Math 132 - Week 6

Textbook sections: 5.1-5.3, 5.5
Topics covered:

e Power Series
e Taylor Series

e Laurent Series



Overview

e In real analysis, many functions f(z) can be ex-
panded as power series:
0.9)
flz) = Z an(z—20)" = ag+a1(z—xo)+az(z—x0)°+. . .
n=0
These series expansions are called Maclaurin series if
xo = 0, and Taylor series in general. For instance,

we have )

r i

Functions which can be written as convergent Taylor
series are called real analytic.

e These series are important for a number of reasons;
for instance they provide quick ways to compute func-
tions such as e*, providing of course that the series
converges.

e In this set of lectures we explore the theory of power
series for complex functions. It turns out that every
complex analytic function f(z) can also be written
as a convergent Taylor series

o0
f(2) =Y an(z—2)" = ag+ai(z—2p)+az(z—2)*+. . .

n=0



but with complex co-efficients a,, rather than real
coefficients. Furthermore, the complex analytic func-
tions are the only functions with convergent Taylor
series expansions.

Now suppose f(z) has a singularity at z;. Then f
cannot be written as a Taylor series. However, it
turns out that if the singularity is “isolated”, f can
still be written as a power series if one also allows
negative powers of z:
o0
f(z) = Z an(2—20)" = ag+ai(z—2)+as(z—20)*+. ...
n=—o00
a_q a_o

et s TR

These series are known as Laurent series.

Laurent series allow one to get a better understand-
ing of singularities. Eventually we will be able to
classify singularities into several distinct types, such
as poles, essential singularities, and removable singu-
larities.



Convergence of sequences - Review

e Let z, be a sequence z1, 29, . .. of complex numbers.
We say that z, converges to a limit z if

lim |z, — 2| = 0.
n—o0

An equivalent definition: z, converges to zy if, for
every € > 0 we can find an N > 0 such that |z, —
29| < e foralln > N.

e Example: 1+ i"/n converges to 1 as n — oo.

o If 2, converges to zy, we write lim,,_, 2, = 2, or
2, — 29 as n — 00. If z, does not converge to any
complex number, we say the sequence is divergent.

e The sequence does not have to start at n = 1; one
can start a sequence at any finite value of n, and the
value of the limit (if it exists) is unchanged.

e Suppose we split z, into real and imaginary parts
Zn = Ty + 1Y,. Theorem: If z, converges to zy =
xo+1tyo, then x, converges to xy and y,, converges to
yo. Conversely, if z,, converges to xy and y,, converges
to yp, then z, = x, + 1y, converges to 2y = o+ 1¥p.



1Yo ® 2= x 0+ i

e Thus a sequence converges if and only if its real and
imaginary parts converge. In principle, this reduces
the study of complex limits to that of real limits,
however sometimes it is easier to work with complex
limits directly than try to break into real and imagi-
nary parts.



e Some limit laws:

lim z, + w, = lim z, &+ lim
n—oo n—oo n—)oown

lim ¢ =rc
n—oo

lim z,w, = (lim z,)(lim w,)
n—oo n—oo n—o0

e ol = (00, 7))

where the last law only works when lim,, s w, # 0.

e The proofs of all these results are boring and will be
omitted.

e If z, converges to 2y, and f is a function which is con-
tinuous at zg, then f(z,) converges to f(zp). Thus
sin(1 4 4" /n) converges to sin(1) as n — o0, since
sin(z) is always continuous.

e Squeeze test: If |z, — 29| < a, for all n, and a,, is
a sequence of positive numbers such that a,, — 0 as
n — 00, then z, converges to zy as n — 00.



Series

e A series is any expression of the form

o0

Zzn:ZO+ZQ+Z3+...

n=0
The series can also start at other values than n = 0.
We say that a series converges to a sum S if the
partial sums converge to S:

N
lim g Z, = S,
N—oo

n=0

If the partial sums diverge, we say that the series is
divergent. If we don’t know whether a series con-
verges or diverges, we call it a formal series.

o If 2, =z, +iy, and Y~ 2z, =5 = X +iY, then
S oy =X and Y ° y, =Y and conversely. In
other words, a complex series converges if and only
if its real and imaginary parts converge.

e Most series are difficult to compute exactly. However,
there is one important series that can be worked out,
namely the geometric series

o0
Zz”:1+z+22—|—z3—i—...

n=0



where z is a complex number. The partial sums of
this series are

2 =(1-2"N/(1 - 2).

e When |z| < 1, this series converges to 1/(1 — 2):

d 2 =1/(1-2)

For instance, we have

1

11
1 — 2.
ottt

e When |z| > 1, then the series is divergent. For in-
stance,
14 (20) + (20)° + (20)° +
diverges (the series does not equal 1/(1 — 21)).

e Series laws:

n:0
Re(i Zn) = EOO: Re(zy)
n=0 n=0
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(0. 9]

oo
E czn:cg Zn

n=0 n=0

00 N o0

Z Zn = Z Zn + Z Zn

n=0 n=0 n=N+1

e Re-arranging a series can sometimes change the value
of a series. As an (admittedly artificial) counterex-
ample, the series

1111111111111

N e e B B i

2222444444448

converges to zero; however, if we rearrange the series
as

1_|_1+111_|_111111+1 1_|_
2 2 442442884

then the series converges to 1. However, this kind of
behaviour cannot happen if the series is absolutely
convergent, which means that ) |z,| converges.



Convergence tests

e Every absolutely convergent series is convergent, but
not vice versa.

o Zero test: if z, /4 0 asn — oo, then >~ 2, is
divergent.

e Comparison test: if |z,| < a, for all n and >~ a,
converges, then > >°  is absolutely convergent.

e Ratio test: suppose |z,+1|/|2n| converges to a real
number L as n — oo. If L < 1, then Y >z,
is absolutely convergent; if L > 1, then > ° 2, is
divergent. If L = 1 or L doesn’t exist, then anything
can happen.

e There are many other tests, but we will not need
them in this course.

10



Series of functions

o Let fo(2), f1(2), f2(2), . .. be asequence of functions.
We can form the series

an = fo(2) + f1(2) + fa(2) +

e This series may converge for some z and diverge for
other z. If it does converge for a range of z, then the
sum is another function, say f(2):

e Another way of writing this is

hm 1f(2) an =

e The series Y~ fu(2) does not always converge at
the same rate for each z. For instance, consider the
geometric series

(0. 9]

d 2 =1/(1-2)

n=0
on the disk D = {z : |z| < 1}. This series converges
for all z € D, but converges much faster when z is

11



near zero than when z is near the boundary of D.
For instance, when z = 0.1, then

100
1/(1=2) =) 2"~ 11x 107"
n=0
if z =0.9, then
100

11/(1—2) — Zz”|~26><10 .

while if z = 0.99, then
100

1/(1—2) = > 2"| ~ 36.

n=0

e Because of this, we introduce a stronger notion of
convergence, called uniform convergence.

e Definition If D is a set and f,(2), f(2) are func-
tions defined on D, we say that >~ fn(2) con-
verges uniformly to f(z) on D if

lim sup |f(z Z fal2)] =

e For instance, the geometric series ., does not con-
verge uniformly to 1/(1—z) onthedisk {2 : |2| < 1},

12



but it does converge uniformly to 1/(1 — z) on the
smaller disk {z : |z| < 1/2}, as we shall see.

e One major advantage of uniform convergence over
ordinary convergence is that it allows one to swap
sums and integrals:

e Theorem. Let D be a domain, and f,(z) be con-
tinuous functions on D. If Y7 f,(z) converges to
f(2) uniformly on D, then f is also continuous on
D, and for every contour I' in D we have

[ 1)z = fj [ 5 s

e Another way of saying this is that we have

/ gm iz fj [ 5.0 a2

whenever the sum converges uniformly. For finite
sums this claim is obvious, but things are a little
subtle for infinite sums. Indeed, without the assump-
tion of uniform convergence the above identity can be
false!

e (Proof omitted).
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e The definition of uniform convergence is somewhat
difficult to work with. Fortunately there is a useful
test to determine uniform convergence:

e Weierstrass M-test. Let D be a set, and let
fn(z) be functions on D. Suppose that each f,(z) is
bounded by some number a,, so that |f,(z)| < a,
for all z € D. Suppose also that > a, < M for
some finite number M. Then the series Y~ fi(2)
is uniformly convergent on D.

e The proof of this theorem is not difficult, but will be
omitted.

e Example: To show that the geometric series con-
verges uniformly on D = {z : |z| < 1/2}, we write
fa(z) = 2™, and observe that |f,(z)| < 1/2" for all
zin D. Since ) 1/2" converges, it is bounded by
some number M, and we are done.

14



Power series

e A power series is any expression of the form
(0,@]
Z an(z —20)" = ap+ay(z — 2) +as(z —2)* +. ..
n=0
where the a, are complex co-efficients, and zj is a
complex number.

e The series obviously converges when z = z;, and
can converge for other values of z too, but does not
necessarily converge for all z. However, the set of
z for which the series converges is always a disk of
some sort:

e Theorem. Let > ° a,(z— z)" be a power series.
Then there exists a number 0 < R < oo such that
the series converges absolutely for |z — 2| < R and
diverges for |z — zg| > R. (For |z— 25| = R anything
can happen). Also, for any 0 < r < R, the series
converges uniformly on {z : |z — zp| < r}.

15



. . seriescan either converge or diverge at the boundary

series converges uniformly
ontheinner disk

series diverges outside
the outer disk

Qnverges ahsolutely inside the outey diSk

e The number R is called the radius of convergence
of the series. The set where z converges is called is
called the disk of convergence. This disk can be a
single point (when R = 0) or the entire plane (when
R = o0) or something in between.

e (Proof omitted).

16



e In practice, the radius of convergence is computed
using the ratio test. For instance, consider the series

0
nz"

on

n=0

We compute the limiting ratio

|(n 4 1)Zn+1/2n+1|

L= lim
n—00 |nzn/2n|
. n+1lz] |7
= lim = —.
n—oo n 2 2

Thus we have convergence when |z| < 2 and diver-
gence when |z| > 2, so the radius of convergence is
2. (The behaviour at the boundary |z| = 2 is more
delicate. In this particular case, one has divergence
at |z| = 2 thanks to the zero test).

e A series may have a zero radius of convergence. For
instance, the series

Zn!z":1+z+2z2+6z3+...

n=0

turns out to only converge when z = 0.
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Taylor’s formula,

e We now show that any complex analytic function can
be written as a power series.

e Taylor’s formula Let f be a function which is
analytic on a disk {z : |z — 2| < R}. Then the
power series

(z — 29)?

2!

n!

00 (n) 20 / )
S0 = ) o) (om0 o)

converges to f(z) on the disk {z : |z — 2| < R}.

e This series is called the Taylor series of f at z,. If
zo = 0, this series is called the Maclaurin series of

f.

e Proof We first do a translation trick which effec-
tively moves z; to the origin. Let g(z) denote the
function g(2) = f(z + 20). Then ¢(0) = f(z0),
g'(0) = f'(z), etc, and g is analytic on the disk
{2z : |z| < R}. We now need to show that the power
series

0 2

9(0) +g'(0)z+¢"(0)5 +.

n=0
converges to g(z) on the disk {z : |z| < R}.
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e The proof of this is very different from the real an-
alytic case, and goes through the Cauchy integral
formula. Let + be the circle {|z| = R} traversed
once anti-clockwise. We have

o(2) = iy{ I

271 w— z

for all |z| < R.

e We want to write this as a power series in z. The trick
is to use the geometric series formula. We rewrite

1
'%QW)M_:{%@W) L
2mi J, w — 2 2mi [, w 1 —z/w

Since w is in vy, |w| = R, and so |z/w| < 1. We can

then use the geometric series formula to obtain

1 1 22
.%QW)MP‘ %ﬁmku-+2+ ) dw
271 FW— 2 271 w woow

yf > o

If the series n +1 converges uniformly (this can be
done using the M-test, but we’ll omit this), we can
interchange the sum and integral to obtain

) 1 g(w)z"
Z _—
Z Zg) wntl
n=0 v

19




However, from the generalized Cauchy integral for-
mula we have

w 271
7{9< ) dw:—'g(”)((ﬁ)).
v n:

Putting the two facts together we see that
. g™
9" (0)
9(2)=3 nl 2
n=0 '

as desired.

[]
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Some standard Taylor-Maclaurin series:

e The exponential, sine and cosine Maclaurin series

2, " 2?
z __ _
n=0
o
B (_1)n22n B 22 24
cos(z) = Z o)l 1— TR
n=0
o0
B (_1)nz2n+1 23 25
GG Bhrre it T

all have an infinite radius of convergence. Note that
from these three expansions one can prove the com-
plex form of Euler’s formula:

e = cos(z) + isin(z).
e The Maclaurin series for 1/(1 — 2)

1
1 —

0
:ZZ”:1+Z+22—|—...
n=0

converges for |z| < 1 but diverges for |z| > 1.

e The Maclaurin series for Log(1 — 2)

Log(l — 2) = Z—:— ———%—...
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converges for all |z| < 1 except z = 1, but diverges
for all other z.

Using the standard series one can work out what
happens for modified series fairly easily. For instance,
by substituting 2z for z in the expansion of 1/(1—2z)
we see that

1 00
_ 2nz2n

—a =D

1—2z —

converges for [222| < 1, ie. for |z| < 1/4/2. One
can also use Taylor’s formula to do this, of course,
but it’s more work that way:.

Another example: if we want to find the Taylor series
of e around zy = 1 (rather than z; = 0), we can
write

ez _ ez—1—|—1 _ eez—l

and then use the previous formula to obtain

(z —-1)"
n!

O
e = e
n=0

for all z.

Now consider the problem of finding the Maclaurin

expansion of ﬁ We can do this by squaring the

22



series for 1/(1 — 2):

1

=4 z+ 22+ )2+ 22+
= I |
When |z| < 1, both series are absolutely convergent,
and we can rearrange them however we want and still
get the same answer. If we multiply out all the terms
and then simplify, we obtain

1
— =142 322+ ...
(1= 2) + 2z + 02" +
when |z| < 1.

More generally, if we know the Taylor series of f(z2)
around zj, and the Taylor series of g(z) around z,
then we can multiply the two together to obtain the
series for f(z)g(z) around z.

Addition and subtraction of Taylor series is also straight-
forward. Division is a little trickier. For instance,
suppose we want to find the Maclaurin series of sec(z) =
1/ cos(z). Since sec(z) is analytic in the disk |z| <
7/2, we know that there is some Maclaurin series for
sec(z) which has a radius of convergence of at least
m/2:
sec(z) = ag + a1z + a2’ + . ..

23



Since cos(z) sec(z) = 1, we thus have
2

2
(1—§+...)(a0+a12+a222+...):1.

Multiplying out the left-hand side when |z| < 7/2,
and comparing co-efficients, we obtain

CL()Zl

etc. which allows us to solve for the unknown co-

efficients a;:

1 1
sec(z):1+§z2—ﬁz4+...

Another way to do this is by long division, dividing
1— ;—? + ... into 1. One follows the essentially same
procedure one uses to long divide one polynomial
into another, except that one starts from the lowest
degree polynomial and works one’s way upwards.

Division works well as long as the denominator has a
non-zero constant co-efficient (i.e. the denominator
doesn’t vanish when z = 2p). When it does vanish
one has to be slightly more careful, as we shall see.
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Integrating a power series

e Suppose that

o0
) =3 an(z = 20)"
n=0
be a power series around zy with radius of conver-
gence R, and suppose that v is a contour from z; to
2o in the disk {z : |z — 29| < r} forsome 0 < r < R.




We want to compute

/ f(z) dz.
Y
We expand this as

/Z an(z — 20)" dz.
7 n=0

Since the power series converges uniformly on v, we
can interchange the sum and integral

Z/an(z — 20)" dz.
n=0 "7

By the fundamental theorem of calculus, this be-

COmes

Z e E
n+1 "

In other words, we see that

o0 (z _ Zo)n+1
D> an

n+1
n=0

is an anti-derivative of y ° .
e As an example, we know that the series
—1/(1—-2)=—1—2—2"—2°— ...
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which converges for |z| < 1, has an anti-derivative
—z— 22— 23— ...
which also converges for |z| < 1.

e The function Log(1 — z) is also an anti-derivative of
—1/(1 — 2) on the disk |z| < 1. (Log(1 — z) is not
analytic when 1— z is zero or a negative real, but that
does not happen inside this disk). Thus Log(1 — z)
can only differ by a constant from the above power
series on this disk. When z = 0 both functions are
zero, so in fact the two functions are equal:

Log(l—2)=—2—2*/2—2°/3 — ...
for |z] < 1.

o (If two functions have the same derivative on the
same domain, then they must differ by a constant on
that domain.)

27



Radius of convergence of a power series

e We have just shown that every power series has an
anti-derivative inside its disk of convergence. From
previous notes we know that if a function has an
anti-derivative on a domain, it must be analytic on
this domain (because the integral around every closed
contour is zero, and one can apply Morera’s theo-
rem). Thus every power series is analytic on its disk
of convergence.

e On the other hand, Taylor’s formula says that every
analytic function on a disk has a power series that
converges on that disk. If one combines the two re-
sults, one can work out exactly what the radius of
convergence of a Taylor series is.
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-m2: T2

e As an example, consider the Maclaurin expansion of
f(z) = e*/ cos(z). Without actually evaluating any
coefficients, we know that the radius of convergence
of this series is at least /2, because f is analytic
on the disk of radius 7 /2 around the origin. And we
know that the radius of convergence cannot exceed
7/2, since that would imply that the power series is

29



analytic on a disk of radius greater than 7 /2, which is
a contradiction since f has goes to infinity at 4 /2.

As a general rule of thumb, the radius of convergence
of a Taylor expansion of f at z; is equal to the dis-
tance from zy to the nearest singularity of f. This is
not always the case however, because some singular-
ities are “removable”. As a rather trivial example,
consider the function

f(z) =2z/z.

Strictly speaking, this function has a singularity at
0, and outside of zero this function equals 1. If one
performed a Taylor expansion at z; = 1, one would
obtain

fR)=1+0z—-1)+0(z—1>*+...

which of course has an infinite radius of convergence,
despite f having a singularity 1 unit away from z;.
We'll discuss the difference between removable and
non-removable singularities later in the course.
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Differentiating power series

e We have just shown that power series can be inte-
grated inside their disk of convergence. Now we show
that we can also differentiate these series in their disk
of convergence.

e Theorem. Suppose that

f(z) = Z an(2—20)" = ag+ay(z—z)+as(z—2)*+. ..
n=0

has a radius of convergence greater than R. Then

one has

fl(z) = Z apn(z—2)" "' = a1+2as(2—20)+3as(z—2)*+. . .
n=1

whenever |z — z| < R.

e Proof. Let v be the circle of radius R around %
traversed once anti-clockwise, and let z be a point
such that |z — 29| < R, so that z is inside I". By the
generalized Cauchy integral formula, we have

oy 1 flw) dw
?) = 27rz'/7(w—z)2'

In other words, we have

anz—zo dw
QWZ/Z '
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The power series is uniformly convergent, so we may
interchange the sum and integral. (The additional
1/(w— z)? factor is bounded on 7y and does not cause

a difficulty). We thus have
= 1 (z — 2)" dw
1)
fz) = ;an%ri /7 (w—2)2

By the generalized Cauchy integral formula applied
to f(w) = (w — 2)", we have

a1 1 / (z — 20)" dw
Y

nz =20 = 271 (w — 2)?

Combining these two equations we get the theorem.

As an example, suppose we want to find the Maclau-
rin series of 1/(1 — 2)?. One way to do this is to
square 1/(1 — z) as we did earlier. Another way is
to begin with the series for 1/(1 — 2)

—14+z+224+24+...
1—z

for |z2| < 1, and then differentiate both sides using
the above theorem to get

(1_2)2:1+22+3z2+...
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Uniqueness of Taylor series

e We can now clear up one small issue: is it possible
for a single function to have two distinct power series
which both converge around z;? In other words, can

we have
Z an(z — 2)" = Z bu(z — zo)"
n=0 n=0

for all |z — zy| < R, with the a,, co-efficients being
distinct from the b,, co-efficients?

e The answer is no. To see this, first set z = z; in the
above equation to get ag = by. Then differentiate
the series once to get

a1+2as(2—20)+3as3(z—20)*+. . . = by+2bo(2—20)+3bs(z—20)*+. . .

setting z = 2, again we get a; = by. If we keep iter-
ating this procedure we see that all the co-efficients
have to match.

e As a corollary, we see that if we know that two power
series agree, then we can equate their coefficients.
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Laurent series

e We have seen that if f is an analytic function at z,
then f can be written as a Taylor expansion around
2, and the radius of convergence should (in most
cases) be equal to the distance from f to the nearest
singularity. When zj is far away from any singular-
ities these Taylor series are quite acceptable. But if
one moves z( too close to a singularity, or even onto a
singularity, then things get worse. For instance, the
function 1/(1 — 2) has a Taylor series at zg = 0

1/(1—2)=1+z+2"+...

with radius of convergence 1. At 2y = 1/2, the series
becomes

1/(1—2)=2+4(z—1/2)+8(z —1/2)* + ...

and has a radius of convergence of only 1/2. At
2o = 9/10, the series becomes

1/(1—2) = 10+100(z—9/10)41000(z—9/10)+. . .

and the radius of convergence has shrunk to 1/10.
At zy = 1, there is no Taylor series at all.

e Fortunately, there is another type of series expansion
that converges on a reasonably large set even when
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there are singularities at or near to z;. These are
known as Laurent series.

e Formally, a Laurent series is just a double power
series, using both negative and positive powers of
(z — 2p). In other words, anything of the form

(0. 9]
Z an(z—20)" = ag+ay(z—2) +as(z —2)° +. ..
n=—00

a_q a_9
+

— (Z_ZO>2+....

e In particular, every Taylor series is a Laurent series,
but not conversely.

e As we've seen, Taylor series always converge inside a
disk. Laurent series can do this, but more often they
converge in an annulus. For instance, consider the
Laurent series

= " z 2 1 1
2{: §ET::1+-§—F1I-+...%—524—1;§—F..”

n=—oo

The positive power half of the series,
2

I+2+2 4
St
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is a plain old Taylor series, and converges in the disk
|2| < 2. The negative power half of the series

can be rewritten as a Taylor series if we make the
substitution w = 1/z2:

w ’UJ2

§+I—|—...

one can show that this series converges when |w| < 2,
i.e. when |z| > 1/2. Putting the two together, we see
that the full Laurent series converges in the annulus
1/2 < |z| < 2.

e Some Laurent series do not converge anywhere at all.
For instance, consider the series

> 2 4
Z oltlyn — 1 49y 442+ + 24 4.

2 22

n=—o00
The positive power half of the series converges when
|z| < 1/2, while the negative power half converges
when |z| > 2. There is no complex number z such

that both parts of the series simultaneously converge.

e Generally, we have
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e Proposition. Let > 7 _ a,(z — 2))" be a Lau-
rent series. Then there are numbers 0 < r, R < o0
such that the series converges absolutely to an an-
alytic function for r < |z — zp| < R and diverges
for |z — 2| < r or |z — 2| > R. (It is possi-
ble for R to be less than 7, in which case the se-
ries never converges). If r < 7’ < R’ < R, then
the series converges uniformly on the smaller annu-

lus {z : 7' < |z — 2| < R'}.

e R and r are sometimes called the outer and inner
radii of convergence.

e This is proved by breaking up the Laurent series into
a power series in (z— zy) and a power series in 1/(z—

Z()).
e Just as every function which is analytic on a disk can
be written as a power series, every function which is

analytic on an annulus can be written as a Laurent
series.

e Example: Suppose we want to find the Laurent series
of 1/(1 — z) around 0 in the annulus 1 < |z| < oo.
The standard Taylor series

1/(1—2):1+z+22+...
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does not converge here, and we need to find another
series. The trick is to write things in terms of 1/2
instead of z. If we write

1 1 -1 1

1—z 2(1/z—1) 2z 1-1/7

we note that the geometric series formula works for
1/z since |1/z| < 1:
1

—1+1 1/22+ ...
=17z +1/z+1/2"+

Putting the two together we obtain the Laurent ex-
pansion of 1/(1 — z) around 0 in the annulus 1 <
2] < o0

e A more complicated example: suppose we want to
work out all the Laurent expansions of

1
(1—2)(2-2)

around 0. We can break this up using partial frac-
tions as

1 1 1
1-2)2—-2) 1—2z2 2-—2z
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As observed before, the function 1/(1 — z) has an
expansion of

=14+z+224+...
11—z
when |z| < 1, and
1 1 1 1
1—z 2z 22 2

when |z| > 1. Similarly (exercise!) we have

1 —1+Z—i—22+
2—z 2 4 8 7

when |z| < 2, and
1 I 2 4

2 —z z 22 23

when |z| < 2. Putting all this together we get three
Laurent series. When |z| < 1, we get

1 _1+34+h{+
(1-2)2-2) 2 4 8 7
When 1 < |z| < 2, we get

1 1 z 22




When |z| > 2, we get

1 18 T
(1—2)2—2) 22 23 24 7

Another example: Consider the problem of evalu-

/% around 0. This function has a singular-

ating e
ity at 0 (quite a bad one, actually!) and so has no
chance of having a Taylor series around 0. However,
it is still easy to find a Laurent series in the region
0 < |z| < oo (i.e. all points of the complex plane

except the origin). Simply start with the formula
ef=1+z+22/20+...

valid for all z, and replace z by 1/z to obtain the
desired Laurent expansion

1 1
Ve 1424~ 4 .
e +z+2!22+

More generally, we have

Theorem Suppose that f is analytic on an annulus
r < |z— 2| < R for some R > r. Then there exists
a unique Laurent series



for f which converges on the annulus r < |z — zg| <
R.

e Proof. By the same translation trick used to prove
the Taylor series formula, we can make zp = 0.

e Let ' denote the circle |z| = R traversed once anti-
clockwise, and let I'; denote the circle |z| = r tra-
versed once anti-clockwise. Let z be a point in the
annulus r < |z| < R. If we knew that f was analytic
inside the hole of the annulus, we could use Cauchy’s
integral formula to write

fe) = o [

2m Jr,w— 2

dw

Y

however we cannot assume this. Instead, we can
show that
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1 fw)

£) = — dw— = [ )

= - . dw.
2me Jr,w — 2 2 Jp, w— 2

To see this, we make two closed contours I'y and I's
such that 'y goes anti-clockwise around f(z) and I'y
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doesn’t. From the CIF and Cauchy-Goursat we have

_ f(w) 1 [ flw)
f(Z)_Q—ﬂ'Z Flw—Zdw+% F2w—2d

Y

and the claim follows by rearranging the contours.

e We need to write the RHS as a Laurent series around
0. Let’s first look at the first integral. If w is in I'y,
then |w| = R, so |z/w| < 1. Hence we can use the
geometric series formula for z/w:

1 1 1 _1+z+z2+
w—z wl—z/w w w? w

We therefore have

Fl /F ,wn+1

1 n=0

z dw.

The series happens to converge uniformly (proof omit-
ted), so we get

I S (B

— n+1
Iy w yA 0 w

This is a power series in positive powers of z.

e Now let’s look at the T'y integral. Now |w| = 7, so
that |w/z| < 1. We can now use the geometric series
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formula for w/z:

1 1 1 1w  w?

w— 2 zl—w/z 2z =z

We therefore have

f(w) — f(w) ,
pzw—zdw/p2_zz”+1w dw.

We can prove uniform convergence as before (exer-
cise!), and so we get

(w)w" dw

00
Z

This is a power series in negative powers of z. Com-
bining the two formulae together see that we have
written f as a Laurent series on this annulus.

Iy W

Now we show that the Laurent series is unique. Sup-
pose we have two Laurent series which both converge
uniformly on some annulus r < |z| < R:

o o
g 2" = E b,z".
n=—oo n=—oo

Integrating both series around I'g, and using uniform
convergence to interchange the sum and integral, we
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obtain

(0. 9]

2" dz = Z bn/ z" dz.
n=—00 I'r n=—00 T'r
Except for 271, the functions 2" all have anti-derivatives

on ['p (namely 2"*!/(n+1)) and so their integral on
a closed contour is just 0. So we're left with

/ dz / dz
a_1 — = b_l —.
' < ' #

By the Cauchy Integral formula, or by playing around
with complex logarithms, one has [;, % = 2mi # 0.
So we can cancel this integral and obtain a_; = b_1.
To show that the other co-efficients match, we mul-
tiply or divide both series by some power of z and
repeat the above argument. For instance, if we mul-
tiply both sides by z, then it is the a_o and b_9
co-efficients which don’t cancel when one integrates
on ['p.

[

This theorem shows that Laurent series exist, but do
not give an easy recipe for finding the coefficients of
the series. In practice one has to use ad hoc tech-
niques for finding Laurent series, like the ones men-
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tioned above. Some Laurent series are quite diffi-
cult; for instance, working out the Laurent expan-
sion of e'/# cos(z) for 0 < |z| < oo is very difficult to
work out, as when multiplying the Laurent series for
e!/# (which contains infinitely many powers of 1/2)
against the Taylor series for cos(z) (which contains
infinitely many powers of z) one gets an infinite num-
ber of terms to collect for every power of z.
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