often

. 1 1
lim e/® = lim cos(=) —isin(~ = does not exist
y—0t+ y—0t Yy
and so forth. In fact, by choosing the approach path appropriately,
one can make e!/? exhibit just about any kind of behaviour one wants,
although one can never make it equal zero.
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More generally, there is a very difficult theorem known as the Great
Picard Theorem, which states that near an essential singularity, a func-
tion takes on every value in the complex plane, with at most one excep-
tion. Thus, for instance, near zero, e!/? can equal any complex number
other than zero. We won’t prove the Great Picard Theorem here, as
the proof is extremely complicated.

Using singularity theory to compute Laurent expansions

To find the Laurent series of a function near a singularity, it sometimes
helps to first work out the nature of the singularity. For instance,
suppose we want to work out the Laurent expansion of

1
f(Z) - ez — 1
around z = 0. We expand the denominator as
. 2 3
e —1=z+§+§+...

Thus e* — 1 has a simple zero at 0, so f has a simple pole at 0:

a_
f(z)=71+a0+a1z+a2z2+...

To work out the co-efficients, we multiply the above two equations
together to get
2 3
a—_1 ¢z
1=(— .- — 4+ —=4...
(Fatazt. )+ g+o+-0)
Multiplying the series together and comparing co-efficients we get

0,_1:1

a_q

?4—@0—0
a_1 Qo _
?4‘54‘@1—0

etc., and one can solve for a_q, then ag, then a1, etc. recursively.
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This function has singularities at integer multiples of 274, so is analytic
in the annulus {0 < |z| < 27} and not analytic in any larger annulus.
Thus this annulus is the largest region on which the above Laurent
series converges.

The point at infinity

This section will be rather informal.

We’ve looked at many limits of the form

1
Jim £(2)
where 2, is a complex number. This measures how f behaves as z
approaches a finite number z;,. However, it’s also useful to find out
how f behaves near infinity, and to try to compute a limit such as
lim f(z)
Z—>00
One can convert limits at infinity to limits at finite points (such as 0),
e.g. by the identity
1
li =li -).
lim f(2) = lim f(-)
Because of things like this, it is sometimes convenient to treat oo on
equal footing with other complex numbers.

Definition. The extended complex plane is the complex plane C, union
with the single point {oo}, which is referred to as the point at infinity.

Of course, we can’t depict the extended complex plane accurately in
the usual Cartesian plane, since oo is infinitely far away. To visualize
the extended complex plane we use a different model based on the
stereographic projection.

Think of the complex plane as embedded in three-dimensional space
R?, so that each complex number z + yi becomes the point (z,y,0).
Now consider the sphere S of radius % centered at (0,0, 1):

1 1
S:{(‘/anwz):x2+y2+(’2_§)2:1}'
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We call (0,0,1) the north pole of S.

A

e

e We can map the complex plane C to S by the following procedure. For
every point z in C, join the line segment from the north pole to z, and
find out where this intersects S. This maps points in C to points in
S. We can reverse this process: if = is any point in S other than the
north pole, we can join the ray from the north pole passing through
z, and find the point for which this ray hits C. Thus we can make a
one-to-one map between the complex plane C and the sphere S with
the north pole removed.

e We can fill in the hole in the north pole, and can make a one-to-one

16

\{



map between the extended complex plane to the sphere S by mapping
the point at infinity to the north pole. So the extended complex plane
can be visualized as a sphere.

e (The exact map is given by the formula

T Y 2?2 + 92
w2 +y?+ 122+ 92+ 1 a2+ 4+ 1

),

x+yi—(

but this formula isn’t really worth remembering).

e There are several nice properties of this projection. For instance, if
we have a circle or line on the complex plane, and use the stereo-
graphic projection to map this to the sphere, then we always get a
circle. (Strictly speaking, we have to adopt the convention that lines
include the point at infinity, otherwise the projected circle will be miss-
ing one point at the north pole). Conversely, if we take any circle on
the sphere, and project it back to the plane, we either get a circle or
line. (Depending on whether the original circle went through the north
pole or not). It is sometimes helpful to think of a line as a circle of
infinite radius (and center infinitely far away from the origin).

e The map is conformal, which means it preserves angles. If two curves
in C intersect at angle 6, their stereographic projections to the sphere
also intersect at angle 6.

e Also, some maps on the complex plane become simpler using the stere-
ographic projection. Back in week 1 we studied the inversion map
z +— 1/z, which took a point with magnitude r and phase 6, and
mapped it to a point with magnitude 1/r and phase —f. On the sphere,
the inversion map becomes a 180 degree rotation around the east-west
axis

{(t,0,1/2) : t € R}.

e Note that we don’t make any distinction between +o00 or —oo as one

does with the real line; there is just a single point at infinity, and all

directions in the complex plane eventually lead to this point.

Singularities at infinity
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e We know how to classify singularities at any point z; on the complex
plane into removable singularities, poles, and essential singularities.
But it is also convenient sometimes to classify the behaviour of a func-
tion at infinity - whether one has a removable singularity, pole, or
essential singularity at oo.

e The rule is simple: the classification of the singularity of f(z) at oo is
the same as that of the singularity of f(1/z) at 0.

e For instance, consider the function

To find out what type of singularity f has at oo, we look at f(1/z):

£(1/2) = (1/?/;_1 _ 1—;2 '

The numerator is non-zero at 0, and the denominator has a simple zero
at 0, so f(1/z) has a simple pole at 0, thus f(z) has a simple pole at
infinity.

e Or, take the function

z
f(z) = 2241
The function f(1/z) is
122 +1 0 2
T2 ===7—= 77

for z # 0. Of course, f(1/z) is not defined at z = 0, but the function
-2+7 has a simple zero at 0. Thus f (z) has a removable singularity at
oo, with a simple zero once the singularity is removed.

e As a last example, consider the function f(z) = e*. Even though this
function has no singularities in the complex plane (it is entire), it has
quite a nasty singularity at co. The function f(1/2) is just

1 1
1/2)=e/"=14+-4+—+...
f( /Z) € +Z+2!Z2+ )
which has an essential singularity at 0. Thus f has an essential singu-
larity at oc.
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e As one can expect from the definition, singularities at oo are much
like singularities at other points, except that the roles of z — 2y is now
played by 1/z.

e Just as the type of singularity at a finite point z; influences the be-
haviour of f(z) as z — zg, the type of singularity at oo influences the
behaviour of f(z) as z — oo. For instance, if f(z) has a removable
singularity at oo then

lim f(2)

zZ—00

exists. If f has a zero of order m at co, this means that

lim 2™ f(2)
Z—>00
exists, but that

: m+1
e 2mIe)

doesn’t; another way of saying this is that f(z) decays like 1/z™ as
z — 0.

e If f has a pole of order m at oo, this means that

lim f(z)/z"

Z—00

exists, but
lim f(z)/2™*
Z—>00

does not. Another way of saying this is that f(z) grows like 2™ as
z — 0.

e Finally, if f has an essential singularity at oo then the behaviour as
z — oo is quite wild, and depends on exactly what path one takes to
go to co. Along one path it might converge to a limit; along another
path it might go off to infinity; and on a third path it might just oscillate
infinitely often.

e Without the point at infinity, the number of zeroes and poles of a
function do not have to agree. However, adding oo happens to balance
these out:
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e Theorem Let f be a function which has a finite number of poles and
zeroes in the extended complex plane, but no other singularities. Then
the total number of poles of f is equal to the total number of zeroes of

f-

e (Proof omitted).
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